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Abstract

Cooperation usually becomes harder to sustain as groups become larger because incentives to shirk

increase with the number of potential contributors to collective action. But is this always the case?

Here we study a binary-action cooperative dilemma where a public good is provided as long as not

more than a given number of players shirk from a costly cooperative task. We find that at the stable

polymorphic equilibrium, which exists when the cost of cooperation is low enough, the probability of

cooperating increases with group size and reaches a limit of one when the group size tends to infinity.

Nevertheless, increasing the group size may increase or decrease the probability that the public good

is provided at such an equilibrium, depending on the cost value. We also prove that the expected

payoff to individuals at the stable equilibrium (i.e., their fitness) decreases with group size. For low

enough costs of cooperation, both the probability of provision of the public good and the expected

payoff converge to positive values in the limit of large group sizes. However, we also find that the

basin of attraction of the stable polymorphic equilibrium is a decreasing function of group size and

shrinks to zero in the limit of very large groups. Overall, we demonstrate non-trivial comparative

statics with respect to group size in an otherwise simple collective action problem.
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1 Introduction1

Living in groups, together with the possibilities and opportunities for conflict and cooperation entailed by2

communal life, is a widespread phenomenon in the natural world (Krause and Ruxton, 2002). Among the3

many factors affecting the evolution of cooperation in social groups, including relatedness and repeated4

interactions, group size has received considerable attention. In particular, how the strength of selection5

on cooperative behavior might increase or decrease with group size has been a recurrent question in6

behavioral ecology and evolutionary biology (Beauchamp and Ruxton, 2003; MacNulty et al., 2012; Shen7

et al., 2014; Powers and Lehmann, 2017; Peña and Nöldeke, 2018). This question is paralleled in the8

social sciences by the question of how individual incentives to cooperate in a collective action problem are9

affected by group size (Olson, 1965; Chamberlin, 1974; Palfrey and Rosenthal, 1984; Oliver and Marwell,10

1988). Although there is broad consensus that the effect of group size on cooperation is typically negative,11

with cooperation becoming more difficult to evolve or sustain as groups become larger (Olson, 1965; Boyd12

and Richerson, 1988), positive group size effects have been also documented in empirical studies (Isaac13

et al., 1994; Powers and Lehmann, 2017) and demonstrated in theoretical research (Esteban and Ray,14

2001; Cheikbossian and Fayat, 2018; Peña and Nöldeke, 2018).15

To fix ideas, consider a simple game-theoretic model of social interactions: the “volunteer’s dilemma”16

(Diekmann, 1985). In this game, n players simultaneously become aware of a costly task requiring at17

least one volunteer. If at least one of the players volunteers to pay the cost c of performing the task, a18

good of normalized value of one is created and enjoyed by all players. If nobody volunteers, the task is19

left undone, and no public good is created. A more general version of this game (which, for simplicity,20

we will also refer to as a “volunteer’s dilemma”) considers the case where the cooperation of at least θ21

volunteers is needed for the collective good to be created, for 1 ≤ θ ≤ n (Palfrey and Rosenthal, 1984).22

Such games have become influential in evolutionary biology, where they have been used to model a wide23

array of collective action problems ranging from the secretion of extracellular compounds in microbes and24

the construction of collective stalks in social amoeba (Archetti, 2009) to leadership in animal societies25

(Shen et al., 2010; Smith et al., 2016), confrontational scavenging in hominins (Bickerton and Szathmáry,26

2011), and the costly punishment of free riders in humans (Raihani and Bshary, 2011; Przepiorka and27

Diekmann, 2013; Schoenmakers et al., 2014).28

The volunteer’s dilemma has provided theoretical underpinnings to the idea that larger groups are less29

conducive to cooperation. Indeed, it is well known that when only one volunteer is required (θ = 1) both30

the proportion of volunteers and the probability that the collective action is successful decreases with31

group size (Archetti, 2009). More recently, Nöldeke and Peña (2020) have shown that these two results32

extend to 1 < θ < n for the best symmetric Nash equilibrium of the game (i.e., the equilibrium sustaining33

the highest probability of cooperation among the symmetric Nash equilibria) while additionally proving34

that the expected payoff at such an equilibrium is also a decreasing function of group size. Together, these35

results establish for the volunteer’s dilemma that there are negative group-size effects on three different36

quantities: the proportion of volunteers, the probability that the collective action is successful, and the37

expected payoff at equilibrium. This casts doubts on the extent to which large-scale cooperation modelled38

after the volunteer’s dilemma can be sustained without the presence of additional cooperation-enhancing39

mechanisms and raises the question of whether such negative group-size effects are a general theoretical40

feature of a wide class of collective action problems or a peculiarity of the volunteer’s dilemma.41
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Here, we consider the group-size effects of a related cooperative dilemma, which we will call the “shirker’s42

dilemma”. As in the volunteer’s dilemma, n players simultaneously become aware of a costly collective43

task. Yet, while in the volunteer’s dilemma the collective task is successful (and a public good is produced)44

if at least a fixed number θ of players volunteer, in the shirker’s dilemma the collective task is successful if45

at most a fixed number ζ of players shirk from volunteering. Obviously, for a given group size n and cost of46

volunteering c, the shirker’s dilemma and the volunteer’s dilemma are equivalent: a shirker’s dilemma with47

threshold ζ = n− θ is nothing but a volunteer’s dilemma with threshold θ. However, and importantly, the48

two games capture different consequences of an increase in group size: While in the volunteer’s dilemma49

the number of required volunteers is a constant independent of group size, in the shirker’s dilemma the50

number of required volunteers θ increases with group size so as to keep the threshold maximum number of51

shirkers ζ fixed. Thus, for large group sizes (and relatively small thresholds), collective action is successful52

in the volunteer’s dilemma if some individuals cooperate. By contrast, in the shirker’s dilemma collective53

action is successful if few individuals shirk, and hence that most individuals cooperate. As will be shown,54

the different payoff structure of the shirker’s dilemma translates into different comparative statics with55

respect to group size and into a different answer to the question of whether or not larger groups are less56

conducive to cooperation.57

The shirker’s dilemma is relevant for situations where the (potentially costly) cooperation of all or most58

individuals is required to produce a collective good. Such scenarios may arise in cases traditionally59

