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Abstract1

The prisoners’ dilemma, the snowdrift game, and the stag hunt are simple two-player2

games that are often considered as prototypical examples of cooperative dilemmas across3

disciplines. However, surprisingly little consensus exists about the precise mathematical4

meaning of the words “cooperation” and “cooperative dilemma” for these and other binary-5

action games, in particular when considering interactions among more than two players.6

Here, we propose new definitions of these terms and explore their consequences on the7

equilibrium structure of cooperative dilemmas in relation to social optimality. We find8

that a large class of multi-player prisoners’ dilemmas and snowdrift games behave as their9

two-player counterparts, namely, they are characterized by a unique equilibrium where10

cooperation is always underprovided, regardless of the number of players. Multi-player stag11

hunts allow for the peculiarity of excessive cooperation at equilibrium, unless cooperation12

is such that it induces positive individual externalities. Our framework and results unify,13

simplify, and extend previous work on the structure and properties of binary-action multi-14

player cooperative dilemmas.15

1 Introduction16

Cooperative (or social) dilemmas can be informally described as situations where there is17

a tension between individual and collective interest regarding the cooperative behavior of18

individuals within a group (Dawes, 1980; Kollock, 1998; Hauert et al., 2006; Nowak, 2012; Rand19

and Nowak, 2013; Van Lange et al., 2013). The tension arises because cooperation can benefit20

the whole group but individuals might prefer to reduce their own cooperation and exploit the21

cooperative behavior of others. Examples of cooperative dilemmas include the private provision22

of public goods (Olson, 1965; Bergstrom et al., 1986), the management of common resources23

(Ostrom, 1990), voting (Palfrey and Rosenthal, 1983), protests, and other kinds of political24
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participation (Dawes et al., 1986), vaccination (Siegal et al., 2009), vigilance and sentinel25

behavior (Clutton-Brock et al., 1999), and many more.26

Given their ubiquity, the study of cooperative dilemmas and their resolution has attracted27

enormous attention from a wide array of scholars in economics, political science, anthropology,28

psychology, evolutionary biology, and other disciplines. Across these different disciplines,29

game theory has emerged as the standard way of formalizing and thinking about cooperative30

dilemmas (Fudenberg and Tirole, 1991; Weibull, 1995; McNamara and Leimar, 2020). Within31

this perspective, a social interaction is conceptualized as a game whose equilibria predict the32

strategic behavior of individuals in the long run. Such equilibria are stable states expected33

to emerge as a result of individual rationality, individual or social learning, or of evolution34

acting on a population. The literature of cooperative dilemmas has used different equilibrium35

concepts, including the Nash equilibrium (NE), the evolutionarily stable strategy (ESS), and the36

asymptotic stable equilibrium (ASE) of the replicator dynamic (Taylor and Jonker, 1978). Here,37

we make use of the ESS as equilibrium concept and guiding principle. In simple terms, an ESS38

is a strategy such that if all members of a population adopt it, then no rare alternative strategy39

would fare better (Maynard Smith and Price, 1973). The ESS is an equilibrium refinement of40

the (symmetric) NE, and, for the games we consider in this paper, equivalent to the concept of41

ASE (Bukowski and Miekisz, 2004).42

Conceivably, the simplest game-theoretic representation of a cooperative dilemma is as a43

symmetric game of complete information between players that can choose between two alternative44

actions or strategies (“cooperation” and “defection”), i.e., a multiplayer matrix game (Broom45

et al., 1997; Bukowski and Miekisz, 2004; Gokhale and Traulsen, 2014; Peña et al., 2014).46

The most paradigmatic example of such two-strategy cooperative dilemmas is the two-player47

prisoners’ dilemma (see, e.g., Kollock, 1998). In this game, “defection” is a dominant strategy48

(so that it is individually optimal to defect regardless of the co-player’s choice) and hence the49

only ESS (so that a population of defectors cannot be invaded by mutants cooperating with50

some probability). However, mutual “cooperation” yields higher payoffs to both players and can51

be, for certain payoff constellations, the socially optimal outcome. The (two-player) prisoners’52

dilemma is able to capture the essence of a cooperative dilemma in the starkest possible way,53

with a population trapped at an unique ESS featuring no cooperative behavior while expected54

payoffs would be maximized at some positive level of cooperation.55

Although much earlier work focused exclusively on the prisoners’ dilemma, it has been56

realized that in many situations two other two-player games can be better representations of57

cooperative dilemmas: the snowdrift (or chicken) game (Doebeli and Hauert, 2005), and the58

stag hunt (or assurance game) (Skyrms, 2004). While the prisoners’ dilemma is characterized59

by both greed (an incentive to defect if the co-player cooperates) and fear (a disincentive to60

cooperate if the co-player defects), the snowdrift game is characterized by greed (but not fear)61

and the stag hunt is characterized by fear (but not greed). These different incentive structures62

lead to different ESS patterns. First, for the snowdrift game, there is a unique ESS characterized63

by a population where there is some cooperation, although less than what would maximize the64
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expected payoff. Hence, in contrast to the prisoners’ dilemma, some level of cooperation can be65

evolutionarily stable. However, as in the prisoners’ dilemma, such level of cooperation is lower66

than the socially optimal level. Second, for the stag hunt, there are two ESSs: the first with full67

defection, and the second with full cooperation, and where the fully cooperative ESS coincides68

with the socially optimal level of cooperation. Hence, in contrast to the prisoners’ dilemma,69

the socially optimal level of cooperation is evolutionarily stable. However, as in the prisoners’70

dilemma, the population can be trapped at the equilibrium where nobody cooperates. Taken71

together, the prisoners’ dilemma, the snowdrift game, and the stag hunt constitute the three72

paradigmatic examples used to describe and think about cooperative dilemmas (Kollock, 1998).73

In light of the wealth of research on cooperative and social dilemmas that has been published74

in recent decades, one would have anticipated a broad consensus regarding how to precisely define75

concepts such as “cooperation” and “cooperative dilemma”, at the very least for symmetric76

matrix games. However, this does not appear to be the case. In fact, there are multiple coexisting77

definitions that are often at odds about the status of an action as cooperative (or not) or of78

a game as a cooperative dilemma (or not). Moving from two to more than two players only79

exacerbates the problem. Part of the issue is that many definitions proceed axiomatically by80

suggesting ways to classify games as cooperative dilemmas if given payoff inequalities hold, while81

other definitions emphasize the equilibrium structure (e.g., the ESS pattern) in relation to the82

location of socially optimal strategies that maximize expected payoffs. Such ambiguity is similar83

(and not unrelated) to the one surrounding the term “altruism” in evolutionary biology (Kerr84

et al., 2004).85

Here, we build on previous work (Dawes, 1980; Kollock, 1998; Kerr et al., 2004; Peña86

et al., 2014, 2015) to propose definitions of “cooperation”, “social dilemma”, and “cooperative87

dilemma” that are internally consistent and that are useful to characterize the outcome of social88

interactions. We also propose multi-player generalizations of the trinity of games used in social89

dilemmas research, namely the prisoners’ dilemma, the snowdrift game, and the stag hunt. We90

ask for these games if it is also the case, as it is for their well-known two-player counterparts,91

that cooperation is always underprovided at (an inefficient) equilibrium. A similar question has92

been asked before, although for more specific classes of cooperative dilemmas, by Gradstein and93

Nitzan (1990) and Anderson and Engers (2007).94

The rest of this paper is organized as follows. We begin by presenting our general framework,95

and by establishing terminology, notation, and preliminary results in Section 2. Bernstein96

transforms, well known in approximation theory and computer-aided geometric design for97

decades and only more recently fully incorporated in game theory (Peña et al., 2014; Nöldeke98

and Peña, 2016), are important tools of our analysis. We then present our main definitions99

in Section 3. We define an action to be cooperative if two conditions hold (Definition 7).100

First, universal cooperation must provide higher payoffs than universal defection (Dawes, 1980).101

Second, cooperation must provide what we call “positive aggregate externalities”, that is, a102

player switching from defection to cooperation must increase the aggregate payoff of co-players103

for any profile of pure strategies adopted by co-players (Matessi and Karlin, 1984; Kerr et al.,104
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2004; Peña et al., 2015). Building on this definition, we then define a cooperative dilemma as a105

game with a cooperative action that is also a social dilemma (Definition 3). In turn, we define a106

social dilemma as a game featuring at least one ESS that is not socially optimal, in the sense107

that it does not maximize the expected payoff (Definition 2). This definition of social dilemma108

is in the spirit of the definition of the same term given by Kollock (1998), but adapted to our109

evolutionary (and symmetric) setup.110

Section 4 deals with simpler conditions guaranteeing that a game is a cooperative dilemma.111

A necessary and sufficient condition is that individuals have, ex ante, individual incentives to112

defect (Proposition 1). Simpler necessary (but not sufficient) and sufficient (but not necessary)113

conditions are given in terms of the ex post individual incentives to defect, and hence in terms114

of simple inequalities involving the payoffs from the game. Section 5 provides similarly simple115

conditions for full cooperation to be socially optimal.116

We propose definitions of prisoners’ dilemmas, snowdrift games, and stag hunts for any number117

of players n ≥ 2 in Section 6. In all cases, each such multi-player game has a cooperative action118

and an incentive structure that is reminiscent of its two-player counterpart. Prisoners’ dilemmas119

are such that defection is (weakly) dominant. Individual incentives are thus characterized by120

both greed (of exploiting the cooperative behavior of others) and fear (of being exploited by the121

defective behavior of others). Snowdrift games are characterized by greed only, with incentives122

to defect if sufficiently many others cooperate. Stag hunts are characterized by fear only, with123

disincentives to cooperate if not enough others cooperate. In all cases, the ESS structure of124

these games is the same as their two-player versions. Our definitions for these three kinds125

of multi-player games rely on the ex post incentive structure and are thus stated in terms126

of inequalities at the level of payoffs of the game. We also introduce generalized prisoners’127

dilemmas, snowdrift games, and stag hunts (including the proper games as particular instances)128

that are defined in terms of their ex ante incentive structure.129

We find that cooperation is underprovided at inefficient equilibria for all (generalized)130

prisoners’ dilemmas and (generalized) snowdrift games—just as it is the case for the two-player131

versions of these games. Our finding extend previous results derived for specific cases of snowdrift132

games (Gradstein and Nitzan, 1990; Anderson and Engers, 2007) to the larger class of generalized133

snowdrift games. For (generalized) stag hunts, we find that it is possible to find cases with134

excessive cooperation, where the fully cooperative ESS supports more cooperation than what135

is socially optimal. However, this is the case only if the game does not feature what we call136

“positive individual externalities”, that is, that a player switching from defection to cooperation137

increases the payoff of each co-player, for any symmetric profile of pure strategies adopted by138

co-players (Uyenoyama and Feldman, 1980; Kerr et al., 2004).139

Finally, Section 7 offers some concluding remarks.140
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2 General framework141

2.1 Multi-player symmetric two-strategy games142

We consider a normal form game with two pure strategies (or actions, or choices) denoted by143

C and D. We focus on symmetric games among n ≥ 2 players where all players assume the144

same role in the game, and where the payoff of any player depends only on its own choice and145

on the numbers of players choosing the two available actions. Throughout, “game” should be146

understood as “symmetric two-strategy game”. We write Pk for the payoff of a player choosing147

C when k of their co-players choose C (and n− 1 − k of their co-players choose D), and Qk for148

the payoff of a player choosing D when k of their co-players choose C (and n− 1 − k of their149

co-players choose D). Payoffs can be written in matrix form as150


n− 1 . . . k . . . 1 0

C Pn−1 . . . Pk . . . P1 P0

D Qn−1 . . . Qk . . . Q1 Q0

. (1)

We collect the parameters Pk and Qk in the payoff sequences P = (P0, P1, . . . , Pn−1) ∈ Rn
151

and Q = (Q0, Q1, . . . , Qn−1) ∈ Rn. We assume that P ̸= Q holds, so as to exclude the152

uninteresting case where payoffs are independent of the chosen actions. However, Pk = Qk153

may hold for some (but not all) values of k = 0, 1, . . . , n− 1, so that games with non-generic154

payoffs are included in our framework. In a similar spirit, we assume that P and Q are not155

simultaneously constant, so as to exclude the uninteresting case where both payoff sequences156

are independent of k and hence of the actions chosen by co-players.157

We denote by Ti the sum of payoffs to the n players when i players choose C and n − i158

choose D. Such total payoffs are given by159

Ti = iPi−1 + (n− i)Qi, i = 0, 1, . . . , n. (2)

We collect them in the total payoff sequence T = (T0, T1, . . . , Tn) ∈ Rn+1. The average payoff to160

the n players when i players choose C and n− i choose D is then given by Ti/n. The average161

payoff sequence, collecting the average payoffs, is simply denoted by T /n.162

2.2 Private, external, and social gains163

Suppose that out of the n players, k players play C and n− k players play D. Fasten attention164

on one of the D-players and suppose that such a “focal player” switches its action from D to C165

while co-players keep their actions fixed, so that the focal player becomes the (k+ 1)-th C-player166

in the group (Kerr et al., 2004; Peña et al., 2015). As a result of this behavioral switch, the167
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total payoff to the n players changes from Tk to Tk+1. We let168

Sk = ∆Tk = Tk+1 − Tk, k = 0, 1, . . . , n− 1 (3)

denote such a change in total payoffs, and call it the social gain induced by the focal player.169

The social gain can be decomposed into two parts. First, as a result of the switch, the focal170

player experiences a change in payoff given by171

Gk = Pk −Qk, k = 0, . . . , n− 1. (4)

We call this change in payoff the private gain enjoyed by the focal player.1 Second, because172

of the focal’s switch, each of its k co-players playing C experiences a change in payoff given173

by ∆Pk−1 = Pk − Pk−1, and each of its n − 1 − k co-players playing D experiences a change174

in payoff given by ∆Qk = Qk+1 −Qk. Overall, the focal’s co-players experience an aggregate175

change in payoff given by176

Ek = k∆Pk−1 + (n− 1 − k)∆Qk, k = 0, 1, . . . , n− 1, (5)

where we set P−1 = Qn = 0. We call this aggregate change the external gain or aggregate177

externality induced by the focal player.2 Clearly, we have that178

Sk = Gk + Ek, k = 0, 1, . . . , n− 1, (6)

holds, so that the social gain is the sum of the private gain and the external gain. We collect179

the terms Gk in the private gain sequence G = (G0, G1, . . . , Gn−1) ∈ Rn, the terms Ek in the180

external gain sequence or aggregate externality sequence E = (E0, E1, . . . , En−1) ∈ Rn, and the181

terms Sk in the social gain sequence S = (S0, S1, . . . , Sn−1) ∈ Rn.182

The private gains G capture the individual incentives of a hypothetical focal player trying183

to determine his or her best choice given the choices of others. The choices of others are held184

fixed by fixing k, the number of co-players choosing C. A positive private gain (Gk > 0) then185

indicates an individual preference for choosing C over D (and hence an actual “gain” in payoff186

when hypothetically switching from D to C) while a negative private gain (Gk < 0) indicates an187

individual preference for choosing D over C (and hence a “loss” in payoff when switching from188

D to C). The private gains thus encapsulate the notions of internality suggested in Schelling189

(1973) and of marginal private gain discussed in Dixit et al. (2020, Ch. 11). The external gains190

E, on the other hand, capture the spillover effects of the action of a focal player given the191

choices of co-players. A positive external gain (Ek > 0) indicates a positive spillover effect when192

choosing C over D (and hence an aggregate gain in payoff to co-players if the focal switches193

from D to C) while a negative external gain (Ek < 0) indicates a negative spillover effect when194

1We have previously called such gain a “gain from switching” in Peña et al. (2014) and a “direct gain from
switching” in Peña et al. (2015).