conceptualized as volunteer’s dilemmas. For instance, Archetti (2009) lists as an example of a volunteer’s60

dilemma the case of the amoeba Dictyostelium discoideum that, when facing starvation, differentiates61

into a ball of reproductive spores (shirkers) and a sterile stalk (volunteers). However, it can be argued62

that what is needed for collective action to be successful in this case is not that enough cells become63

part of the stalk, but that there is a cap on the number of reproductive cells that must be maintained at64

the top. Likewise, Raihani and Bshary (2011) argue that the punishment of free riders in an n-player65

social dilemma is best described by assuming that the benefit of punishment is a step function of the66

amount of punishment (e.g., the number of punishers in a group). However, for many social situations,67

it might be more plausible that the inflection point of such a step function (and hence the success of68

punishment as a collective action) is determined more by the maximum number of allowed second-order69

free riders (i.e., individuals that will refrain from punishing free riders) than by the minimum number of70

punishers. A maximal allowable number of shirkers instead of a minimal required number of volunteers—71

and hence the payoff structure of the shirker’s dilemma in contrast to that of a volunteer’s dilemma—may72

also be relevant in other human interactions. For example, a hacker may scan the computer systems73

of target organizations for vulnerable entry points left open by employees who compromised computer74

security instructions. By itself, a particular entry point does not yet guarantee successful hacking of75

the organization’s website or data for ransom purposes. Therefore, the hacker may decide to attack all76

vulnerable access points simultaneously only if their number exceeds a certain threshold and otherwise77

continue its search for a more vulnerable organization. In all of these situations, the shirker’s dilemma78

might better represent the social dilemma at hand than the volunteer’s dilemma.79

Our analysis of the group-size effects on the shirker’s dilemma builds upon previous insights derived in80

Peña and Nöldeke (2018) for the general case of binary-action symmetric n-player games and in Nöldeke81

and Peña (2020) for the particular case of the volunteer’s dilemma. The question asked in Nöldeke and82

Peña (2020) was: what are the consequences of larger group sizes in a collective action that is successful83

if and only if there are enough contributors? Here, we ask the dual question, namely: What are the84
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consequences of larger group sizes in a collective action that is successful if and only if there are not85

too many shirkers? In particular, we are interested in the three group-size effects analyzed by Nöldeke86

and Peña (2020) for the volunteer’s dilemma, namely: (i) the effect of group size on the probability that87

individuals cooperate at equilibrium, (ii) the effect of group size on the expected payoff of individuals, and88

(iii) the effect of group size on the probability that collective action is successful at equilibrium. Finally,89

we also investigate what happens to these quantities as the groups are made arbitrarily large, that is, in90

the limit of infinitely large groups.91

2 Model92

2.1 The shirker’s dilemma93

Our model is a particular case of a multi-player matrix game (Broom et al., 1997) with two pure strategies94

(for related models see, e.g., Bach et al. 2006; Archetti 2009; Peña et al. 2014; Broom et al. 2019; Peña95

and Nöldeke 2023). Specifically, n > 2 players face a task to be performed that requires collective action96

for its success. Each player i ∈ {1, . . . , n} can either “volunteer” (or “cooperate”) at a cost c ∈ (0, 1)97

or, alternatively, “shirk” from the task (or “defect”). All players, irrespective of their strategy, enjoy an98

additional payoff benefit normalized to one (i.e., a public good of value one is provided) if at most ζ ≥ 199

players shirk. Throughout the following, we take ζ and c as given and study the impact of group size n100

on equilibrium behavior. In doing so, we restrict attention to group sizes n > ζ + 1, thereby excluding101

the trivial case in which the benefit arises even if all players shirk (n = ζ) and the well-understood case102

(Diekmann, 1985) in which exactly one volunteer is required for the benefit to arise (n = ζ + 1).103

As noted in the Introduction, for given n our game corresponds to a volunteer’s dilemma with θ = n− ζ104

as the minimal number of volunteers. Nevertheless, we prefer the name “shirker’s dilemma” as it draws105

attention to the essential feature of our analysis, namely that we study the case in which the maximal106

number of shirkers (rather than the minimal number of volunteers) compatible with the provision of the107

benefit is considered fixed.108

2.2 Replicator dynamic and pivot probability109

We assume that the population is infinitely large and comprised of at most two types of individuals:110

“shirkers” (or “defectors”) and “volunteers” (or “cooperators”). Denoting by q the proportion of shirkers111

in the population, and assuming that groups of size n are matched to play the game uniformly at random,112

the probability that there are exactly k shirkers in a group is given by113 (
n

k

)
qk (1− q)

n−k
. (1)

Letting114

Πζ,n(q) ≡
ζ∑

k=0

(
n

k

)
qk(1− q)n−k (2)
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denote the probability that there are at most ζ shirkers in a group, the expected payoff to a shirker and115

to a volunteer can then be written as116

wS(q) = Πζ−1,n−1(q), (3)

and117

wV(q) = Πζ,n−1(q)− c. (4)

Indeed, a shirker gets a payoff of one if there are not more than ζ − 1 shirkers among its n− 1 co-players,118

and zero otherwise, which explains Eq. (3). In contrast, a volunteer gets a benefit of one in case there are119

not more than ζ shirkers among its co-players but always pays the cost c of volunteering, which explains120

Eq. (4). Note that Eqs. (1) and (2) correspond, respectively, to the probability mass function and the121

cumulative distribution function of a binomial distribution with parameters n and q.122

We assume that the change in the proportion of shirkers over evolutionary time is given by the continuous-123

time two-strategy replicator dynamic (Taylor and Jonker, 1978; Weibull, 1995; Hofbauer and Sigmund,124

1998)125

q̇ = q (1− q) gn,ζ,c(q), (5)

where gn,ζ,c(q) corresponds to the “gain function” (Bach et al., 2006; Peña et al., 2014), the “incentive126

function” (Broom and Rychtář, 2022, p. 177-178), or the “private gain function” (Peña and Nöldeke, 2023).127