2We have previously called such gain an “indirect gain from switching” in Peña et al. (2015).
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choosing C over D (and hence an aggregate loss in payoff to co-players in case the focal switches195

from D to C). The external gains encapsulate the notion of marginal spillover effect of Dixit196

et al. (2020, Ch. 11) and, more generally, of externality, which is “present whenever the behavior197

of a person affects the situation of other persons without the explicit agreement of that person198

or persons” (Buchanan, 1971, p. 7). The social gains S are the sum of private and external199

gains and thus capture the total effect of the switch of the focal and how it affects the total200

payoffs to the n players.201

2.3 Sign patterns of sequences202

To proceed, we need to specify how we will use the words positive, negative, increasing, and203

decreasing when referring to sequences, and to establish some terminology and notation to204

describe sign patterns of sequences (see, e.g., Brown et al. 1981; Peña et al. 2014). We need205

these definitions and terminology in order to capture in a precise way the qualitative features206

of ex post individual incentives (G sequence), externalities (E sequence), and social gains (S207

sequence) that characterize different kinds of games and cooperative dilemmas.208

In the following, let A = (A1, A2, . . . , Am) ∈ Rm be a non-zero vector (or sequence).209

Positive and negative sequences. We say that A is non-negative, and write A ≥ 0, if210

Aℓ ≥ 0 holds for all ℓ = 1, . . . ,m. We say that A is positive, and write A ⪈ 0 if it is non-negative211

and non-zero, that is, if Aℓ ≥ 0 holds for all ℓ = 1, . . . ,m, with the inequality being strict for at212

least one ℓ. If the inequality is strict for all ℓ = 1, . . . ,m we say that A is strictly positive, and213

write A > 0. Likewise, we say that A is non-positive, and write A ≤ 0, if Aℓ ≤ 0 holds for all214

ℓ = 1, . . . ,m. We say that A is negative, and write A ⪇ 0 if it is non-positive and non-zero. We215

say that it is strictly negative, and write A < 0, if Aℓ < 0 holds for all ℓ = 1, . . . ,m.216

Increasing and decreasing sequences. Let us first define, for sequence A, its first-forward217

difference ∆A = (∆A1, . . . ,∆Am−1) ∈ Rm−1, where ∆Aℓ ≡ Aℓ+1 − Aℓ. We then say that A218

is increasing if ∆A is positive, and that it is is non-increasing if ∆A is non-positive; i.e., a219

non-increasing sequence is either constant or decreasing. Likewise, we say that A is decreasing220

if ∆A is negative, and that it is is non-decreasing if ∆A is non-negative; i.e., a non-decreasing221

sequence is either constant or increasing.222

Sign changes, initial and final sign. We denote by σ(A) the number of sign changes of A,223

ignoring zeros. We also call the sign of the first non-zero element Af of A the initial sign of A,224

denote it by ι(A), and write ι(A) = sgn(af ), where225

sgnx =


−1 if x < 0

0 if x = 0

1 if x > 0

(7)
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is the sign function. Thus, ι(A) = 1 if the initial sign is positive and ι(A) = −1 if the initial226

sign is negative. Likewise, we call the sign of the last non-zero element of A the final sign of A,227

denote it by ϕ(A), and write ϕ(A) = 1 if it is positive, and ϕ(A) = −1 if it is negative.228

Sign pattern. Finally, we denote by ϱ(A) the sign pattern of A the vector ϱ(A) ∈ Rσ(A)+1
229

obtained by (i) applying the sign function (7) element-wise to the vector A, and (ii) removing230

zeros and consecutive repeated values. If A is positive (resp. negative) then, clearly, ϱ(A) = (1)231

(resp. ϱ(A) = (−1)).232

233

As an example to illustrate these definitions consider the sequence A = (0, 0, 1, 2,−3, 0, 4,−5).234

Then ι(A) = 1, ϕ(A) = −1, σ(A) = 3, and ϱ(A) = (1,−1, 1,−1).235

2.4 A bestiary of games236

We illustrate the meaning of the different sequences that we have introduced so far, and our237

sign pattern terminology with the following examples of (multi-player) games. In the rest of the238

paper, we will repeatedly come back to these examples to illustrate our general framework, our239

definitions, and our main results.240

Example 1 (Two-player games). For n = 2 players, the payoff matrix (1) reduces to241


C D

C P1 P0

D Q1 Q0

. (8)

The payoff sequences are then P = (P0, P1), and Q = (Q0, Q1), the total payoff sequence is242

T = (2Q0, P0 +Q1, 2P1), the gain sequence is G = (P0−Q0, P1−Q1), the aggregate externality243

sequence is E = (Q1 −Q0, P1 − P0), and the social gain sequence is S = (P0 + Q1 − 2Q0, 2P1 −244

P0 −Q1).245

Example 2 (Two-player cooperative dilemmas with generic payoffs). Consider the three types246

of two-player cooperative dilemmas typically distinguished in the literature: the prisoners’247

dilemma, the snowdrift game, and the stag hunt. Assuming that payoffs are generic (i.e., no248

two payoff values are equal to each other), each of these two-player games is characterized by a249

particular ordering of the values of payoff matrix (8):250

1. If Q1 > P1 > Q0 > P0, then the game is a prisoners’ dilemma. In this case, the gain251

sequence is strictly negative (i.e., G < 0) and hence σ(G) = 0, ι(G) = ϕ(G) = −1, and252

ϱ(G) = (−1) hold.253

(a) If 2P1 ≥ P0 + Q1, then the social gain sequence has sign pattern ϱ(S) = (1) if254

P0 + Q1 ≥ 2Q0 holds and ϱ(S) = (−1, 1) otherwise.255
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(b) If 2P1 < P0 + Q1, then the social gain sequence has sign pattern ϱ(S) = (1,−1).256

2. If Q1 > P1 > P0 > Q0, then the game is a snowdrift game (or a chicken game). In this257

case, the gain sequence has a single sign change from positive to negative so that σ(G) = 1,258

ι(G) = 1, ϕ(G) = −1, and ϱ(G) = (1,−1) hold.259

(a) If 2P1 ≥ P0 + Q1, then the social gain sequence has sign pattern ϱ(S) = (1).260

(b) If 2P1 < P0 + Q1, then the social gain sequence has sign pattern ϱ(S) = (1,−1).261

3. If P1 > Q1 > Q0 > P0, then the game is a stag hunt (or assurance game). In this case,262

the gain sequence has a single sign change from negative to positive, and so σ(G) = 1,263

ι(G) = −1, ϕ(G) = 1, and ϱ(G) = (−1, 1) hold. As the inequality 2P1 > P0 + Q1 holds,264

the social gain sequence has sign pattern ϱ(S) = (1) or ϱ(S) = (−1, 1).265

In all three cases, the external gain sequence E is strictly positive, i.e., E > 0 holds.266

Example 3 (Public goods games (general)). Consider public goods games where playing C267

means to voluntarily contribute to a public good while playing D means to shirk (as considered268

by, e.g., Taylor and Ward, 1982; Rapoport, 1987; Gradstein and Nitzan, 1990; Weesie and269

Franzen, 1998; Dixit and Olson, 2000; Hauert et al., 2006; Makris, 2009; Pacheco et al., 2009;270

Souza et al., 2009; Archetti and Scheuring, 2011; Santos and Pacheco, 2011; Peña et al., 2014;271

De Jaegher, 2017). Contributing entails a cost ci ≥ 0 to each C-player, while all players (both272

C-players and D-players) enjoy a benefit bi ≥ 0, where 0 ≤ i ≤ n denotes the total number of273

players choosing C. The payoff sequences P and Q are then given by274

Pk = bk+1 − ck+1, k = 0, 1, . . . , n− 1 (9)

Qk = bk, k = 0, 1, . . . , n− 1. (10)

We collect the costs in the cost sequence c = (c0, c1, . . . , cn) ∈ Rn+1 and the benefits in the275

benefit sequence b = (b0, b1, . . . , bn) ∈ Rn+1. We assume that b is increasing (so that the larger276

the number of C-players, the larger the value of the public good that is provided) and that c is277

non-decreasing (so that increasing the number of C-players never increases the cost associated278

to contributing). We further assume that bn−1 − b0 > cn holds (i.e., that the difference between279

the value of the public good when everybody contributes and its value when nobody contributes280

is larger than the personal cost when everybody contributes).281

Since benefits b are increasing and costs c are non-decreasing, the payoff sequences P and282

Q are increasing: Every player is better off the more other players contribute to the public283

good. It follows from Eq. (5) that the aggregate externality sequence is positive (E ⪈ 0),284

i.e., contributing to the public good has positive spillover effects. This can also be verified by285

inspection of the external gains, which are given by286

Ek = (n− 1)∆bk − k∆ck, k = 0, 1, . . . , n− 1. (11)
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The total payoffs are given by287

Ti = nbi − ici, i = 0, 1, . . . , n, (12)

i.e., by the difference between the total benefits (nbi) and the total costs (ici) in a group of n288

players, i of which contribute to the collective action. The social gains thus satisfy289

Sk = ∆Tk = n∆bk − [(k + 1)ck+1 − kck] , k = 0, 1, . . . , n− 1. (13)

Since b is increasing, a sufficient condition for S to be positive (and T to be increasing) is then290

that291

(k + 1)ck+1 ≤ kck, k = 0, 1, . . . , n− 1 (14)

holds, i.e., that the total costs borne by contributors is non-increasing in the number of292

contributors.293

The private gains are given by294

Gk = ∆bk − ck+1, k = 0, 1, . . . , n− 1. (15)

The sign pattern of the private gain sequence G depends on the particular shapes of the benefit295

and the cost sequences, and in particular on how the marginal benefit contributing ∆b scales296

with the number of contributors and compares to the cost c. Particular examples are given in297

Examples 4, 5, 6, and 7 below.298

Example 4 (Public goods games with concave benefits and fixed costs). Consider a particular299

instance of the public goods game defined in Example 3 where b is concave (i.e., ∆2b is negative)300

and c is constant of value γ > 0 (i.e., c = (γ, γ, . . . , γ)), as assumed, e.g., by Gradstein and301

Nitzan (1990) and Motro (1991).3 Then ∆G ⪇ 0 holds and the private gain sequence G is302

decreasing. If costs are high (γ ≥ ∆b0), G is negative. If costs are low (γ ≤ ∆bn−1), G is303

positive. If costs are intermediate (i.e., ∆bn−1 < γ < ∆b0 holds), G has a single sign change304

from positive to negative, and the sign pattern of G is ϱ(G) = (1,−1). In this case, players305

have an individual incentive to contribute to the public good when there are relatively few306

contributors, and they have an incentive to shirk when there are relatively many contributors.307

Example 5 (Public goods games with convex benefits). As a second subclass of the general308

public goods game introduced in Example 3, suppose that b is convex (i.e., ∆2b is positive).309

Then, without the need of further assumptions on the cost sequence, ∆G ⪈ 0 holds and the310

private gain sequence G is increasing. If costs are high (cn ≥ ∆bn−1), G is negative. If costs311

are low (c1 ≤ ∆b0), G is positive. If costs are intermediate (i.e., ∆b0 < c1 and ∆bn−1 > cn312

hold), G has a single sign change from negative to positive, so that the sign pattern of G is313

3They assume strict concavity of b, i.e., ∆2b > 0. Our condition is more relaxed.
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ϱ(G) = (−1, 1).314

Example 6 (Public goods games with sigmoid benefits and fixed costs). As a third subclass of315

the general public goods game introduced in Example 3, suppose that b is first convex, then316

concave (i.e., ∆2b has a single sign change from positive to negative), and c is constant of value317

γ > 0 (i.e., c = (γ, γ, . . . , γ)). Examples include models discussed by Pacheco et al. (2009) and318

Archetti and Scheuring (2011), where the benefit sequence first accelerates and then decelerates319

with the number of contributors. Since ∆G = ∆2b holds, it follows that ∆G has a single sign320

change from positive to negative, which means that the private gain function is unimodal, i.e.,321

first increasing, then decreasing. Then, depending on how the cost of contributing γ relates to322

∆b, we have the following cases. If costs are high (γ ≥ maxk ∆bk), G is negative. If costs are low323

(γ ≤ mink ∆bk), G is positive. If costs are intermediate (i.e., mink ∆bk < γ < maxk ∆bk holds),324

then the sign pattern of the private gain sequence ϱ(G) depends on the relative position of325

∆b0 and ∆bn−1 with respect to γ, as follows. If ∆b0 ≥ γ and ∆bn−1 < γ, then ϱ(G) = (1,−1),326

just as in Example 4. If ∆b0 < γ and ∆bn−1 ≥ γ, then ϱ(G) = (−1, 1), just as in Example327

5. Finally, if max {∆b0,∆bn−1} < γ, then ϱ(G) = (−1, 1,−1). This case, where the private328

gain sequence has two sign changes (the first one from negative to positive, the second from329

positive to negative) is different from the previous examples. Here, players have an incentive to330

contribute to the public good only if sufficiently many (but not too many) other players also331

contribute.332

Example 7 (Threshold public goods game with fixed costs). A noteworthy example of a public333

goods game is the threshold public goods game with fixed costs and no refunds (Taylor and334

Ward, 1982; Palfrey and Rosenthal, 1984; Bach et al., 2006; Nöldeke and Peña, 2020). In this335

game, contributors pay a non-refundable cost equal to 0 < γ < 1 and the public good is provided336

if and only if the number of contributors reaches an exogenous threshold θ, in which case all337

players get the same benefit (normalized to one) from the provision of the public good. The338

cost sequence is thus given by c = (γ, γ, . . . , γ) and the benefit sequence by339

bi = Ji ≥ θK, i = 0, 1, . . . , n, (16)

where JK denotes the Iverson bracket, i.e., JXK = 1 if X is true and JXK = 0 if X is false.340

If θ = 1 (only one contributor is required) the game is known as the “volunteer’s dilemma”341

(Diekmann, 1985). In this case, b is concave, and ∆bn−1 = 0 < γ < 1 = ∆b0 holds. Hence, in342

this case the game is a particular instance of the subclass of public goods games with concave343

benefits and fixed intermediate costs presented in Example 4. In particular, the sign pattern344

of the private gain sequence is ϱ(G) = (1,−1). Alternatively, if θ = n (all contributors are345

required), b is convex, and both ∆b0 = 0 < γ = c1 and ∆bn−1 = 1 > γ = cn hold. Hence, in346

this case the game is a particular instance of the subclass of public goods games with convex347

benefits and intermediate costs presented in Example 5. In particular, the sign pattern of the348

private gain sequence is ϱ(G) = (−1, 1). Finally, if 1 < θ < n holds (more than one but less349
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than all contributors are needed) the game is sometimes referred to as the “teamwork dilemma”350

(Myatt and Wallace, 2008; Nöldeke and Peña, 2020). In this case, the gain sequence is given by351

Gk = −γ < 0 for k ̸= θ − 1 and Gθ−1 = 1 − γ > 0, and hence ϱ(G) = (−1, 1,−1) holds. Here,352

individuals have an incentive to contribute to the public good if and only if exactly other θ − 1353

players were to contribute, as only in such scenario their contribution is required (or pivotal).354

The “teamwork dilemma” is a particular case of the subclass of public goods games with sigmoid355

benefits and fixed costs presented in Example 6.356

Example 8 (Participation games with negative externalities (congestion games)). Consider357

the class of participation games with negative externalities to other participants (or congestion358

games) discussed in Anderson and Engers (2007, Section 3). This class includes, for instance,359

the threshold participation game with “negative feedback” of Dindo and Tuinstra (2011) and360

Arthur (1994)’s El Farol bar problem. Playing D (to participate, or to choose “in”) means to361

take part in an activity such as entering a market, exploiting a common resource, driving, or362

going to a bar. Playing C (to abstain from participating, or to stay “out”) means to refrain363

from taking part in such an activity. The payoff to choosing “out” is a constant γ > 0 (that364

Anderson and Engers (2007) normalize to zero). The payoff to choosing “in” is a decreasing365

function of the total number of D-players. Thus, participants generate negative externalities to366

other participants. The payoff sequences P and Q are given by367

Pk = γ, k = 0, 1, . . . , n− 1 (17)

Qk = vn−1−k, k = 0, 1, . . . , n− 1, (18)

where vℓ, ℓ = 0, 1, . . . , n − 1 is the value of the activity to a participant (D-player) given368

the number ℓ of other participants among co-players. By assumption, the sequence v =369

(v0, v1, . . . , vn−1) ∈ Rn is decreasing, i.e., ∆v ⪇ 0 holds. It follows that P is constant and Q is370

increasing, i.e., ∆P = 0 and ∆Q ⪈ 0 hold.371

The private gains are given by372

Gk = γ − vn−1−k, k = 0, 1, . . . , n− 1. (19)

It is assumed that v0 > γ > vn−1 holds, so that the payoff to play “in” when everybody else373

plays “out” is greater than the payoff to play “out”, which is in turn greater than the payoff374

to play “in” when everybody else plays “in”. The private gain sequence G is thus decreasing375

(i.e., ∆G ⪇ 0) and characterized by the sign pattern ϱ(G) = (1,−1). That is, players have376

an incentive to participate in the activity (entering a market, exploiting a common resource,377

driving, going to a bar) as long as not too many others also decide to do so.378

The external gains are given by379

Ek = (n− 1 − k)∆vn−1−k, k = 0, 1, . . . , n− 1, (20)
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which are always non-negative and sometimes positive. The external gain sequence E is thus380

positive (i.e., E ⪈ 0). In other words, not participating generates positive externalities to the381

aggregate of co-players.382

Example 9 (Games with participation synergies (strategic complements in participation)).383

Consider the class of participation games with positive externalities to other participants384

discussed in Anderson and Engers (2007, Section 4), which are the counterpart to the class385

of games discussed in Example 8, and include the “club goods” studied in Peña et al. (2015)386

and the “n-person stag hunt game” of Luo et al. (2021). Let us now label C the decision to387

participate, or to choose “in”, and D the decision to abstain from participating, or staying “out”.388

As for congestion games, the payoff to staying “out” is a constant γ > 0 (that Anderson and389

Engers (2007) normalize to zero). The payoff to choosing “in” is now increasing in the number390

of other C-players. Thus, participants generate positive externalities to other participants. The391

payoff sequences P and Q are given by392

Pk = vk+1, k = 0, 1, . . . , n− 1 (21)

Qk = γ, k = 0, 1, . . . , n− 1, (22)

where vi, i = 0, 1, . . . , n is the value of the activity to a participant (C-player) given the total393

number i of participants among players (including the self). By assumption, the sequence394

v = (v0, v1, . . . , vn) ∈ Rn+1 is increasing, i.e., ∆v ⪈ 0 holds. It follows that P is increasing and395

Q is constant. Luo et al. (2021) considered a particular case with vi = βJi ≥ θK, 1 < θ ≤ n, and396

β > γ.397

The private gains are given by398

Gk = vk+1 − γ, k = 0, 1, . . . , n− 1. (23)

Since v is increasing, so is the private gain sequence G. It is also assumed that v0 < γ < vn399

holds, so that the payoff to play “in” when everybody else plays “out” is smaller than the payoff400

to play “out”, which is in turn smaller than the payoff to play “in” when everybody else plays401

“in”. Hence, the private gain sequence has sign pattern ϱ(G) = (−1, 1). In this case, players have402

an incentive to participate in the activity as long as sufficiently many others also decide to do so.403

The external gains are given by404

Ek = k∆vk, k = 0, 1, . . . , n− 1, (24)

so that the external gain sequence E is positive (i.e., E ⪈ 0). Here, participating generates405

positive externalities to the aggregate of co-players.406
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2.5 Mixed strategies and expected payoffs407

We consider mixed strategies represented by x ∈ ∆1 ≡ {(x, 1 − x) | 0 ≤ x ≤ 1}, where ∆1 is408

the 1-simplex. Pure strategy C (resp. D) corresponds to mixed strategy x = (1, 0) (resp.409

x = (0, 1)). We call mixed strategies x = (x, 1 − x) with x ∈ (0, 1), totally mixed strategies.410

There are two alternative interpretations of a mixed strategy x = (x, 1 − x). The first, common411

in classic game theory and static evolutionary game theory (and relevant for the notions of412

symmetric NE and ESS), is that the mixed strategy represents the strategy played by a given413

player (or the phenotype of a given individual). In this case, x (resp. 1 − x) represents the414

probability that this player chooses action C (resp. D). The second interpretation of a mixed415

strategy, common in dynamic evolutionary game theory (and relevant for the notion of an ASE),416

is as a population state in a large population of players using pure strategies. In this case,417

x corresponds to the proportion of individuals in the population using pure strategy C (or418

C-players), and 1 − x corresponds to the proportion of individuals using pure strategy D (or419

D-players). Both interpretations have been used in the literature of two-strategy cooperative420

dilemmas, and we find it useful to have them both in mind. In the following, we refer to mixed421

strategy x = (x, 1 − x) simply by x. For our analysis, it suffices to focus on symmetric profiles422

where all co-players of a given player play the same mixed strategy x.423

Let us adopt here the first interpretation of a mixed strategy. Writing fC(x) (resp. fD(x))424

for the expected payoff to a C-player (resp. D-player) when all co-players play x, we have425

fC(x) =

n−1∑
k=0

(
n− 1

k

)
xk(1 − x)n−1−kPk, (25a)

fD(x) =

n−1∑
k=0

(
n− 1

k

)
xk(1 − x)n−1−kQk. (25b)

Indeed, with the binomial probability
(
n−1
k

)
xk(1 − x)n−1−k a focal player choosing C (resp. D)426

will have k co-players having chosen C, in which case he or she will obtain a payoff of Pk (resp.427

Qk). Summing over all possibilities weighted by the given payoff, we obtain the expected payoff428

to the focal player.429

We are interested in the expected payoff of a player playing mixed strategy x when all430

co-players also play x. This is because, as it will be explained below, any symmetric profile x431

that does not maximize the expected payoff will be regarded as inefficient, while the symmetric432

profile x that maximizes the expected payoff will be regarded as socially optimal. The expected433

payoff, which we denote by f(x), is given by434

f(x) = xfC(x) + (1 − x)fD(x). (26)

Indeed, a focal player playing strategy x will choose action C with probability x, in which case435

its expected payoff when co-players also play x is πC(x), and with probability 1−x it will choose436

action D, in which case its expected payoff is πD(x). Substituting from Eqs. (25) this can be437
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alternatively written as438

f(x) =

n∑
i=0

(
n

i

)
xi(1 − x)n−iTi

n
, (27)

i.e., as the expected average payoff to a group of n players playing x.439

2.6 Private, external, and social gain functions440

The marginal change in expected payoff when players change their mixed strategy infinitesimally441

is given by the derivative f ′ of the expected payoff function f . We call this derivative the social442

gain function. By differentiating (27) and simplifying, the social gain function can be written as443

f ′(x) =

n−1∑
k=0

(
n− 1

k

)
xk(1 − x)n−1−kSk. (28)

Note that this is nothing but the expected social gains when the choice of one focal player is444

changed from C to D and the number of co-players choosing C among the co-players of a focal445

player is distributed according to a binomial distribution with parameters n− 1 and x.446

Clearly, since the social gains equal the private gains plus the external gains (see Eq. (6)),447

we obtain after rearranging448

f ′(x) = g(x) + h(x), (29)

where449

g(x) =

n−1∑
k=0

(
n− 1

k

)
xk(1 − x)n−1−kGk, (30)

is the private gain function, and450

h(x) =

n−1∑
k=0

(
n− 1

k

)
xk(1 − x)n−1−kEk, (31)

is the external gain function or the aggregate externality function.451

The private gain function (30) corresponds to the expected private gains (4) induced by452

a focal player switching its action from D to C when the number of co-players choosing C is453

distributed binomially with parameters n− 1 and x. The private gain function thus tells us by454

how much a switch from D to C increases the focal’s expected payoff when all n−1 co-players of455

a focal player randomize their actions independently with probability x of choosing C. Similarly,456

the external gain function (31) corresponds to the expected external gain (5) induced by the457

focal’s switch and tells us how much the aggregate expected payoff of co-players changes in such458

a situation because of the focal’s switch. Eq. (29) is then the statement that the effect on the459
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expected average payoff of a marginal increase in x for all players is given by the sum of the460

private gain and external gain resulting from switching the action of one player while keeping461

the mixed strategy of all other players fixed at x.462

2.7 Sign patterns of polynomials463

Before proceeding, and similarly to the way we did for sequences in Section 2.3, we need to464

specify some terminology and notation referring to the properties of polynomials like the three465

gain functions we introduced in the preceding section. We need these definitions and terminology466

in order to capture in a precise way the qualitative features of ex ante individual incentives (g467

function), externalities (h function), and social gains (f ′ function) that characterize different468

kinds of games and cooperative dilemmas.469

In the following, consider a polynomial p : [0, 1] → R.470

Positive and negative polynomials. We will say that p is positive, and write p ⪈ 0 if471

p(x) ≥ 0 holds for all x ∈ [0, 1] and the inequality is strict for at least some x ∈ (0, 1). We say472

that p is strictly positive, and write p > 0 if p(x) > 0 holds for all x ∈ (0, 1). Likewise, we say473

that p is negative, and write p ⪇ 0 if p(x) ≤ 0 holds for all x ∈ [0, 1] and the inequality is strict474

for at least some x ∈ (0, 1). We say that p is strictly negative, and write p < 0 if p(x) < 0 holds475

for all x ∈ (0, 1).476

Increasing and decreasing polynomials. Let us denote by p′ the derivative of polynomial477

p. We then say that p is increasing if p′ is positive, and that it is is non-increasing if p′ is478

non-positive; i.e., a non-increasing polynomial is either constant or decreasing. Likewise, we say479

that p is decreasing if p′ is negative, and that it is is non-decreasing if p′ is non-negative; i.e., a480

non-decreasing polynomial is either constant or increasing.481

Sign changes. We say that p changes sign from positive to negative (resp. negative to positive)482

at a point x ∈ (0, 1) if (i) p(x) = 0 and, for y close to x, both of these two implications hold:483

(iia) if y < x then p(y) > 0 (resp. p(y) < 0), and (iib) if y > x then p(y) < 0 (resp. p(y) > 0).484

In general, we say that p changes sign at a point x ∈ (0, 1) if it changes sign from positive to485

negative or from negative to positive.486

Number of sign changes. We denote by σ(p) the number of sign changes of p. The number487

of sign changes σ(p) is equal to the number of times p crosses the x-axis in (0, 1).488