The gain function is the difference in expected payoffs between the two pure strategies in a population128

where the proportion of shirkers is q and quantifies the selection pressure on the proportion of shirkers in129

the population. In our case, the gain function is given by130

gn,ζ,c(q) ≡ wS (q)− wV (q) = c− πζ,n (q) , (6)

where131

πζ,n (q) =

(
n− 1

ζ

)
qζ (1− q)

n−1−ζ
, (7)

is the probability that ζ out of n − 1 groups members shirk when the proportion of shirkers in the132

population is equal to q. As a given focal player’s strategy is decisive for whether or not the collective133

action of the group is successful exactly when ζ other group members shirk, Eq. (7) is thus the probability134

that a change in the focal player’s strategy changes the outcome of the social interaction. This is analogous135

to what is known as the pivot probability in the game-theoretic analysis of voting models (Palfrey and136

Rosenthal, 1983; Nöldeke and Peña, 2016), i.e., the probability that the decision of a single voter will137

change the outcome of an election.138

2.3 Rest points and their stability139

We are interested in the asymptotically stable rest points of the replicator dynamic (5) as these indicate140

the effects of selection in the long run for our model. The rest points of the replicator dynamics correspond141

to all values of the share of shirkers q that nullify Eq. (5). There are two kinds of rest points. First,142
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there are two trivial rest points q = 0 (“all volunteer”) and q = 1 (“all shirk”) at which the population is143

monomorphic and the type variance of the population, given by q(1− q), is equal to zero. Second, there144

can be interior rest points q ∈ (0, 1), at which the population is polymorphic but the expected payoffs to145

the two strategies are equal (i.e., ΠS (q)−ΠV (q) = 0 holds), so that the gain function vanishes. Setting146

Eq. (6) to zero, we find that the interior rest points correspond to the solutions of the pivotality condition147

πζ,n (q) = c. (8)

The stability of both trivial and interior rest points can be verified by checking the sign pattern of the148

gain function (Bukowski and Miekisz, 2004; Peña et al., 2014; Peña and Nöldeke, 2023). In particular,149

q = 0 is stable if the initial sign of the gain function is negative, q = 1 is stable if the final sign of the gain150

function is positive, and an interior rest point is stable (resp. unstable) if the gain function changes sign151

from positive to negative (resp. negative to positive) at the rest point. In turn, the sign pattern of the152

gain function (6) depends on how the pivot probability compares to the cost of volunteering as a function153

of the proportion of shirkers in the population. To make progress, we thus need a full characterization of154

the shape of the pivot probability as a function of the proportion of shirkers.155

To this end, it can be verified that the pivot probability πζ,n (q) satisfies the following properties (see156

Nöldeke and Peña, 2020; the top left panel of Fig. 1 illustrates). First, the pivot probability is differentiable157

in q (differentiability). Second, πζ,n (0) = πζ,n (1) = 0 holds (end-points property). Third, the pivot158

probability is strictly increasing on the interval [0, ζ/(n− 1)] and strictly decreasing on the interval159

[ζ/(n− 1), 1] with non-zero derivative on the interiors of these intervals (unimodality). In particular,160

ζ/(n− 1) is the unique maximizer of πζ,n (q) in the interval [0, 1]. Hence,161

c̄ζ,n ≡ πζ,n (ζ/(n− 1)) ∈ (0, 1) (9)

is the critical cost value such that (i) for c > c̄ζ,n the pivotality condition (8) has no solution, (ii) for162

c = c̄ζ,n it has a unique solution, and (iii) for c < c̄ζ,n it has two solutions.163

The shape properties of the pivot probability allow us to fully characterize the evolutionary dynamics164

of the shirker’s dilemma. Indeed, it follows from the end-points property and the assumption c > 0165

that q = 0 (“all volunteer”) is always an unstable rest point of the replicator dynamic (5), while q = 1166

(“all shirk”) is always a stable rest point. Additionally, these are the only rest points when the cost of167

volunteering is sufficiently large (i.e., when c > c̄ζ,n holds). When the cost is sufficiently low (i.e., when168

c < c̄ζ,n holds) the replicator dynamic has two additional rest points in the interval (0, 1), corresponding169

to the two solutions to the pivotality condition (8). The derivative of the gain function is negative at170

the smaller, while it is positive at the larger of these rest points. Hence, the gain function changes sign171

from positive to negative at the smaller of these rest points (which is then stable), while it changes sign172

from negative to positive at the larger of these rest points (which is then unstable). We collect these173

observations on the characterization of the replicator dynamic of the shirker’s dilemma in the following174

Lemma (cf. Lemma 1 in Nöldeke and Peña, 2020; the top right and bottom panels of Fig. 1 illustrate).175

Lemma 1. For any ζ, n, and c, q = 0 is an unstable rest point and q = 1 is a stable rest point of the176

replicator dynamic. Additionally, the number, location, and stability of interior rest points of the replicator177

dynamic depend on how the cost of volunteering c compares to the critical cost (9) as follows:178

6



Figure 1: Pivot probability πζ,n (q) as a function of the proportion of shirkers q, and corresponding
evolutionary dynamics, as given by Lemma 1, for ζ = 2 and n = 4. Top left: The pivot probability is
unimodal, with maximum c̄ζ,n at q = ζ/(n− 1). Here, c̄2,4 ≈ 0.444, and ζ/(n− 1) = 2/3. Top right: For
high costs (c > c̄ζ,n; here c = 0.6) the replicator dynamic has no interior rest points. The trivial rest point
q = 0 is unstable (open circle) while the trivial rest point q = 1 is stable (full circle). The evolutionary
dynamics lead to q = 1 for all initial conditions (arrow). Bottom left: For a cost equal to the critical cost
c̄ζ,n, there is a unique interior rest point at q = ζ/(n− 1) that is unstable (open circle). The evolutionary
dynamics lead to q = 1 for all initial conditions in [0, 1]− {ζ/(n− 1)} (arrows). Bottom right: For low
costs (c < c̄ζ,n; here, c = 0.3), the replicator dynamic features two interior rest points: the smaller (qsζ,c)
is stable (full circle), and the larger (quζ,c) is unstable (open circle). The dynamics (arrows) lead either to
qsζ,c or to q = 1, depending on initial conditions.
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1. If c > c̄ζ,n, there are no interior rest points.179