Initial and final signs. Assume p ̸= 0 holds. Then there exists a neighborhood of x = 0 such489

that the sign of p is either positive or negative throughout this neighborhood. We then define490

the initial sign of p as the sign of p in such neighborhood, denote it by ι(p), and write ι(p) = 1491

if it is positive, and ι(p) = −1 if it is negative. Similarly, there exists a neighborhood of x = 1492

such that the sign of p is either positive or negative throughout this neighborhood and we can493
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define the final sign of p as ϕ(p) = 1 if p is positive in such a neighborhood and ϕ(p) = −1 if it494

is negative. Clearly, ι(p) = sgn (p(0)) if p(0) ̸= 0 holds. Similarly, ϕ(f) = sgn (p(1)) if p(1) ̸= 0495

holds.496

Sign pattern. The sign pattern of p is given by a sequence ϱ(p) ∈ Rσ(p)+1 with alternating497

ones and minus ones with its first element given by ι(p). The sign pattern describes the sign498

variations of the polynomial p, conveniently summarizing all the information on initial signs,499

final signs, and sign changes.500

2.8 Private gain function and evolutionary stability501

The private gain function guides both individual behavior (in a non-evolutionary context of502

maximizing rational agents) and individual selection (in an evolutionary context under a simple503

demography where kin selection or group selection do not play any role). Indeed, which mixed504

strategies turn to be symmetric NE, ESS, or ASE is fully determined by the private gain505

function.4506

For our subsequent analysis and in the rest of this paper, we use the ESS as our solution507

concept. The notion of ESS is a refinement of symmetric NE, as every ESS is a symmetric NE,508

but the converse is not true (Bukowski and Miekisz, 2004, Theorem 6). Also, for two-strategy509

symmetric n-player games, as the ones we focus on, the notions of ESS and ASE imply each510

other, i.e., every ESS is an ASE and every ASE is an ESS (Bukowski and Miekisz, 2004, Corollary511

2). It follows that we can restate all of our results in terms of the stable rest points of the512

replicator dynamic, instead of the corresponding evolutionarily stable strategies.513

In the following, we present simple conditions for a mixed strategy x to be an ESS. Since514

we have assumed that P ̸= Q holds, G ≠ 0 holds. From Eq. (30) this in turn implies g ̸= 0,515

so that the initial sign ι(g) and final sign ϕ(g) of g are well defined. We can then state the516

following result, which is simply a restatement of Bukowski and Miekisz 2004, Theorem 3:517

Lemma 1 (Sign pattern of g and evolutionary stability). Let g be the gain function of a518

symmetric two-strategy n-player game, with initial sign ι(g) and final sign ϕ(g). Then519

1. x∗ = 0 is an ESS if and only if the initial sign of g is negative, i.e., ι(g) = −1.520

2. x∗ = 1 is an ESS if and only if the final sign of g is positive, i.e., ϕ(g) = 1.521

3. x∗ ∈ (0, 1) is an ESS if and only if g changes sign from positive to negative at x∗.522

Lemma 1 provides a convenient link between the sign pattern of the private gain function,523

and the ESS structure of the underlying multi-player game.524

4Regarding necessary and sufficient conditions for a symmetric NE, we have: (i) x = 0 is a symmetric NE if
and only if g(0) ≤ 0, (ii) x = 1 is a symmetric NE if and only if g(1) ≥ 0, and (iii) x ∈ (0, 1) is a symmetric NE if
and only if g(x) = 0, i.e., if it is a root of g.
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2.9 Social gain function and social optimality525

In addition to evolutionarily stable strategies, an important concept in our analysis is the social526

optimum, which we define as the mixed strategy527

x̂ = arg max
x∈[0,1]

f(x) (32)

that maximizes the expected payoff (27). For simplicity, we assume that such an optimum is528

unique.529

In our general framework, the social optimum corresponds to either one of the two pure530

strategies (i.e., x̂ = 0 or x̂ = 1) or to a totally mixed strategy x̂ ∈ (0, 1). Since the social531

gain function f ′ is the derivative of the expected payoff f , the sign pattern of the social gain532

function f ′ provides necessary conditions for a mixed strategy to be a social optimum. In533

particular, a global maximum must be a local maximum. This observation leads to the following534

characterization, which links the sign pattern of f ′ to social optimality in a similar way Lemma535

1 links the sign pattern of g to evolutionary stability.5536

Lemma 2 (Sign pattern of f ′ and social optimality). Let f ′ be the social gain function of a537

symmetric two-strategy n-player game, with initial sign ι(f ′) and final sign ϕ(f ′). Then538

1. If x̂ = 0 is a social optimum then the initial sign of f ′ is negative, i.e., ι(f ′) = −1.539

2. If x̂ = 1 is a social optimum then the final sign of f ′ is positive, i.e., ϕ(f ′) = 1.540

3. If x̂ ∈ (0, 1) is a social optimum then f ′ changes sign from positive to negative at x̂.541

2.10 The expected payoff and the gain functions are polynomials in542

Bernstein form543

The expression544

p(x) =

m∑
k=0

(
m

k

)
xk(1 − x)m−kck ≡ Bm (x; c) (33)

is a polynomial in Bernstein form, i.e., a linear combination of the Bernstein basis polynomials545 (
m

k

)
xk(1 − x)m−k, k = 0, 1, . . . ,m, (34)

with coefficients given by the sequence c = (c0, c1, . . . , cm) ∈ Rm+1. This can be seen as the546

result of a transform (i.e., the Bernstein transform Bm) mapping the sequence or vector of547

Bernstein coefficients c ∈ Rm+1 into the polynomial p(x) in the variable x ∈ [0, 1]. Observe548

that the expected payoffs (25) and (27), and the private (30), external (31), and social (28) gain549

5The link provided by Lemma 2 is however weaker, as conditions are necessary but not sufficient.
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functions are all polynomials in Bernstein form in the mixed strategy x. The importance of this550

observation is that Bernstein transforms are endowed with many shape-preserving properties551

linking the sign patterns of the sequences of coefficients and the sign patterns of the respective552

polynomials (Farouki, 2012; Peña et al., 2014). We record some of the key properties that are553

relevant for our purposes in the following lemma. For more properties of Bernstein transforms554

see, e.g., Farouki (2012).555

Lemma 3 (Properties of Bernstein transforms.). Let p(x) = Bm (x; c) be a polynomial in556

Bernstein form of degree m with Bernstein coefficients c. The Bernstein transform Bm satisfies:557

1. Lower and upper bounds. For x ∈ [0, 1], the polynomial p(x) satisfies the bounds558

min0≤k≤m ck ≤ p(x) ≤ max0≤k≤m ck.559

2. End-point values. The initial and final points of p(x) and c coincide, i.e., p(0) = c0 and560

p(1) = cm.561

3. Preservation of initial and final signs. Let c ̸= 0. Then, the initial and final signs of562

p(x) and c coincide, i.e., ι(p) = ι(c) and ϕ(p) = ϕ(c).563

4. Preservation of positivity. The Bernstein transform of a positive (resp. negative)564

sequence is strictly positive (resp. strictly negative), i.e., if c ⪈ 0, then p > 0 (resp. if565

c ⪇ 0, then p < 0).566

5. Variation-diminishing property. The number of sign changes of p(x) is equal to the567

number of sign changes of c or less by an even amount, i.e., σ(p) = σ(c) − 2j where j ≥ 0568

is an integer.569

6. Derivatives. The derivative of a polynomial in Bernstein form with coefficients c is570

proportional to a a polynomial in Bernstein form with coefficients ∆c. More precisely, we571

have572

p′(x) = m

m−1∑
k=0

(
m− 1

k

)
xk(1 − x)m−1−k∆ck = mBm−1 (x;∆c) , (35)

where ∆ck = ck+1 − ck is the first-forward difference of ck.573

7. Preservation of sign patterns. If the number of sign changes of c is at most one,574

then the sign patter of p coincides with the sign pattern of c. That is: If σ(c) ≤ 1, then575

ϱ(p) = ϱ(c).576

Together with Eq. (29) (which links the social, private, and external gain functions) and577

Lemmas 1 and 2 (which link the sign pattern of gain functions to notions of individual and578

collective optimality), the properties of Bernstein transforms listed in Lemma 3 are the main579

tool we use to obtain our results.580
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3 What is a cooperative dilemma?581

3.1 Two-player cooperative dilemmas with generic payoffs582

In order to build our intuitions for the general multi-player case, we begin by considering the583

simple case of two players characterized in Example 1, with payoff matrix given by (8). In584

particular, we focus on the three prototypical types of two-player cooperative dilemmas we585

presented in Example 2, namely the prisoners’ dilemma, the snowdrift (or chicken) game, and586

the stag hunt (or assurance game). We ask, as does Nowak (2012) for this same class of games:587

When can we say that action C corresponds to “cooperation” and action D to “defection”?588

And, relatedly: When can we say that the game represented by (8) is a “cooperative dilemma”?589

Although we ask similar questions, we arrive at different answers.590

3.1.1 Preliminaries591

Instead of adopting one existing definition, we start by looking at the commonalities among the592

three games, first at the level of their payoff orderings, and then at the level of their ESS structure593

in relation to the location of their social optima. We begin with the following observation.594

Observation 1. The payoff orderings of the two-player prisoner’s dilemma, the two-player595

snowdrift game, and the two-player stag hunt with generic payoffs are such that (ia) mutual C596

yields a higher payoff than mutual D, i.e., P1 > Q0 holds, (ib) players are always better off if597

their co-players play C than if they play D, i.e., P1 > P0 and Q1 > Q0 hold, and yet (ii) there598

is an individual incentive to play D, i.e., either P0 < Q0 or P1 < Q1 holds.599

Conditions (ia) and (ib) can be regarded as the “benefits of cooperation”, while condition600

(ii) can be regarded as the “costs of cooperation”. The benefits of cooperation indicate not only601

(ia) that both players prefer mutual cooperation over mutual defection, but also (ib) that each602

player prefers their co-player to cooperate rather than to defect, or, in other words, that playing603

action C always induces a positive externality on the co-player. However, condition (ii) indicates604

that attempting to cooperate unilaterally can be costly, in the sense that it can lead to a less605

preferred individual outcome. In particular, if P0 < Q0 holds (as it happens in the prisoners’606

dilemma and the stag hunt, but not in the snowdrift game), defection yields a higher payoff607

than cooperation if the co-player defects, while if P1 < Q1 holds (as it happens in the prisoners’608

dilemma and the snowdrift game, but not in the stag hunt), defection yields a higher payoff609

than cooperation if the co-player cooperates. Both inequalities are satisfied for the prisoners’610

dilemma, making it the most stringent of the three cooperative dilemmas. In contrast, only one611

of the two inequalities of condition (ii) is satisfied for either the snowdrift game or the stag hunt,612

thus making these two games, in a sense, more “relaxed” cooperative dilemmas (Nowak, 2012).613

What are the consequences of the payoff orderings of the prisoner’s dilemma, the snowdrift614

game, and the stag hunt on their respective ESS structure and the location of their social615

optima? The sign patterns of the private gain sequence, the aggregate externality sequence,616
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and the social gain sequence of these games have been characterized in Example 2. Moreover,617

their corresponding gain functions g (30), h (31), and f ′ (28) are, as for any other two-player618

game, linear in x. This allows to characterize their ESS structure and the location of their social619

optima in a straightforward way. In particular, the following result is easy to prove:620

Lemma 4 (Two-player cooperative dilemmas with generic payoffs). Consider the two-player621

cooperative dilemmas with generic payoffs introduced in Example 2.622

1. The prisoners’ dilemma has exactly one ESS, namely x∗ = 0.623

(a) If 2P1 ≥ P0 + Q1, the social optimum satisfies x̂ = 1.624

(b) If 2P1 < P0 + Q1, the social optimum x̂ satisfies 0 < x̂ < 1.625

2. The snowdrift game has exactly one ESS x∗ ∈ (0, 1).626

(a) If 2P1 ≥ P0 + Q1, the social optimum satisfies x̂ = 1.627

(b) If 2P1 < P0 + Q1, the social optimum x̂ satisfies 0 < x∗ < x̂ < 1.628

3. The stag hunt has two ESSs: x∗
1 = 0 and x∗

2 = 1. The social optimum satisfies x̂ = 1.629

In the prisoners’ dilemma, individual rationality or selection leads to an outcome where there630

is no cooperation (x∗ = 0), although some cooperation is always socially optimal (x̂ > 0). In the631

snowdrift game, the only equilibrium features some cooperation (0 < x∗ < 1) but it is always632

less than what is socially efficient (x∗ < x̂). In the stag hunt, the dilemma is one of coordination:633

while there is an efficient equilibrium with full cooperation that is socially optimal (x∗
2 = x̂ = 1)634

there is also an inefficient one with nil cooperation (x∗
1 = 0). Overall, each game features at635

least one inefficient equilibrium, and the level of cooperation sustained at such equilibrium is636

always lower than what would be socially optimal. We see this discrepancy between equilibria637

and social optima as the one capturing the tension between individual and collective interests638

that is the essence of any social and cooperative dilemma.639

3.1.2 Definitions640

We can now provide definite answers—in the specific context of two-player games with generic641

payoffs—to the questions of what is cooperation and what is a cooperative dilemma. We present642

these answers as definitions. We start by defining cooperation as an action that (i) benefits both643

players when they both play it, and (ii) benefits the co-player when a player plays it. More644

precisely, we have:645

Definition 1 (Cooperation (two-player game with generic payoffs)). We say that action C of646

a two-player game with generic payoffs is cooperative if both (i) mutual C is preferred over647

mutual D, i.e., P1 > Q0 holds, and (ii) each player always prefers its co-player to play C than648

to play D, i.e., (iia) P1 > P0 and (iib) Q1 > Q0 hold.649

21



Definition 1 essentially restates part (i) of Observation 1, that is, the “benefits of cooperation”650

part of our characterization of two-player cooperative dilemmas with generic payoffs. Our651

definition of cooperation agrees with the way Hauert et al. (2006, p. 196) define it implicitly652

for two-player games, but is otherwise in contrast with alternative definitions proposed in the653

literature. For instance, Nowak (2012) requires only condition (i), while Allen and Nowak (2015)654

seem to require, in their definition of “cooperative trait”, condition (i) together with either (iia)655

or (iib). Allen and Nowak (2015) view conditions (iia) and (iib) as representing “different forms656

of help to the other player” and condition (i) as specifying that “this help is effective, in that it657

leads to a mutually beneficial outcome”. Macy and Flache (2002) define cooperation implicitly658

(i.e., by stating conditions describing the “benefits of cooperation” of a cooperative dilemma)659

by requiring (i) and (iia) but replacing (iib) with the condition that “players prefer mutual660

cooperation over an equal probability of unilateral cooperation and defection”, namely, that661

2P1 > P1 + Q0 holds.662

Out of the 24 different kinds of two-player games with generic payoffs (corresponding to663

the 24 possible strict orderings of the four payoff values), only five correspond to games with a664

cooperative action according to Definition 1. This is in contrast to the more generous definitions665

of cooperation by Nowak (2012) and Allen and Nowak (2015), according to which, respectively,666

twelve and eleven kinds of games correspond to games with a cooperative action. The five kinds667

of games picked by our definition include not only the prisoner’s dilemma, the snowdrift game,668

and the stag hunt game, but also two additional ones, respectively characterized by rankings669

P1 > P0 > Q1 > Q0, (36)

and670

P1 > Q1 > P0 > Q0. (37)

It can be verified that for these two payoff orderings, the unique ESS x∗ = 1 coincides with the671

social optimum x̂ = 1. We do not regard these games as capturing any dilemma, as individual672

and collective interests are perfectly aligned. To be more precise about this point, we introduce673

the following definition:674

Definition 2 (Social dilemma). A game is a social dilemma if it has an ESS x∗ that is different675

from the social optimum x̂.676

Definition 2 is similar to the one given by Kollock (1998, p. 184), who defines a social677

dilemma as a game having “at least one deficient equilibrium”. Yet, Kollock (1998) has in mind678

a (possibly asymmetric) pure-strategy NE as solution concept. In contrast, our analysis (i)679

is constrained to symmetric profiles, (ii) allows for mixed strategies, and (iii) is informed by680

evolutionary logic, and more specifically on the refinement of symmetric mixed NE given by681

the concept of ESS. Given the equivalence between ESS and ASE for two-strategy symmetric682

games, our solution concept picks those NE that are attractors of the replicator dynamic.683
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Building on Definitions 1 and 2 we are ready to define a cooperative dilemma as a game684

satisfying both the condition for having a cooperative action and the condition for being a social685

dilemma. That is, we have:686

Definition 3 (Cooperative dilemma). A game is a cooperative dilemma if (i) C is cooperative687

and (ii) the game is a social dilemma.688

Part (i) of our definition captures the “benefits of cooperation” of a cooperative dilemma689

and is, again, for the two-player generic-payoff case, a restatement of part (i) of Observation 1.690

Part (ii) captures the “costs of cooperation”, but they are stated in a different way: Cooperation691

is individually costly in the sense that individual incentives (or individual selection) can lead to692

an equilibrium that is inefficient, in the sense of being different from the social optimum. As it693

will be shown in Section 4, a necessary and sufficient condition for a game with a cooperative694

action to be a cooperative dilemma (and hence for the game to be a social dilemma) is that, in695

addition, there are incentives to defect in a specific sense, generalizing part (ii) of Observation 1.696

Our definition picks the prisoner’s dilemma, the snowdrift game, and the stag hunt game as697

the only cooperative dilemmas among the 24 different two-player games with generic payoffs. In698

contrast, previous definitions of two-player cooperative dilemmas (Hauert et al., 2006; Nowak,699

2012; Allen and Nowak, 2015) are more generous. For instance, and in the context of two-player700

games, Hauert et al. (2006) defines “social dilemmas” as games satisfying all the conditions of701

Definition 1 together with702

Q1 > P0, (38)

i.e., the requirement that “in any mixed group defectors outperform cooperators”, which they703

interpret as the “costs of cooperation”. As a result, they classify as cooperative dilemmas four704

different games: the three cooperative dilemmas that we identify plus a game of “by-product705

mutualism”, which corresponds to the payoff ranking (37). As we have explained, the only ESS706

of such game is x∗ = 1, which coincides with the social optimum x̂ = 1 and is not a social707

dilemma according to Definition 2. Hauert et al. (2006) are well aware of this, as they comment708

that in this case “[t]he dilemma is completely relaxed”. Nowak (2012) defines a cooperative709

dilemma as a game satisfying, first, condition (i) of Definition 1 (the “benefits of cooperation”)710

and second, either part (ii) of Observation 1 or condition (38) (the “costs of cooperation”).711

This results in a very broad definition of a “cooperative dilemma”, which includes eight of the712

24 different two-player games. Allen and Nowak (2015) revisit this definition of cooperative713

dilemma by enlarging the “benefits of cooperation” to also include either part (iia) or (iib)714

of Definition 1. The games classified as “social dilemmas” according to this seemingly more715

restrictive definition are however the same as those following Nowak (2012)’s original definition.716
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3.2 Multi-player cooperative dilemmas717

Having picked satisfactory definitions of cooperation and cooperative dilemmas for the simple718

case of two-player games with generic payoffs, we take a broader perspective and ask: How719

should we generalize the definitions given in Section 3.1 to encompass also multi-player games720

with possibly non-generic payoffs? Since the definition of a social dilemma given in Definition 2721

is already general, our problem is more precisely how to expand Definition 1 of a cooperative722

action so that it covers also the more general case. Once this generalization is obtained, we can723

continue using Definition 3 of a cooperative dilemma as a game with a cooperative action that724

is a social dilemma.725

We start with the straightforward part. Moving from n = 2 players to n ≥ 2 players, we726

generalize part (i) of Definition 1 as follows.727

Definition 4. We say that universal C is preferred over universal D if728

Pn−1 > Q0 (39)

holds.729

Condition (39) simply means that players obtain a larger payoff if they all choose C than if730

they all choose D. This condition is often encountered as part of the “benefits of cooperation” of731

previous definitions of multi-player “social dilemmas”, “cooperative dilemmas” or “cooperation732

games”, and hence implicitly included as a property of a cooperative action (Dawes, 1980;733

Nowak, 2012; Rand and Nowak, 2013; Hilbe et al., 2014; Peña et al., 2016; P latkowski, 2017).734

The generalization of part (ii) of Definition 1 is less straightforward. For n = 2, the additional735

requirement for C to be cooperative is that the switch from D to C by a focal player results in736

a positive externality on the co-player. For n > 2, there is more than one co-player and thus737

different ways of understanding what a positive externality on co-players might mean. Recalling738

our switching experiment for n ≥ 2 (see Section 2.2), we can think of two alternatives. First,739

it might be required that the switch of the focal player makes the other players, taken as a740

block, never worse off (and at least sometimes better off). Second, a stronger condition might be741

required, namely that the switch makes each of the co-players, taken individually, never worse742

off (and at least sometimes better off). To be more precise, we have the following definitions in743

terms of the sequences we have introduced in Section 2.6744

Definition 5 (Positive aggregate externalities). We say that action C induces positive aggregate745

externalities if the aggregate externality sequence is positive, i.e., if746

E ⪈ 0 (40)

holds.747

6It is immediate from Eq. (5) that requiring positive individual externalities in the sense of Definition (6)
is indeed stronger than requiring positive aggregate externalities in the sense of Definition (5), i.e., positive
individual externalities imply positive aggregate externalities.
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Definition 6 (Positive individual externalities). We say that action C induces positive individual748

externalities if both payoff sequences are non-decreasing and at least one is increasing, i.e., if749

both750

∆P ≥ 0 and ∆Q ≥ 0, (41a)

∆P ⪈ 0 or ∆Q ⪈ 0 (41b)

hold.751

Both stronger and weaker versions of conditions (40) and (41) (and the underlying concepts752

of positive aggregate and individual externalities) have previously appeared in the literature753

to characterize the “benefits of cooperation” (and hence the meaning of a cooperative action)754

in population genetics and game-theoretic models. First, a stronger version of (40) (namely755

that the aggregate externality sequence is strictly positive, E > 0) appears as part of the756

“focal-complement” interpretation of altruism proposed by Kerr et al. (2004) (based on previous757

work by Matessi and Karlin, 1984). Second, a stronger version of (41) (namely that the payoff758

sequences are both strictly increasing, ∆P > 0 and ∆Q > 0) appears as part of the “individual-759

centered” interpretation of altruism proposed by Kerr et al. (2004) (based on previous work760

by Uyenoyama and Feldman, 1980). Third, and finally, a weaker version of condition (41)761

(namely that the payoff sequences are both non-decreasing, i.e., Eq. (41a) without the additional762

requirement in Eq. (41b)) appears as part of the definitions of “n-player social dilemmas”763

(Hilbe et al., 2014), “cooperation games” (Peña et al., 2016), and “multi-player social dilemmas”764

(P latkowski, 2017).765

For n = 2, the conditions for positive aggregate externalities and positive individual exter-766

nalities given in Definitions 5 and 6 are equivalent, as in this case there is only one co-player767

per player. Indeed, in the two-player case the aggregate externality sequence reduces to768

E = (Q1 − Q0, P1 − P0) (see Example 1), so that conditions (40) and (41) both simplify to769

P1 ≥ P0 and Q1 ≥ Q0, with at least one inequality being strict. However, Definitions 5 and770

6 are different for n > 2, with positive individual externalities implying positive aggregate771

externalities, but not vice versa, as it can be verified from Eq. (5). With the aim of being as772

general as possible, we choose the condition of positive aggregate externalities over the condition773

of positive individual externalities to be part of our definition of cooperative action. Thus, we774

arrive at:775

Definition 7 (Cooperation). We say that action C of a multi-player game is cooperative if both776

(i) universal C is preferred over universal D, and (ii) C induces positive aggregate externalities.777

Definition 7 generalizes the conditions for cooperation given by Definition 1 to multi-player778

games with possibly non-generic payoffs in a relatively inclusive way. Similarly, when taken as779

part of Definition 3, it expands the definition of cooperative dilemmas to include also interactions780

among multiple players and the possibility of non-generic payoffs.781
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Below, we illustrate Definition 7 by showing how the public goods games of Example 3,782

and the participation games of Examples 8 and 9 all fall into the category of games with a783

cooperative action. We postpone showing how these examples also fall into the category of784

cooperative dilemmas until the next section.785

Example 3 (continued). Since E is positive, C (contributing) induces positive aggregate786

externalities. Moreover, since both P and Q are increasing, C also induces positive individual787

externalities. Since, additionally, bn−1 − b0 > cn holds, then Pn−1 > Q0 holds, and action C is788

cooperative.789

Example 8 (continued). Since ∆P ≥ 0 and ∆Q ⪈ 0 hold, C induces both positive individual790

and aggregate externalities. Additionally, since Pn−1 = γ > vn−1 = Q0 also holds, action C791

(staying “out”) is cooperative.792

Example 9 (continued). Since ∆P ⪈ 0 and ∆Q ≥ 0 hold, C induces both positive individual793

and aggregate externalities. Additionally, since Pn−1 = vn > γ = Q0 also holds, action C794

(choosing “in”) is cooperative.795

Examples 3, 8, and 9 are such that action C induces both positive individual externalities796

and positive aggregate externalities. The following two examples illustrate games for which the797

cooperative action does not necessarily induce positive individual externalities.7798

Example 10 (Competition with a superior choice). Consider the congestion game put forward799

by Menezes and Pitchford (2006). Individuals choose between two alternative choices C and D,800

such as physical locations, product spaces, roads, or bars. There is competition (or congestion) as801

individual payoffs fall when more players make the same choice. It follows that P is decreasing802

and Q is increasing. Since P is decreasing, action C does not induce positive individual803

externalities. Let us assume, as do Menezes and Pitchford (2006), that C is “superior”, in the804

sense that all players prefer C to D if the same number of players choose C or D, e.g., bar C805

offers better music (or simply has more tables) than bar D. This implies that Pk > Qn−1−k806

holds for all k = 0, 1, . . . , n− 1, and, in particular, that Pn−1 > Q0 holds. Hence, universal C is807

preferred over universal D. Additionally, note that E ⪈ 0 can hold, provided that the switch808

from D to C by a focal player is such that the positive externality due to decreased competition809

experienced by all other D-players compensates for the negative externality due to increased810

competition experienced by all other C-players. In this case, C is cooperative according to our811

definition but, as stated above, does not induce positive individual externalities.812

Example 11 (Majority game with superior choice). Consider a “majority game” among an813

odd number of players (i.e., n = 2m + 1 with m an integer greater than zero). There are two814

choices (e.g., policies, candidates) that individuals can vote over: C and D. The option with815

more votes gets selected (majority rule). Voting is costless. All players obtain a payoff of zero816

7For yet another example related to public goods provision, see the model of “antisocial rewarding” analyzed
by dos Santos and Peña (2017, p. 8).
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if the option they have chosen is not selected. C-players (resp. D-players) obtain a payoff of817

α > 0 (resp. β > 0) if their option is selected. The payoffs are then given by818

Pk = αJk ≥ mK, k = 0, 1, . . . , n− 1 (42a)

Qk = βJk ≤ mK, k = 0, 1, . . . , n− 1. (42b)

With this specification, P is increasing but Q is decreasing. Hence C does not induce positive819

individual externalities (nor does D). However, C induces positive aggregate externalities820

whenever α > β holds (i.e., when C-players’ preference for their choice is larger than D-players’821

preference for their choice). Indeed, the external gains are given by822

Ek = (α− β)Jk = mK, k = 0, 1, . . . , n− 1, (43)

and hence E ⪈ 0 holds. Since, additionally, Pn−1 = α > β = Q0 holds, universal C is preferred823

over universal D, and action C is cooperative.824

4 When is a game a cooperative dilemma?825

We have defined a cooperative dilemma (Definition 3) as a game with a cooperative action826

(Definition 7) that is also a social dilemma (Definition 2). In this section, we look into conditions827

for a game to be a cooperative dilemma (and hence a social dilemma) that can be verified828

without the need for checking directly whether or not there exists at least one ESS x∗ such that829

x∗ ̸= x̂. We first provide a general necessary and sufficient condition in terms of the private gain830

function. Then we provide simpler conditions given solely in terms of the private gain sequence.831

These are necessary and sufficient for two players but not in general.832

4.1 Necessary and sufficient condition833

We begin by noting and recording two simple consequences of action C being cooperative. First,834

since universal C is preferred over universal D if action C is cooperative, it must follow that the835

social optimum is greater than zero, i.e., that some cooperation is required to maximize the836

expected population payoff. We record this simple observation in the following lemma.837

Lemma 5. Suppose universal C is preferred over universal D. Then x̂ > 0 holds.838