2. If c = c̄ζ,n, there is a unique unstable interior rest point, namely q = ζ/(n− 1).180

3. If c < c̄ζ,n, there are two interior rest points: qsζ,c(n), which is stable, and quζ,c(n), which is unstable.181

The two interior rest points satisfy 0 < qsζ,c(n) < quζ,c(n) < 1, with qsζ,c(n) being the unique solution182

to (8) in the interval (0, ζ/(n− 1)), and quζ,c(n) being the unique solution to (8) in the interval183

(ζ/(n− 1), 1).184

There are two cases of interest. First, for high costs (i.e., c ≥ c̄ζ,n) the replicator dynamic is such that the185

only stable rest point is q = 1, i.e., the population is characterized by full shirking at equilibrium. Second,186

for low costs (i.e., c < c̄ζ,n), the replicator dynamic exhibit what can be called bistable coexistence (Peña187

et al., 2015), where an interior unstable rest point (located at quζ,c(n)) separates the basins of attraction188

of two stable rest points: one where there is full shirking (q = 1) and another one where shirkers and189

volunteers coexist (i.e., qsζ,c(n)).190

2.4 Proportion of volunteers, success probability, and expected payoff191

We are interested in the effects of group size on three quantities: (i) the proportion of volunteers, (ii) the192

probability of collective success, and (iii) the expected payoff, all evaluated at the stable rest point of the193

replicator dynamic sustaining the smallest amount of shirking (i.e., the largest amount of volunteering).194

In the following, we refer to such rest point as the minimal rest point and denote it by qζ,c(n).195

Depending on the particular values of ζ, n, and c, the minimal rest point can be either the trivial rest196

point q = 1 or the interior rest point qsζ,c(n). More precisely, from Lemma 1 we have197

qζ,c(n) = Jc ≥ c̄ζ,nK + Jc < c̄ζ,nKqsζ,c(n), (10)

where we have used the Iverson bracket to write JP K = 1 if P is true and JP K = 0 if P is false. With this198

definition of qζ,c(n) we let199

pζ,c(n) = 1− qζ,c(n), (11)

ϕζ,c(n) = Πζ,n(qζ,c(n)), (12)

uζ,c(n) = Πζ−1,n−1(qζ,c(n)), (13)

denote, respectively, the proportion of volunteers, the success probability, and the expected payoff at the200

minimal rest point. The proportion of volunteers is simply one minus the proportion of shirkers at the201

minimal rest point. It is thus given by Eq. (11). The success probability is the probability that the202

collective good is produced. This happens when there are not more than ζ shirkers in a group of n players203

all of whom are shirking with probability (10). It is thus given by Eq. (12). Finally, the expected payoff204

at the minimal rest point is most easily calculated from the perspective of a shirker (see Eq. (3)), and205

thus given by Eq. (13). Clearly, the equilibrium payoff can be also calculated from an ex-ante perspective,206

and is thus given by the success probability minus the expected cost of volunteering. This observation207

provides a useful equation linking the three quantities, namely208

uζ,c(n) = ϕζ,c(n)− pζ,c(n) · c. (14)
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3 Results209

3.1 Preliminaries: The effect of group size on the critical cost210

Before proceeding to our main results, we first need to characterize how the critical cost c̄ζ,n from Eq. (9)211

depends on group size. This is important because the critical cost determines whether the minimal rest212

point qζ,c(n) from Eq. (10) features full shirking or a positive proportion of volunteers. The following213

result provides such a characterization and an additional result concerning the relation between the214

threshold ζ and the critical cost. The proof is in Appendix A.1. Fig. 2 illustrates.215

Lemma 2. For any ζ, the critical cost c̄ζ,n is strictly decreasing in n with maximum216

c̄†ζ ≡ max
n>ζ+1

c̄ζ,n = c̄ζ,ζ+2 =

(
ζ

ζ + 1

)ζ

, (15)

and limit217

c̄∗ζ ≡ lim
n→∞

c̄ζ,n = ρζ(ζ) > 0, (16)

where218

ρk(λ) =
λke−λ

k!
, k = 0, 1, . . . (17)

denotes the probability mass function of a Poisson distribution with parameter λ.219

Moreover, both c̄†ζ and c̄∗ζ are decreasing in ζ, with limits limζ→∞ c̄†ζ = c̄∗1 = 1/e, and limζ→∞ c̄∗ζ = 0.220

Lemma 2 indicates a negative effect of group size on the evolution of cooperation for the shirker’s dilemma.221

Namely, increasing the group size decreases the critical cost value c̄ζ,n, and hence increases the range of222

cost levels for which full shirking is the unique stable rest point. In particular, for cost values satisfying223

c̄ζ,n+1 < c < c̄ζ,n, some cooperation can be sustained at equilibrium for the smaller group size n (i.e.,224

pζ,c(n) > 0) but not for the larger group size n+1 (i.e., pζ,c(n+1) = 0). An analogous negative group-size225

effect is present in the volunteer’s dilemma (Nöldeke and Peña, 2020, Lemma 1).226

An immediate consequence of Lemma 2 is that, for a given threshold ζ ≥ 1, the cost c ∈ (0, 1) can fall227

into one of three different regions (see right panel of Fig. 2).228

1. For c ∈ [c̄†ζ , 1), costs are so high that c ≥ c̄ζ,n holds for all group sizes n. In this case, the minimal229

rest point is given by qζ,c(n) = 1 for all n. Further, the proportion of volunteers, the success230

probability, and the expected payoff all reduce to231

pζ,c(n) = ϕζ,c(n) = uζ,c(n) = 0, for all n. (18)

2. For c ∈ (c̄∗ζ , c̄
†
ζ), there exists a finite critical group size n̄ζ,c, such that c < c̄ζ,n holds if and only if232

n ≤ n̄ζ,c holds, while c ≥ c̄ζ,n holds if and only if n > n̄ζ,c holds. In this case, the minimal rest point233

corresponds to the non-trivial rest point qsζ,c(n) for n ≤ n̄ζ,c, and to the trivial rest point q = 1 for234

n > n̄ζ,c. It follows that the proportion of volunteers, the success probability, and the expected235
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Figure 2: Critical cost c̄ζ,n, maximum critical cost c̄†ζ , and limit critical cost c̄∗ζ . Left: Critical cost c̄ζ,n
(circles) as a function of group size n for ζ ∈ {1, 2, 3, 4}. As stated in Lemma 2, the sequence of critical
costs is strictly decreasing for all ζ with a limit given by c̄∗ζ (dashed lines). Right: Maximum critical cost

c̄†ζ (circles) and limit critical cost c̄∗ζ (squares) as a function of threshold ζ.