Proof. If universal C is preferred over universal D then, by Definition 4 and the end-point values839

property of Bernstein transforms (see Lemma 3.2), f(1) = fC(1) = Pn−1 > Q0 = fD(0) = f(0)840

holds, implying that x = 0 does not maximize the expected payoff f . Hence x̂ ≠ 0 and thus841

x̂ > 0 holds.842

Second, if C is cooperative, then it induces positive aggregate externalities, i.e., the aggregate843

externality sequence must be positive. This implies (by the preservation of positivity property of844

Bernstein transforms, see Lemma 3.5) that the external gain function is positive. Thus, we have:845
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Lemma 6. Suppose that C induces positive aggregate externalities. Then h > 0 holds.846

Lemma 6 implies (via identity (29), and hence g(x) = f ′(x) − h(x)) that the private gain847

function is strictly smaller than the social gain function. Using Lemmas 5 and 6 together with848

Lemma 1, allows us to prove the following result.849

Proposition 1. Suppose C is cooperative. Then the game is a cooperative dilemma if and only850

if there exists x ∈ [0, 1] such that g(x) < 0, or, equivalently, if and only if x∗ = 1 is not its only851

ESS.852

Proof. Let C be cooperative. Then, by Lemmas 5 and 6, both x̂ > 0 and h > 0 hold. Using853

these observations, we can prove the proposition by considering the following three exhaustive854

cases.8855

1. If g is negative (i.e., g ⪇ 0), then there exist x ∈ [0, 1] such that g(x) < 0. Further, by856

Lemma 1, x∗ = 0 is its unique ESS. As x̂ > 0 holds, the game is thus a social dilemma857

and, therefore, a cooperative dilemma.858

2. If g changes sign at least once (i.e., σ(g) ≥ 1), there exists x such that g(x) < 0. We have859

the following two cases.860

(a) If the initial sign of g is negative (i.e., ι(g) = −1), then, by Lemma 1, x∗ = 0 is an861

ESS. As x̂ > 0 holds, the game is a social dilemma and, therefore, a cooperative862

dilemma.863

(b) If the initial sign of g is positive (i.e., ι(g) = 1), then, by Lemma 1, there exists at864

least one interior ESS x∗ ∈ (0, 1), which then satisfies the condition g(x∗) = 0. As865

h > 0 holds, we have h(x∗) > 0, which implies f ′(x∗) > 0 via identity (29). As x∗ is866

interior, this implies x∗ ̸= x̂. Hence, the game is a social dilemma and, therefore, a867

cooperative dilemma.868

3. If g is positive (i.e., g ⪈ 0), then there does not exist x ∈ [0, 1] such that g(x) < 0. Further,869

by Lemma 1, x∗ = 1 is the unique ESS. In addition, since h > 0 holds, f ′ > 0 holds.870

Hence, x̂ = 1. Since the unique ESS coincides with the social optimum, the game is not a871

social dilemma and, therefore, not a cooperative dilemma.872

873

Proposition 1 provides a necessary and sufficient condition for characterizing a cooperative874

dilemma, namely, that the private gain function is negative for at least some value of its domain.875

In other words, players must have an ex ante incentive (in terms of their private gains in876

expected payoff) to choose D over C for at least some symmetric mixed-strategy profile played877

by co-players.878

8Our assumption P ̸= Q, which implies G ̸= 0, precludes the case where g(x) = 0 holds for all x ∈ [0, 1].
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4.2 Simpler conditions879

It is convenient to have simpler conditions to check if a game is a cooperative dilemma or not.880

The properties of Bernstein transforms provide us with such conditions, which we state in the881

following corollaries to Proposition 1.882

Corollary 1. Suppose C is cooperative. If either ι(G) = −1 or ϕ(G) = −1, then the game is a883

cooperative dilemma.884

Proof. By the preservation of initial and final signs (Lemma 3.3) ι(G) = −1 implies ι(g) = −1885

and ϕ(G) = −1 implies ϕ(g) = −1. In either case the existence of x such that g(x) < 0 is886

implied, so that the result follows from Proposition 1.887

Corollary 2. Suppose C is cooperative. If the game is a cooperative dilemma, then Gk < 0888

holds for some k = 0, 1 . . . , n− 1.889

Proof. If Gk ≥ 0 holds for all k = 0, 1 . . . , n − 1, then preservation of positivity (Lemma 3.4)890

implies g ≥ 0. Hence, Proposition 1 implies that Gk < 0 holds for some k = 0, 1 . . . , n− 1 if the891

game is a cooperative dilemma.892

Corollaries 1 and 2 offer straightforward criteria to determine whether a game in which C is893

a cooperative action qualifies as a dilemma or not. While Corollary 1 gives a sufficient condition,894

Corollary 2 gives a necessary condition. The condition in Corollary 1 is that either the initial or895

the final sign of the private gain sequence is negative. In other words, if there is an individual896

incentive to defect when either sufficiently many co-players are cooperating or sufficiently many897

co-players are defecting, then the game is a cooperative dilemma. The condition in Corollary 2898

is that, for the game to be a cooperative dilemma, there must be some ex post incentives to899

defect. For two players (n = 2), the conditions in the two corollaries are equivalent and simplify,900

if payoffs are generic, to condition (ii) of Observation 1. For more players (n > 2) the conditions901

do not coincide and their converses are not true. Thus, there are cooperative dilemmas where902

both the initial and the final signs of G are positive as well as games where Gk < 0 holds for903

some k = 0, 1, . . . , n− 1 but that are not cooperative dilemmas.904

We illustrate Corollary 1 by showing how it implies that (under appropriate additional905

assumptions) our previously considered Examples 3, 8, and 9 are cooperative dilemmas.906

Example 3 (continued). We have shown that contributing to the public good (playing C) is907

cooperative. We have also shown that, as long as costs are sufficiently high, the initial or the908

final sign of the public goods games discussed in Examples 4, 5, 6, and 7 are negative. Hence909

Corollary 1 applies, and these games are cooperative dilemmas.910

Example 8 (continued). Since not participating (playing C) is cooperative and ϱ(G) = (1,−1)911

holds, congestion games are cooperative dilemmas by Corollary 1.912

Example 9 (continued). Since participating (playing C) is cooperative and ϱ(G) = (−1, 1)913

holds, games with participation synergies are cooperative dilemmas by Corollary 1.914
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We defer until Section 6.1 showing that Examples 10 and 11 are also cooperative dilemmas.915

5 When is universal cooperation socially optimal?916

We have seen that the social optimum satisfies x̂ > 0 for all cooperative dilemmas, i.e., some917

level of cooperation is required to maximize the expected payoff (see Lemma 5). It is often of918

interest to distinguish between cooperative dilemmas satisfying x̂ = 1 and those satisfying only919

0 < x̂ < 1. Indeed, some authors (e.g., Macy and Flache (2002)) would argue that only the first920

group satisfies the conditions of a cooperative dilemma. This motivates the following definition.921

Definition 8 (Social optimality of universal C). We say that universal C is socially optimal if922

x̂ = 1 holds.923

For two-player games it is straightforward to determine whether universal C is socially924

optimal or not. In particular, for the prototypical two-player cooperative dilemmas with generic925

payoffs considered in Example 2 the condition 2P1 ≥ P0 +Q1 is both necessary and sufficient for926

the social optimality of universal C. For the cases of the prisoners’ dilemma and the snowdrift927

game this is immediately apparent from the statement of Lemma 4; for the case of the stag-hunt928

the claim follows from Lemma 4.3 upon noting that the payoff inequalities defining a stag hunt929

in Example 2.3 imply 2P1 > P0 + Q1.930

For an arbitrary number of players n, Lemma 2.2 has identified a positive final sign of the931

social gain function f ′ as a necessary condition for the social optimality of universal C. While we932

offer a (slight but useful) refinement of this condition in Proposition 3 below, our main interest933

in this section is in providing simple, general sufficient conditions for the social optimality of934

universal C. For our purposes having such conditions is of particular interest because once935

we know that universal C is socially optimal in a cooperative dilemma, we can immediately936

conclude that cooperation is underprovided at any inefficient ESS of such a game. In contrast,937

if universal C is not socially optimal in a cooperative dilemma, so that 0 < x̂ < 1 holds, the938

possibility that an inefficient ESS x∗ of such a game features overprovision of cooperation, i.e.939

x∗ > x̂ holds, can no longer be dismissed a priori—an issue to which we return in Section 6.940

5.1 Positive social gains and the social optimality of universal C.941

We begin with a definition.942

Definition 9 (Positive social gains). We say that action C induces positive social gains if the943

social gain sequence is positive, i.e., if944

S ⪈ 0. (44)

According to Definition 9, action C induces positive social gains if, as a result of our switching945

experiment, the switch of a focal player from playing D to playing C increases the total payoff946
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of all players (including the focal). Definition 9 is thus related to Definitions 5 and 6 of positive947

aggregate and individual externalities. As discussed in Section 3.2, conditions related to those948

appearing in the statements of these definitions have been previously used as characterizing the949

“benefits of cooperation” in cooperative dilemmas by different authors, and in particular as part950

of different interpretations of altruism in the population genetics literature reviewed by Kerr951

et al. (2004). Condition (44) is no exception: a stronger version of it, namely that the social952

gain sequence is strictly positive, i.e., S > 0, appears as part of the “multilevel” interpretation953

of altruism proposed by Kerr et al. (2004), based on previous work by Matessi and Jayakar954

(1976) and Cohen and Eshel (1976), among others.955

It is intuitive that universal C should be socially optimal if it is the case that, no matter956

which pure-strategy profile we consider, switching the action of a single player from D to C957

never decreases but sometimes increases the total payoff, that is, if the action C induces positive958

social gains. The proof of the following proposition verifies this intuition; thereafter we illustrate959

its application to two of our previous examples.960

Proposition 2. Suppose that action C induces positive social gains. Then universal C is961

socially optimal.962

Proof. From the preservation of positivity of Bernstein transforms (Lemma 3.4), S ⪈ 0 implies963

f ′ > 0. Consequently, the expected payoff f(x) is strictly increasing in x, implying x̂ = 1.964

Example 3 (continued). Suppose that condition (14) holds. This is the case, for instance,965

if there is “cost sharing” (e.g., Weesie and Franzen (1998)), i.e., if the cost sequence is given966

by ci = γ/i for some constant γ > 0. Then, as we have discussed before, S ⪈ 0 holds, i.e., C967

induces positive social gains. It follows by Proposition 2 that universal C is socially optimal.968

As a partial counterpart to the sufficient condition for the social optimality of universal C in969

Proposition 2 we have the result that for universal C to be socially optimal it must be that the970

final sign of S is positive.971

Proposition 3. Suppose that universal C is socially optimal. Then ϕ(S) = 1 holds.972

Proof. From Lemma 2.2, a necessary condition for x̂ = 1 is that the final sign of f ′ is positive,973

i.e., that ϕ(f ′) = 1 holds. Since f ′ is the Bernstein transform of the social gain sequence S,974

and by the preservation of initial and final signs of Bernstein transforms (Lemma 3.3), this is975

equivalent to requiring that ϕ(S) = 1 holds.976

Of course, Proposition 3 implies that whenever the final sign of the social gain sequence is977

negative, the social optimum satisfies x̂ < 1.978

Example 7 (continued). Suppose that 1 < θ < n, i.e., the threshold public goods game is a979

teamwork dilemma. Then, by substituting (16) and ci = γ into (13), we obtain Sn−1 = −γ < 0.980

The final sign of the social gain sequence is thus negative and the social optimum satisfies x̂ < 1.981
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It is noteworthy that for two-player cooperative dilemmas and generic payoffs, the condition982

ϕ(S) = 1 is not only necessary, as established in Proposition 3, but also sufficient for the social983

optimality of universal C. To see this, observe that for every two-player game we have (Example984

1) Sn−1 = 2P1 − P0 −Q1 so that the condition Sn−1 ≥ 0, which is in turn implied by ϕ(S) = 1,985

is sufficient for the social optimality of C in any one of the prototypical two-person cooperative986

dilemmas. For n > 2 a similar conclusion is not possible: there are cooperative dilemmas where987

x = 1 is a local maximizer of total fitness f(x), so that ϕ(S) = 1 holds, but universal C is not988

optimal because x = 1 is not a global maximizer. See the following example for an illustration.989

Example 12. Consider the three-player game with payoff sequences given by P = (0, 1, 1 + z)990

and Q = (1, 2, 1), with 0 < z < 1/3. The private gains are then given by G = (−1,−1, z), the991

aggregate externalities by E = (2, 0, 2z), the social gains by S = (1/3,−1/3, z), and the total992

payoffs by T = (3, 4, 3, 3(1 + z)). Since P2 = 1 + z > 1 = Q0 and E ⪈ 0, the game is such that993

C is a cooperative action. Further, the initial sign of the private gain sequence is negative, i.e.,994

ι(G) = −1. Hence, the game is a cooperative dilemma by Corollary 1. Moreover, ϕ(S) = 1995

holds, so x = 1 locally maximizes the expected payoff f(x). However, x = 1 is not a global996

maximizer if z is sufficiently small. This is illustrated in Fig. 1 for z = 1/10. In this case,997

x̂ = 0.352527.998

5.2 Alternative conditions for the social optimality of universal C999

The condition that C induces positive social gains in Proposition 2 is equivalent to requiring1000

that the total payoff sequence T is increasing, thereby ensuring that n maximizes the total1001

payoff Ti over the number i of players choosing C. The following lemma shows that this weaker1002

requirement does suffice to ensure the social optimality of universal C.1003

Lemma 7. Suppose that Tn = max0≤i≤n Ti. Then universal C is socially optimal.1004

Proof. The expected payoff f is the Bernstein transform of the average payoff sequence T /n =1005