payoff are all positive for group sizes smaller than or equal to the critical group size, but they all236

drop to zero thereafter, namely237

n ≤ n̄ζ,c ⇒ pζ,c(n) > 0, ϕζ,c(n) > 0, uζ,c(n) > 0,

n > n̄ζ,c ⇒ pζ,c(n) = 0, ϕζ,c(n) = 0, uζ,c(n) = 0. (19)

3. For c ∈ (0, c̄∗ζ ], costs are sufficiently low that c < c̄ζ,n holds for all group sizes n. In this case, the238

minimal rest point corresponds to the non-trivial rest point qsζ,c(n), and the proportion of volunteers,239

the success probability, and the expected payoff are all positive for all group sizes n. That is, we240

have241

pζ,c(n) > 0, ϕζ,c(n) > 0, uζ,c(n) > 0, for all n.

In the following, we restrict our analysis to costs satisfying c ∈ (0, c̄†ζ) (i.e., cases 2 and 3 above), thus242

excluding the uninteresting case in which the proportion of volunteers, the expected payoff, and the243

success probability are all zero for all group sizes (i.e., case 1 above).244

3.2 The effect of group size on the proportion of volunteers245

Our first main result on group-size effects pertains to the comparative statics of the proportion of volunteers246

(11) at the minimal rest point (10). To derive this result, we begin by stating:247

Lemma 3. For any ζ, n, and cost c < c̄ζ,n+1, the interior rest points of the replicator dynamic for group248
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Figure 3: Illustration of Lemma 3 and its proof (in Appendix A.2) for ζ = 2, n = 4, and c = 0.2. For cost
c lower than c̄ζ,n+1, both a stable (full circle) and an unstable (open circle) rest point exist for group
sizes n and n+ 1, and are ordered in such a way that Eq. (20) is satisfied, with both the stable and the
unstable rest points decreasing with group size.

size n and group size n+ 1 satisfy249

qsζ,c(n+ 1) < qsζ,c(n) < ζ/n < quζ,c(n+ 1) < quζ,c(n). (20)

The formal proof of Lemma 3 is in Appendix A.2. Fig. 3 illustrates the underlying arguments for the250

inequalities qsζ,c(n+ 1) < qsζ,c(n) and quζ,c(n+ 1) < quζ,c(n). At the stable interior rest point qsζ,c(n), the251

probability that a focal group member is pivotal is increasing both in group size and in the proportion252

of shirkers. The reason that an increase in group size decreases the proportion of shirkers in the stable253

interior rest point is thus that the positive effect of an increase in group size on the pivot probability254

has to be compensated by a decrease in the proportion of shirkers to restore the pivotality condition. In255

contrast, at the unstable interior rest point quζ,c(n), the probability that a focal group member is pivotal is256

decreasing both in group size and in the proportion of shirkers. The reason that an increase in group size257

decreases the proportion of shirkers in the unstable interior rest point is thus that the negative effect of258

an increase in group size on the pivot probability has to be compensated by a decrease in the proportion259

of shirkers to restore the pivotality condition.260
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Figure 4: Proportion of volunteers pζ,c(n) (left), and expected payoff uζ,c(n) (right) as functions of
group size for ζ ∈ {1, 2, 3, 4, 5}, c = 0.2, and n ∈ {ζ + 2, . . . , 30}. For ζ ≤ 3 the inequality c < c̄∗ζ holds,
so that the proportion of volunteers is strictly increasing (Proposition 1) and the expected payoff is
strictly decreasing (Proposition 2) in group size. Even though c > c̄∗4 ≈ 0.1954 holds, for ζ = 4 the same
monotonicity properties hold over the range of group sizes illustrated here because the critical group size
is n̄4,0.2 = 88 > 30. For ζ = 5 both the proportion of volunteers and the expected payoff drop to zero at
the critical group size n̄5,0.2 = 22.

Rewriting the first inequality in (20) in terms of the proportion of volunteers, we obtain that261

pζ,c(n+ 1) > pζ,c(n). (21)

holds for any cost of volunteering c < c̄ζ,n+1. Combining this observation with Lemmas 1 and 2 directly262

implies the following characterization of the group-size effect on the proportion of volunteers at the263

minimal rest point. The left panel of Fig. 4 and Fig. 5 illustrate.264

Proposition 1. For any ζ and c ∈ (0, c̄†ζ), the proportion of volunteers pζ,c(n) is either strictly increasing265

or unimodal in group size n. More precisely:266

1. If c ≤ c̄∗ζ , then pζ,c(n) is strictly increasing in n.267

2. If c̄∗ζ < c < c̄†ζ , then pζ,c(n) is strictly increasing in n for n ≤ n̄ζ,c and equal to zero for n > n̄ζ,c.268

This result demonstrates a positive group-size effect on the evolution of cooperation for the shirker’s269

dilemma. For sufficiently low costs (i.e., c ∈ (0, c̄∗ζ)) the proportion of volunteers at the minimal rest point270

is strictly increasing in group size, so that the larger the group size the larger the proportion of volunteers271

in the population at equilibrium. For intermediate costs (i.e., c ∈ [c̄∗ζ , c̄
†
ζ)) the proportion of volunteers at272

the minimal rest point is strictly increasing with group size up to the critical group size (for group sizes273

n ∈ {ζ + 2, . . . , n̄ζ,c}) before falling to zero thereafter (for group sizes n > n̄ζ,c). It follows that, from the274

perspective of maximizing the proportion of volunteers at the minimal equilibrium, the optimal group size275

is either intermediate and equal to the critical group size (for intermediate costs) or infinite (for low costs).276
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Figure 5: Proportion of volunteers pζ,c(n) for ζ ∈ {1, 2, 3, 4}, c ∈ {0.01, 0.02, . . . , 0.5}, and n ∈
{ζ + 2, . . . , 30}. The maximum and limit critical costs, c̄†ζ and c̄∗ζ , are shown respectively as red solid and
red dashed lines. As proven in Proposition 1, for costs between these two critical costs, the proportion
of volunteers is first strictly increasing and then drops to zero. For costs below c̄∗ζ (red dashed line), the
proportion of volunteers is strictly increasing.
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Figure 6: Location of the unstable rest point quζ,c(n), or equivalently, the size of the basin of attraction of
the stable rest point qsζ,c(n) for ζ ∈ {1, 2, 3, 4}, c ∈ {0.01, 0.02, . . . , 0.5}, and n ∈ {ζ + 2, . . . , 30}. The red
solid line represents the contour line at which quζ,c(n) = 1/2 holds. To the left of this line, qsζ,c(n) has the
largest basin of attraction. To the right of this line, full shirking has the largest basin of attraction. As
indicated in the main text, quζ,c(n) decreases with group size n for fixed threshold of shirkers ζ and cost of
volunteering c.

This said, note that Lemma 3 also demonstrates a negative group-size effect when looking into the277

comparative statics of the basin of attraction of the interior rest point qsζ,c(n) sustaining non-zero278

volunteering at equilibrium. Since the size of this basin of attraction is determined by the proportion of279

shirkers at the unstable rest point quζ,c(n) and this proportion decreases with group size, it follows that the280

basin of attraction of qsζ,c(n) decreases (and the basin of attraction of full shirking increases) with group281

size (see Fig. 6 for an illustration). Overall, the proportion of volunteers at equilibrium can increase with282

increasing group size, but such an increase is accompanied by a decrease in its basin of attraction.283

3.3 The effect of group size on the expected payoff284

Next, we address the effect of group size on the expected payoff. The following result shows that the285

group-size effect on the expected payoff at equilibrium is negative (see Appendix A.3 for a proof, and the286

right panel of Fig. 4 and Fig. 7 for an illustration).287

Proposition 2. For any ζ and c ∈ (0, c̄†ζ), the expected payoff uζ,c(n) is decreasing in group size n. More288

precisely:289
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Figure 7: Expected payoff uζ,c(n) for ζ ∈ {1, 2, 3, 4}, c ∈ {0.01, 0.02, . . . , 0.5}, and n ∈ {ζ + 2, . . . , 30}.
The maximum and limit critical costs, c̄†ζ and c̄∗ζ , are shown respectively as red solid and red dashed
lines. As proven in Proposition 2, for costs between these two critical costs, the expected payoff is strictly
decreasing and drops to zero for finite but sufficiently large group sizes. For costs below c̄∗ζ (red dashed
line), the expected payoff is strictly decreasing.
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1. If c ≤ c̄∗ζ , then uζ,c(n) is strictly decreasing in n.290

2. If c̄∗ζ < c < c̄†ζ , then uζ,c(n) is strictly decreasing in n for n ≤ n̄ζ,c and equal to zero for n > n̄ζ,c.291

This result contrasts with the positive group-size effect given in Proposition 1 when considering the292

proportion of volunteers. Together, Propositions 1 and 2 indicate that although there can be less shirking293

at equilibrium as the group size increases, the increased cooperation rate is not enough to increase (via a294

concomitant increase in the success probability, see Eq. (14)) the expected payoff, and hence the fitness,295

of individuals in the population.296

3.4 The effect of group size on the success probability297

Consider an increase in group size from n to n+ 1. If a stable interior rest point exists for both of these298

group sizes, which from Lemma 2 will be the case if and only if c < c̄ζ,n+1, Propositions 1 and 2 give299

definite answers to the question of how such an increase in group size affects the proportion of volunteers300

and expected payoff at the stable interior rest point: the proportion of volunteers increases, whereas301

the expected payoff decreases. In contrast, the effect of such an increase in group size on the success302

probability at a stable interior rest point cannot be unambiguously signed.303

To see why this is the case, it is instructive to use Eq. (14) to rewrite the success probability ϕζ,c(n) as304

ϕζ,c(n) = uζ,c(n) + pζ,c(n) · c. (22)

It is then apparent that the group size effect on the success probability is the sum of two effects pointing305

in opposite directions: an increase in group size from n to n+1 reduces the expected payoff uζ,c(n), but at306

the same time increases the proportion of volunteers pζ,c(n). Whether the sum of these two effects results307

in an increase or a decrease in the success probability depends on their relative strength. In principle, it308

could be possible that one of the two effects is always stronger than the other, thereby allowing us to sign309

the group size effect on the success probability. However, the following proposition shows that this is not310

so by demonstrating that whether an increase in group size results in an increase or a decrease of the311

success probability depends on the cost parameter (the proof is in Appendix A.4).312

Proposition 3. Suppose c < c̄ζ,n+1 holds. Then the success probabilities for group size n and n + 1313

satisfy:314

1. ϕζ,c(n+ 1) < ϕζ,c(n) for cost c sufficiently close to c̄ζ,n+1.315

2. ϕζ,c(n+ 1) > ϕζ,c(n) for cost c sufficiently close to zero.316

Proposition 3 indicates a negative (resp. positive) group size effect on the success probability for relative317

large (resp. small) costs. We can offer some intuition for the first of these results: When costs are close to318

but below c̄ζ,n+1, then (as can be seen from Fig. 3) the positive group-size effect on the proportion of319

volunteers at the stable interior rest point must be very small, implying that the change in the second term320

on the right side of Eq. (22) is very small, too. At the same time, when the increase in the proportion321

of volunteers is very small, then an increase in group size will have a significant negative effect on the322

expected payoff. Hence, the overall effect on the success probability must be positive. No such simple323

16



Figure 8: Success probability as a function of group size. Left: success probability ϕζ,c for ζ = 1, three
different values of cost c, and n ∈ {3, . . . , 10}. For this range of group sizes, ϕ1,c is strictly increasing for
c = 0.305, unimodal (with a local maximum at n = 6) for c = 0.3075, and strictly decreasing for c = 0.31.
Right : success probability ϕζ,c(n) for ζ ∈ {1, 2, 3, 4, 5}, c = 0.2, and n ∈ {ζ + 2, . . . , 30}. For ζ = 5, the
success probability falls to zero at the critical group size n̄5,0.2 = 22.

intuition is available for the second result. Indeed, the formal proof shows that the result hinges crucially324

on the relative rate at which the proportions of shirkers at the stable interior rest points for group sizes n325

and n+ 1 converge to zero when the cost approaches zero.326

The left panel of Fig. 8 illustrates Proposition 3 by considering three different costs. For the smallest327

of these (c = 0.305), the success probability for ζ = 1 increases with group size for all group sizes in328