(T0/n, . . . , Tn/n) (see Eq. (27)). By the lower and upper bounds and end-point values properties1006

of polynomial in Bernstein form (see numerals 1 and 2 in Lemma 3), it then follows that1007

f(1) =
Tn

n
= max

0≤i≤n

Ti

n
≥ f(x) (45)

holds for all x ∈ [0, 1]. Hence x = 1 maximizes f(x). Using our assumption that the social1008

optimum x̂ is unique, x̂ = 1 follows.1009

Lemma 7 makes intuitive sense: If the sum of payoffs to players playing pure strategies is1010

maximized when all players choose C, it follows that the pure strategy x = 1 maximizes expected1011

payoff and is hence the social optimum. One might think that the condition Tn = max0≤i≤n Ti1012

is also necessary for the social optimality of universal C. However, for n > 2 this is not so:1013

x̂ = 1 does not imply that Tn maximizes the total payoffs (i.e., the converse of Lemma 7 is not1014
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Figure 1: Expected payoff f(x) for the game in Example 12 for two values of z. For z = 1/5
(dashed line), the social optimum satisfies x̂ = 1 and coincides with the ESS at x∗

2 = 1. For
z = 1/10 (solid line), the social optimum satisfies x̂ = 0.352527. In this case the social optimum
is below the ESS x∗

2 = 1. Such an ESS then features “too much cooperation”.
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true). In particular, determining whether or not universal C is socially optimal in cooperative1015

dilemmas where both ϕ(S) = 1 and max0≤i≤n Ti ≠ Tn hold is a non-trivial task in general, and1016

requires additional assumptions on the structure of the cooperative dilemma.1017

Example 12 (continued). In this example both ϕ(S) = 1 and T1 maximizes the total payoff1018

sequence for all values of z ∈ (0, 1/3), so that max0≤i≤3 Ti = T1 ̸= T3 holds. Whether or not1019

universal C is socially optimal depends on the value of the parameter z. For sufficiently low z,1020

the social optimum satisfies x̂ < 1 (and universal C is not socially optimal) while for sufficiently1021

high z, the social optimum satisfies x̂ = 1 (and universal C is not socially optimal). See Fig. 11022

for an illustration with z = 1/10 (low z) and z = 1/5 (high z).1023

We conclude this section by applying Lemma 7 to obtain a very simple sufficient condition1024

for the social optimality of C for games in which C is not only cooperative but also induces1025

positive individual externalities.1026

Proposition 4. Suppose C is cooperative and induces positive individual externalities. If1027

Gn−1 ≥ 0 holds, then universal C is socially optimal.1028

Proof. As C is cooperative, we have Tn = nPn−1 > nQ0 = T0. By Lemma 7 it then suffices to1029

show that Tn ≥ Ti holds for all i = 1, . . . , n− 1 to prove the result.1030

The condition Tn ≥ Ti is equivalent to1031

Tn − Ti = nPn−1 − iPi−1 − (n− i)Qi ≥ 0.

Because P is non-decreasing by the assumption of positive individual externalities, we have1032

nPn−1 − iPi−1 ≥ (n− i)Pn−1,

so that the desired inequality follows if Pn−1 −Qi ≥ 0 holds. Because Q is non-decreasing, this1033

in turn is implied by the assumption Gn−1 ≥ 0, which is equivalent to Pn−1 −Qn−1 ≥ 0.1034

We have seen that the public goods games with convex benefits and intermediate costs1035

(Example 5), the public goods games with sigmoid benefits and intermediate costs such that1036

∆b0 < γ ≤ ∆bn−1 (Example 6, which includes the case of Example 7 with θ = n), and the games1037

with participation synergies (Example 9) are all such that C is cooperative and that C induces1038

positive individual externalities. Morover, the final sign of the private gain sequences of these1039

games is positive, which implies Gn−1 ≥ 0. By an application of Proposition 4, we can then1040

conclude that in these games universal C is socially optimal, i.e., x̂ = 1 holds.1041

34



6 Multi-player prisoners’ dilemmas, snowdrift games, and1042

stag hunts1043

6.1 Definitions1044

Consider again the two-player cooperative dilemmas we discussed in Section 3.1, and their1045

possible generalization to more than two players. When is it appropriate to call an n-player game1046

a prisoners’ dilemma, a snowdrift game, or a stag hunt? As a first step to answer this question,1047

we would like definitions of these terms that (i) satisfy the conditions of a cooperative dilemma1048

as defined in Definition 3, (ii) include the corresponding two-player generic-payoff versions as1049

particular cases, and (iii) are minimal and given solely in terms of inequalities involving simple1050

operations on the payoff sequences P and Q. These considerations lead us to the following1051

definition.1052

Definition 10 (Prisoners’ dilemmas, snowdrift games, and stag hunts). Let C be cooperative,1053

and let ϱ(G) denote the sign pattern of the private gain sequence G.1054

1. We say that the game is a prisoners’ dilemma if ϱ(G) = (−1), i.e., if G ⪇ 0.1055

2. We say that the game is a snowdrift game if ϱ(G) = (1,−1) i.e., G has a single sign change1056

from positive to negative.1057

3. We say that the game is a stag hunt if ϱ(G) = (−1, 1), i.e., G has a single sign change1058

from negative to positive.1059

We have so far seen several examples of these three classes of multi-player cooperative1060

dilemmas. First, when contribution costs are sufficiently high, all public goods games of1061

Examples 4, 5, and 6 have a private gain sequence G that is negative and thus qualify as1062

prisoners’ dilemmas. Second, the public goods game with concave benefits and fixed intermediate1063

costs of Example 4, the public goods game with sigmoid benefits and fixed intermediate costs1064

such that ∆bn−1 < γ ≤ ∆b0 of Example 6 (which includes the volunteer’s dilemma defined1065

in Example 7), and the congestion games of Example 8 have all a private gain sequence with1066

pattern ϱ(G) = (1,−1) and are thus, according to our definition, particular instances of snowdrift1067

games. Third, and lastly, the public goods games with convex benefits and intermediate costs1068

of Example 5, and the public goods games with sigmoid benefits and intermediate costs such1069

that ∆b0 < γ ≤ ∆bn−1 of Example 6 (which include the case of Example 6 with θ = n), and the1070

games with participation synergies of Example 9 have all a private gain sequence characterized1071

by sign pattern (−1, 1) and are thus particular instances of stag hunts. Regarding Examples 101072

and 11 we have the following characterization.1073

Example 10 (continued). Since P is decreasing and Q is increasing by the assumption of1074

competition, it is clear that ∆G = ∆P − ∆Q ⪇ 0 holds, so that G is decreasing. Additionally,1075

P0 > Q0 (i.e., being alone at C rather than being with n − 1 other players at D) follows1076
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from the assumptions that C is superior together with the assumption of competition, as1077

P0 > Qn−1 ≥ Qn−2 ≥ . . . ≥ Q0 holds (Menezes and Pitchford, 2006). Now assume, as do1078

Menezes and Pitchford (2006), that being alone at D (which gives a payoff of Qn−1) is better1079

than being at C and competing with everyone else (which gives a payoff of Pn−1). Then,1080

Pn−1 < Qn−1 holds. It follows that the private gain sequence has a single sign change from1081

positive to negative, i.e., ϱ(G) = (1,−1) holds. This, together to the fact (that we have shown1082

before) that C is cooperative, allows us to conclude that the game is an instance of a snowdrift1083

game, as specified in Definition 10.2.1084

Example 11 (continued). By substituting (42) into the definition of private gains (4) we obtain1085

Gk = αJk > mK + (α− β)Jk = mK − βJk < mK, k = 0, 1, . . . , n− 1. (46)

Since α > 0 and β > 0, the private gain sequence has a single sign change from negative1086

to positive, i.e., ϱ(G) = (−1, 1) holds. Moreover, C is also cooperative. Thus, according to1087

Definition 10.3, the game is a stag hunt.1088

For all of the games in Definition 10, either the initial or the final sign of the private gain1089

sequence is negative. It then follows from Corollary 1 that all games in Definition 10 constitute1090

cooperative dilemmas. Further, for n = 2 the private gain sequence cannot have more than one1091

sign change, so that the only case of a game with cooperative action C not covered by Definition1092

10 is the one in which G ⪈ 0 holds. From Corollary 2 we thus obtain:1093

Corollary 3. Let n = 2. Then a game is a cooperative dilemma if and only if it is a prisoner’s1094

dilemma, snowdrift game or stag hunt in the sense of Definition 10.1095

For the case of two players (n = 2), Definition 10 expands the scope of two-player prisoners’1096

dilemmas, snowdrift games, and stag hunt games as previously defined in Section 3.1 to1097

include also non-generic cases. For example, the games characterized by payoff orderings1098

Q1 = P1 > Q0 > P0 and Q1 > P1 > Q0 = P0 are also classified as prisoners’ dilemmas according1099

to Definition 10. Moving to n ≥ 2 players, the definitions of multi-player prisoners’ dilemmas,1100

snowdrift games, and stag hunts are related (but not equal) to previous definitions of such1101

multi-player games.1102

First, Definition 10.1 is related to previous definitions of a (multi-player) prisoners’ dilemma1103

(Bonacich, 1976; Taylor and Ward, 1982) and of an n-person “dilemma game” (Dawes, 1980) which1104

require that universal C is preferred over universal D (Pn−1 > Q0, “benefits of cooperation”)1105

together with the private gains being strictly negative (G < 0, “costs of cooperation”). Our1106

definition is at the same time less and more strict than this previous definition. On the one1107

hand, our definition is less strict in the sense that we allow for some of the private gains to be1108

equal to zero, and hence for situations where individuals might be indifferent between one of the1109

two choices, fixing the pure strategies of their co-players. On the other hand, our definition is1110

more strict in the sense that action C also needs to induce positive aggregate externalities (i.e.,1111
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E ⪈ 0 (40)), which previous definitions in the literature seem to have ignored. This said, in1112

all cases a prisoners’ dilemma is such that each player has no incentive to play C and that D1113

dominates C (although only weakly, according to our definition).1114

Second, Definition 10.2 is related to at least one previous idea of how to generalize two-player1115

snowdrift (a.k.a. chicken) games to more than two players. Taylor and Ward (1982) suggest1116

that “[a] natural n-person generalization [...] is to stipulate that each player prefers to defect if1117

‘enough’ others co-operate, and to co-operate if ‘too many’ others defect [...] for any number of1118

players, the preferences of any player must switch direction from ‘D to C’ to ‘C to D’ only once1119

as the number of players choosing D increases”. This is, obviously, our requirement that the1120

sign pattern of the private gain sequence for a snowdrift game be ϱ(G) = (1,−1), i.e., that G1121

has a single sign change from positive (incentives to cooperate when ‘few’ others cooperate or1122

‘too many’ others defect) to negative (incentives to defect when ‘enough’ others cooperate). Our1123

definition is hence similar to this previous definition, although again stricter in the sense that1124

we require positive aggregate externalities (40) for C to be cooperative, while Taylor and Ward1125

(1982) only require that universal C is preferred over universal D (39).1126

Third, and lastly, Definition 10.3 applies a similar logic to define a (multi-player) stag hunt:1127

here each player prefers to defect if ‘few’ others cooperate (or, equivalently ‘too many’ others1128

defect) and prefers to cooperate if ‘enough’ others cooperate (or, equivalently ‘few’ defect), and1129

the preferences or incentives to behave in one way or the other switch only once as the number1130

of players choosing C (or choosing D) increases. This switch in incentives is captured by our1131

requirement that the sign pattern of the private gain sequence for a stag hunt be ϱ(G) = (−1, 1),1132

i.e., that G has a single sign change from negative to positive.1133

As a second step in our aim to generalize the notions of prisoners’ dilemmas, snowdrift games1134

and stag hunt to the multi-player case, we also introduce the following, broader definition of1135

these games, with conditions given now in terms of the private gain function instead of the1136

private gain sequence.1137

Definition 11 (Generalized prisoners’ dilemmas, snowdrift games, and stag hunts). Let C be1138

cooperative, and let ϱ(g) denote the sign pattern of the private gain function g.1139

1. We say that the game is a generalized prisoners’ dilemma if ϱ(g) = (−1), i.e., if g ⪇ 0.1140

2. We say that the game is a generalized snowdrift game if ϱ(g) = (1,−1), i.e., g has a single1141

sign change from positive to negative.1142

3. We say that the game is a generalized stag hunt if ϱ(g) = (−1, 1), i.e., g has a single sign1143

change from negative to positive.1144

It is clear that the generalized class of each of the games in Definition 11 includes the1145

respective class in Definition 10 (i.e., every prisoners’ dilemma, snowdrift game or stag hunt is,1146

respectively, a generalized prisoners’ dilemma, a generalized snowdrift game, and a generalized1147

stag hunt). This is because sign patterns of Bernstein transforms of sequences with at most one1148
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sign change get preserved (Lemma 3.7), which implies that, for all three games, ϱ(g) = ϱ(G)1149

holds. For n = 2, the converse (i.e., that every generalized prisoners’ dilemma, generalized1150

snowdrift game or generalized stag hunt is, respectively, a prisoners’ dilemma, a snowdrift game,1151

and a stag hunt) is true, because in this case the two definitions are equivalent and are simply1152

different ways to describe the three classes of games. However, for n > 2 the definitions are no1153

longer equivalent (e.g., there can be generalized stag hunts that are not “proper” stag hunts).1154

This is due to the possible loss of sign changes when applying the Bernstein transform to a1155

sequence G with more than one sign change (i.e., the variation-diminishing property of Bernstein1156

transforms of Lemma 3). To illustrate, consider the teamwork dilemma introduced in Example1157