{3, . . . , 10}, whereas for the largest of these (c = 0.31) the success probability decreases with group size.329

These cost levels are thus sufficiently small (resp. sufficiently large) for the results in Proposition 3 to be330

applicable. This is not the case for the intermediate cost level (c = 0.3075) for which the left panel of Fig.331

8 illustrates that there are cases, not covered by Proposition 3, in which the success probability at an332

interior stable rest point can be first increasing and then decreasing.333

We note that the success probability is high and does not change very much with group size for the three334

cost parameters considered in the left panel of Fig. 8,. The right panel of Fig. 8 illustrates a similar335

behavior of the success probability for low values of the shirker threshold (ζ ∈ {1, 2, 3}), whereas for336

higher values (ζ ∈ {4, 5}) there is a more pronounced effect of group size on the shirking probability. Fig.337

9 illustrates the dependence of the success probability on the cost of volunteering and the group size for338

ζ ≤ 4 and suggests that, in most cases, the success probability remains high and almost unchanged across339

group sizes. A similar effect can be seen in Fig. 7, which illustrates the dependency of the expected payoff340

on group size. This prompts us to look into the limits of these two quantities and of the volunteering341

probability when the group size tends to infinity. We do so in the following section.342
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Figure 9: Success probability ϕζ,c(n) for ζ ∈ {1, 2, 3, 4}, c ∈ {0.01, 0.02, . . . , 0.5}, and n ∈ {ζ + 2, . . . , 30}.
The maximum and limit critical costs, c̄†ζ and c̄∗ζ , are shown respectively as red solid and red dashed lines.
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3.5 The limit of infinitely large groups343

From the results in Propositions 1 and 2 it is clear that the limits344

p∗ζ,c = lim
n→∞

pζ,c(n),

u∗
ζ,c = lim

n→∞
uζ,c(n)

are well defined. Furthermore, it follows from Eq. (22) that345

ϕ∗
ζ,c = lim

n→∞
ϕζ,c(n)

is given by346

ϕ∗
ζ,c = u∗

ζ,c + p∗ζ,c · c. (23)

and thus also well-defined. In the following, we will determine the above three limits for the case where347

c < c̄∗ζ (as for c > c̄∗ζ all limits are equal to zero and the knife-edge case c = c̄∗ζ requires a case distinction348

without yielding additional insights).349

We begin by observing that Lemma 1.3 implies qζ,c(n) < ζ/(n− 1) for all n. It is then immediate that350

q∗ζ,c = limn→∞ qζ,c(n) = 0 holds. Using Eq. (11) we thus obtain p∗ζ,c = 1, i.e., the proportion of volunteers351

in the minimal equilibrium converges to one. From Eq. (23) this in turn implies u∗
ζ,c = ϕ∗

ζ,c − c, i.e., in352

the limit, the expected payoff differs from the success probability by the cost.353

It remains to determine the limit of the success probability ϕ∗
ζ,c. Even though the proportion of contributors354

converges to one, this limit is smaller than one. The reason is that the speed of convergence of qζ,c(n) to355

zero is sufficiently slow to ensure that the expected number of shirkers356

µζ,c(n) = n · qζ,c(n) (24)

converges to a strictly positive limit. Indeed, we have (the proof is in Appendix A.5):357

Lemma 4. Let c < c̄∗ζ . Then358

µ∗
ζ,c = lim

n→∞
µζ,c(n)

is given by the unique solutions λ to359

ρζ(λ) = c, (25)

in the interval (0, ζ), where ρk(λ) denotes the probability mass function of a Poisson distribution with360

parameter λ (see Eq. (17)).361

Taking into account that limn→∞ qζ,c(n) = 0 implies that the expected number of shirkers (from the362

perspective of an outside observer) and other shirkers (from the perspective of a focal player) in a group363

coincide in the limit, Eq. (25) is the natural counterpart to the pivotality condition (8) when the number364

of shirkers among co-players follows a Poisson distribution with mean value λ, as it is the case in the limit365

for n → ∞. Further, just as Lemma 1 identifies the unique solution to the pivotality condition (8) in the366
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interval (0, ζ/(n− 1)) as the (non-trivial) minimal rest point, Lemma 4 indicates that the limit value µ∗
ζ,c367

of the expected number of other shirkers in a group is the unique solution to Eq. (25) in the interval368

(0, ζ). See Fig. 10 for an illustration of the determination of µ∗
ζ,c and of the following proposition, which369

completes our characterization of the limit (the proof is in Appendix A.5).370

Proposition 4. Let c < c̄∗ζ . Then,371

p∗ζ,c = 1, ϕ∗
ζ,c = Pζ(µ

∗
ζ,c) > c, u∗

ζ,c = ϕ∗
ζ,c − c > 0, (26)

where372

Pk(λ) =

k∑
ℓ=0

ρℓ(λ), k = 0, 1, . . .

is the cumulative distribution function of a Poisson distribution with parameter λ.373

Proposition 4 demonstrates that, for sufficiently low costs of volunteering, the proportion of volunteers374

at the minimal rest point converges to one as the group size tends to infinity. In such a limit, both the375

success probability and the expected payoff at equilibrium are positive values that, as illustrated in Fig.376

10, can be relatively large for small values of the threshold number of shirkers ζ. In particular, even377

though the expected payoff at the minimal rest point decreases with group size (as demonstrated in378

Proposition 2), the expected payoff can still be substantially larger than the expected payoff at the full379

shirking equilibrium (which is zero). Likewise, the probability that collective action is successful can be380

relatively high. For instance, for a cost of volunteering c = 0.1 (so that the cost is equal to one-tenth of381

the benefit), the limiting success probabilities ϕ∗
ζ,0.1 for ζ ∈ {1, 2, 3, 4} are always greater than 90% and382

given by ϕ∗
1,0.1 ≈ 0.994, ϕ∗

2,0.1 ≈ 0.976, ϕ∗
3,0.1 ≈ 0.957, and ϕ∗

4,0.1 ≈ 0.937. This said, note that a similar383

caveat concerning equilibrium selection as the one we pointed out for finite group sizes applies in the limit384

of infinitely large group sizes. In this case, it can be shown (by similar arguments demonstrating that385

p∗ζ,c = 1 holds) that the size of the basin of attraction of the volunteering equilibrium qsζ,c(n) shrinks to386

zero.387

4 Discussion388

When the cost of volunteering is sufficiently small, the evolutionary dynamics of the shirker’s dilemma389

are characterized by two stable equilibria: a polymorphic equilibrium sustaining some cooperation (or a390