7, characterized by a private gain sequence with sign pattern ϱ(G) = (−1, 1,−1). In this case,1158

it is easy to show (see Nöldeke and Peña, 2020, Lemma 1) that there exists a critical cost of1159

contributing to the public good such that, for costs larger than such critical cost, the sign pattern1160

of the private gain function g is ϱ(g) = (−1), while for costs smaller than the critical cost the1161

sign pattern satisfies ϱ(g) = ϱ(G) = (−1, 1,−1). In the former of these cases (large costs) the1162

threshold public goods game with fixed costs is thus an instance of the generalized prisoners’1163

dilemma defined in Definition 11.1. In the latter of these cases (small costs) the private gain1164

function has more than one sign change, and the game does not fall into any of the classes1165

covered by Definition 11.1166

Clearly, all games in Definition 11 are cooperative dilemmas according to our definition, as1167

they all feature private gain functions that are negative for some interior points. Moreover, we1168

also have the following result, which is immediate from Proposition 1.1169

Corollary 4. If g has at most one sign change, then a game is a cooperative dilemma if and only1170

if it is either a generalized prisoner’s dilemma, a generalized snowdrift game, or a generalized1171

stag hunt.1172

Corollary 4 indicates that for any number of players n the generalized prisoners’ dilemmas,1173

snowdrift games, and stag hunts partition the set of cooperative dilemmas having at most one1174

sign change in g in exactly the same way as the prisoner’s dilemmas, snowdrift games, and stag1175

hunts partition the set of cooperative dilemmas for n = 2. In our view this provides a sense in1176

which these kinds of games are indeed the natural generalizations of the prototypical two-person1177

cooperative dilemmas. Thus motivated, we proceed to take a closer look at the relationship1178

between the ESS and social optima of these games in the following.1179

6.2 ESS and social optima1180

We now look into the ESS structure of each of the three games in Definition 11 and into the1181

location of the social optimum x̂ in relation to the equilibria of the game. For n = 2 and generic1182

payoffs, it is the case that at an ESS individuals cooperate with a probability that is lower1183

than what is socially optimal, i.e., x∗ < x̂ holds for all x∗ ̸= x̂ (see Lemma 4). This seems1184

intuitive: the reason why a cooperative dilemma arises is that there is a positive externality1185
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that rationality (or evolution) does not internalize. Consequently, we expect underprovision of1186

cooperation at equilibrium. Our question is if this pattern is robust when moving to multi-player1187

generalized prisoners’ dilemmas, snowdrift games, and stag hunts.1188

We begin by describing the ESS structure of the games, which is an immediate consequence1189

of Definition 11 and Lemma 1, in the following proposition.1190

Proposition 5 (ESS structure of generalized prisoners’ dilemmas, snowdrift games, and stag1191

hunts).1192

1. A generalized prisoners’ dilemma has exactly one ESS, namely x∗ = 0.1193

2. A generalized snowdrift game has exactly one ESS x∗ ∈ (0, 1).1194

3. A generalized stag hunt has two ESSs: x∗
1 = 0 and x∗

2 = 1.1195

It follows from this result that all prisoners’ dilemmas, snowdrift games, and stag hunts,1196

irrespective of the number of players n ≥ 2, feature an ESS structure like their simple two-player1197

versions we discussed in Section 3.1. Proposition 5.2 recovers and generalizes both Gradstein1198

and Nitzan (1990, Proposition 3) (see, also, Motro, 1991) and Anderson and Engers (2007,1199

Proposition 1), who proved the existence and uniqueness of a symmetric NE for, respectively,1200

the class of congestion games introduced in Example 8, and the class of public goods games with1201

concave benefits and fixed costs introduced in Example 4. As we have seen, both of these games1202

are particular instances of snowdrift games (and hence of generalized snowdrift games). In a1203

similar way, Proposition 5.3 recovers and generalizes Anderson and Engers (2007, Proposition1204

7), who proved that x = 0 and x = 1 are symmetric NE for the class of class of games with1205

participation synergies introduced in Example 9. Proposition 5.3 also provides a simpler proof1206

for the result in Luo et al. (2021, Appendix A) characterizing the ASE of the replicator dynamic1207

of their “n-person stag hunt” game (see Example 9).1208

We next ask whether it is the case that cooperation is underprovided at equilibrium, as1209

it was the case for the two-player, generic versions of the games. Consider first the case of1210

generalized prisoners’ dilemmas. The following is immediate from Lemma 5.1211

Corollary 5. The social optimum x̂ of every generalized prisoner’s dilemma satisfies x̂ > x∗,1212

where x∗ = 0 is the unique ESS of the game.1213

In this case it is clear that the unique ESS features too little cooperation relative to the1214

social optimum, mimicking the situation in the prisoner’s dilemma with n = 2. Concerning the1215

question of whether or not x̂ = 1 holds, there are (as the two-player case illustrates, see Lemma1216

4) generalized prisoners’ dilemmas where universal C is socially optimal (and hence for which1217

x̂ = 1 holds) and generalized prisoners’ dilemmas where universal C is not socially optimal (and1218

hence for which 0 < x̂ < 1 holds).1219

Consider now the case of generalized snowdrift games. Here, we find again that the relation1220

between the unique ESS and the social optimum is the same as in the underlying two-player1221

game. More precisely, we can prove the following result.1222
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Proposition 6. The social optimum x̂ of every generalized snowdrift game satisfies x̂ > x∗,1223

where x∗ ∈ (0, 1) is the unique ESS of the game.1224

Proof. By definition, g has a unique sign change from positive to negative and, by Proposition1225

5.2, a unique ESS at the totally mixed strategy x∗ ∈ (0, 1) satisfying g(x∗) = 0. We then have1226

g(x) > 0 for all x ∈ (0, x∗). Since C is cooperative, and by Lemma 6, h is strictly positive so that1227

h(x) > 0 holds for all x ∈ (0, 1). It then follows, via identity (29), that f ′(x) = g(x) + h(x) > 01228

holds for all x ∈ (0, x∗]. This implies that f cannot have a maximum in the interval [0, x∗].1229

Thus x̂ > x∗ must hold.1230

Again, as it was the case for generalized prisoners’ dilemmas, there are cases where x̂ = 11231

holds (i.e., universal C is socially optimal) and cases where 0 < x̂ < 1 holds (i.e., universal C is1232

not socially optimal). Overall, Proposition 6 recovers and generalizes both Gradstein and Nitzan1233

(1990, Proposition 7) and Anderson and Engers (2007, Proposition 2), who proved, respectively,1234

the excessive participation at equilibrium in the class of congestion games introduced in Example1235

8, and the underprovision of the public good at equilibrium for the class of public goods games1236

with concave benefits and fixed intermediate costs introduced in Example 4.1237

Finally, consider the case of generalized stag hunts. As in the two-player version of the game,1238

a generalized stag hunt has exactly two ESSs, with the first at x∗
1 = 0 and the second at x∗

2 = 11239

(Proposition 5.3). In the two-player stag hunt universal C is socially optimal, so that the social1240

optimum x̂ coincides with the ESS at x∗
2 = 1. Thus, the only possibility for an inefficiency arises1241

because x∗
1 = 0 is an ESS featuring underprovision of cooperation.1242

Letting n > 2 opens up a new possibility, namely that universal C is no longer socially1243

optimal (i.e., 0 < x̂ < 1), so that both ESSs are inefficient, with the first of them (x∗
1) featuring1244

“too little” cooperation, and the second (x∗
2) featuring “too much” cooperation. This possibility1245

is illustrated in the following example.1246

Example 12 (continued). We had seen that the game is such that C is a cooperative action,1247

and hence satisfies x̂ > 0 by Lemma 5. Further, ϱ(G) = (−1, 1) so that the game is a stag hunt1248

(and hence a generalized stag hunt) with x∗
1 = 0 and x∗

2 = 1 as the only ESSs. However, unless1249

x̂ = 1 holds, the game has a stable rest point, namely x∗
2 = 1, which features more cooperation1250

than in the social optimum. The question is then if it is possible that x̂ < 1 holds. As illustrated1251

in Fig. 1 for z = 1/10, this will be the case whenever z > 0 is sufficiently small.1252

Example 12 indicates that for n > 2 there are stag hunts which differ in a rather significant1253

way from the two-person stag hunt. We can trace the source of this difference to the fact that in1254

the stag hunt in Example 12 action C does not induce positive individual externalities. Indeed,1255

when C induces positive individual externalities, we can apply Proposition 4 to obtain:1256

Corollary 6. Every generalized stag hunt where C induces positive individual externalities has1257

x̂ = 1 as social optimum, so that the unique inefficient ESS x∗ = 0 satisfies x∗ < x̂.1258

Proof. Every generalized stag hunt satisfies Gn−1 ≥ 0, as this is a necessary condition for the1259

private gain function g to have a unique sign change from negative to positive. Thus, every1260
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generalized stag hunt belongs to the class of games for which Proposition 4 applies and yields1261

x̂ = 1. Combining this observation with Proposition 5.3 yields the result.1262

7 Concluding remarks1263

We have revisited the questions of what is cooperation, and what is a cooperative dilemma (Kerr1264

et al., 2004; Nowak, 2012), in the context of binary-action multi-player games. To do so, we have1265

mostly relied on the shape-preserving properties of Bernstein transforms. These properties have1266

proved useful in applications ranging from approximation theory (DeVore and Lorentz, 1993) to1267

computer-aided geometric design (Farouki, 2012). More recently, they have also been applied to1268

game theory (Sah, 1991; Motro, 1991; Carlsson and van Damme, 1993; Menezes and Pitchford,1269

2006; Peña et al., 2014, 2015; Nöldeke and Peña, 2016; De Jaegher, 2019). For instance, they1270

can be used to analyze group-size and group-size variability effects in many of the cooperative1271

dilemmas we used to illustrate our results, and in other binary-action multi-player games (Peña1272

and Nöldeke, 2016; Peña and Nöldeke, 2018).1273

We also investigated the question of whether cooperation is always underprovided at equilib-1274

rium in an inefficient equilibrium of a cooperative dilemma. To make progress, we focused on1275

the cases of cooperative dilemmas with private gain functions having at most one sign change,1276

i.e., the set of generalized prisoners’ dilemmas, snowdrift games, and stag hunts we defined in1277

Section 6. In doing so, we ignored other cases that can be of practical importance. A particular1278

noteworthy example is the threshold public goods game with fixed costs and no refunds (Palfrey1279

and Rosenthal, 1984; Bach et al., 2006) with a threshold greater than one and smaller than the1280

group size, i.e., the game Myatt and Wallace (2008) refer to as a “teamwork dilemma”, that we1281

have characterized in Example 7. As briefly pointed out in Section 6, for sufficiently low costs,1282

the private gain function of such a class of games has a sign pattern given by (−1, 1,−1) and1283

hence, by Lemma 1, two ESSs: x∗
1 = 0 and x∗

2 ∈ (0, 1). It is clear that cooperation at x∗
1 = 0 is1284

underprovided. Is this also the case at x∗
2, i.e., is it the case that the social optimum x̂ lies above1285

x∗
2? Using arguments similar to the ones we used in Section 6, it can be proved that the answer1286

to this question is positive, and that there is underprovision of cooperation at both ESSs. This1287

result follows from two observations. First, the social gain sequence for a teamwork dilemma1288

has the same sign pattern as its private gain sequence (namely, (−1, 1,−1)) and the same must1289

be true for the social gain function. Second, it can be shown that every cooperative dilemma for1290

which the social gain function has the sign pattern (−1, 1,−1) features too little cooperation in1291

each of its ESS. Thus, our methods can be extended to deal with more complicated scenarios.1292

We leave this for future work.1293
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Nöldeke, G., Peña, J., 2020. Group size and collective action in a binary contribution game.1424

Journal of Mathematical Economics 88, 42–51. URL: https://www.sciencedirect.com/1425

science/article/pii/S0304406820300288, doi:10.1016/j.jmateco.2020.02.003.1426

Olson, M., 1965. The Logic of Collective Action: Public Goods and the Theory of Groups.1427

Harvard University Press.1428

45

https://www.sciencedirect.com/science/article/pii/S0899825608002030
https://www.sciencedirect.com/science/article/pii/S0899825608002030
https://www.sciencedirect.com/science/article/pii/S0899825608002030
http://dx.doi.org/10.1016/j.geb.2008.11.003
https://www.sciencedirect.com/science/article/pii/0040580976900538
https://www.sciencedirect.com/science/article/pii/0040580976900538
https://www.sciencedirect.com/science/article/pii/0040580976900538
http://dx.doi.org/10.1016/0040-5809(76)90053-8
https://doi.org/10.1073/pnas.81.6.1754
https://doi.org/10.1073/pnas.81.6.1754
https://doi.org/10.1073/pnas.81.6.1754
http://dx.doi.org/10.1073/pnas.81.6.1754
https://doi.org/10.1038/246015a0
http://dx.doi.org/10.1038/246015a0
https://doi.org/10.1007/s00199-005-0611-z
http://dx.doi.org/10.1007/s00199-005-0611-z
http://dx.doi.org/10.1007/s00199-005-0611-z
http://dx.doi.org/10.1007/s00199-005-0611-z
https://www.sciencedirect.com/science/article/pii/S0022519305803583
https://www.sciencedirect.com/science/article/pii/S0022519305803583
https://www.sciencedirect.com/science/article/pii/S0022519305803583
http://dx.doi.org/10.1016/S0022-5193(05)80358-3
https://doi.org/10.1111/j.1467-937X.2008.00482.x
https://doi.org/10.1111/j.1467-937X.2008.00482.x
https://doi.org/10.1111/j.1467-937X.2008.00482.x
http://dx.doi.org/10.1111/j.1467-937X.2008.00482.x
https://www.sciencedirect.com/science/article/pii/S002251931200015X
http://dx.doi.org/10.1016/j.jtbi.2012.01.014
https://www.sciencedirect.com/science/article/pii/S0899825616300641
https://www.sciencedirect.com/science/article/pii/S0899825616300641
https://www.sciencedirect.com/science/article/pii/S0899825616300641
http://dx.doi.org/10.1016/j.geb.2016.06.016
http://dx.doi.org/10.1016/j.geb.2016.06.016
http://dx.doi.org/10.1016/j.geb.2016.06.016
https://www.sciencedirect.com/science/article/pii/S0304406820300288
https://www.sciencedirect.com/science/article/pii/S0304406820300288
https://www.sciencedirect.com/science/article/pii/S0304406820300288
http://dx.doi.org/10.1016/j.jmateco.2020.02.003


Ostrom, E., 1990. Governing the Commons: The Evolution of Institutions for Collective Action.1429

Cambridge University Press.1430

Pacheco, J.M., Santos, F.C., Souza, M.O., Skyrms, B., 2009. Evolutionary dynamics of collective1431

action in n-person stag hunt dilemmas. Proceedings of the Royal Society B: Biological Sciences1432

276, 315–321. URL: https://doi.org/10.1098/rspb.2008.1126, doi:10.1098/rspb.2008.1433

1126.1434

Palfrey, T., Rosenthal, H., 1984. Participation and the provision of discrete public goods: a1435

strategic analysis. Journal of Public Economics 24, 171–193.1436

Palfrey, T.R., Rosenthal, H., 1983. A strategic calculus of voting. Public Choice 41, 7–53. URL:1437

https://doi.org/10.1007/BF00124048, doi:10.1007/BF00124048.1438
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