“volunteering” equilibrium) and a monomorphic equilibrium where everybody shirks (or a “full-shirking”391

equilibrium). We have investigated the group-size effects on the volunteering equilibrium and on a set of392

quantities related to it, namely (i) the proportion of volunteers, (ii) the probability that the public good393

is provided (or that the collective action is successful), and (iii) the expected payoff at such equilibrium,394

together with (iv) the size of the basin of attraction of the volunteering equilibrium. Our analysis reveals395

non-trivial comparative statics. On the one hand, we have found that, for all thresholds ζ ≥ 1 and396

sufficiently low costs, the proportion of volunteers at the volunteering equilibrium increases with group397

size, and converges to one in the limit of large group sizes. We also found that the probability that the398

public good is provided at equilibrium can increase with group size and converges to a positive value. On399

the other hand, the expected payoff, although positive, decreases with group size. Moreover, the basin400
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Figure 10: Illustration of the limit results in Lemma 4 and Proposition 4. Top left: The limit of the
expected number of shirkers µ∗

ζ,c is given by the smaller of the two solutions to the pivotality condition
ρζ(λ) = c. The success probability ϕ∗

ζ,c is the probability Pζ(µ
∗
ζ,c) that there are at most ζ shirkers given

that the number of shirkers follows a Poisson distribution with expected value µ∗
ζ,c. The expected payoff

u∗
ζ,c differs from µ∗

ζ,c by the cost c. Here, ζ = 2 and c = 0.2. Top right, bottom left, and bottom right:
Limit proportion of volunteers, p∗ζ,c, expected payoff u∗

ζ,c, and success probability ϕ∗
ζ,c as functions of cost

c, for ζ ∈ {1, 2, 3, 4}.
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of attraction of the volunteering equilibrium also decreases with group size and converges to zero in the401

limit of infinitely large group sizes. These findings are in contrast to those of the volunteer’s dilemma402

(Diekmann, 1985) and its generalization to threshold games in which a minimal number θ of ‘volunteers’403

are needed (Palfrey and Rosenthal, 1984). For these games, both the proportion of volunteers and the404

overall probability that the public good is provided at equilibrium decrease with group size n > θ (Nöldeke405

and Peña, 2020). In the limit, the corresponding “volunteering” equilibrium of the volunteer’s dilemma406

tends to zero, and its basin of attraction tends to one. This result is the mirror image of what happens in407

the shirker’s dilemma analyzed in this paper.408

We motivated the shirker’s dilemma in the Introduction with the examples of reproductive differentiation409

in Dictyostelium discoideum and the punishment of free-riders in multi-player social dilemmas. Another410

example is the sentinel behavior of Arabian babblers (Argya squamiceps): a territorial, cooperatively411

breeding species of songbirds (Zahavi, 1990) living in arid areas along the Great Rift Valley. During the412

day, group members take turns as sentinels on treetops, while the other group members forage on the413

ground or on low branches. When a sentinel spots an approaching raptor, it emits an alarm call. Foragers414

then have two options. First, they can flee to shelter inside a thicket, within which they are temporarily415

protected from the raptor but unable to follow its moves. Alternatively, they can fly up and join the416

sentinel on treetops in calling toward the raptor. The latter is the typical choice of foragers, constituting417

more than 80% of foragers’ reactions (Ostreiher and Heifetz, 2020). Moreover, even lone Arabian babblers418

devoid of territory (i.e., “floaters”) engage in calling from treetops towards raptors when they spot them419

(Ostreiher and Heifetz, 2017). This signal is costly in terms of both the energy expended on calling and420

the fatal risk in case they temporarily lose track of the maneuvering raptor. The raptor, on its part,421

should decide whether to continue hovering above the group until one of its members becomes less vigilant422

or, alternatively, to move on in search of other prey. Hiding group members are the least vigilant when423

they emerge out of the thicket, so moving on is better for the raptor than lurking for hiding birds only if424

the number of hiding birds (i.e., the number of “shirkers”) is small enough. Dissuading the raptor from425

attack is a public good enjoyed by all group members. This situation resembles more a shirker’s dilemma426

than a volunteer’s dilemma because the predator’s decision to hang around or to move away is likely to427

depend on the absolute number of non-vigilant individuals that it spots (i.e., the “shirkers”), rather than428

on the absolute number of vigilant individuals (i.e., the “volunteers”) that it is unlikely to catch. The fit429

of this example with the shirker’s dilemma model is not perfect, however, because if the public good is not430

provided and the raptor attacks the group, the shirker who ran to shelter and then comes out of it first is431

most likely to be targeted by the raptor, and thus bears a higher cost than the other group members, and432

in particular higher than those who joined the sentinel on treetops and did not shirk.433

For another related example of a shirker’s dilemma, consider the mobbing of terrestrial predators (such as434

snakes) by groups of birds. When one group member reveals a snake dug in the sand and lurking for prey,435

that bird emits an alarm call, approaches the snake, and engages in bodily displays that make the bird436

look as big as possible. Noticing this, all or most group members then follow suit. In most cases, the437

primary and most important benefit of such mobbing is that it causes the predator to recognize that it has438

been detected, and to leave the location (Caro, 2005). Here, too, as in the case of a raptor approaching439

a group of Arabian babblers, the predator presumably moves away when it perceives that most of its440

potential prey are vigilant and that its outside options elsewhere might be more attractive.441

The simple model we explored in this paper is a benchmark for more elaborate, relevant models. For442

instance, we modeled interactions in a well-mixed population and hence among unrelated individuals.443
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It would be of interest to see if our predictions are still supported when moving to spatially or family-444

structured populations where interactants are related, and where relatedness can be a function of group445

size (Lehmann and Rousset, 2010; Peña et al., 2015). Another dimension for possible extensions arises by446

considering games with continuous levels of effort and smooth benefits, rather than the binary-choice game447

with sharp thresholds that we analyzed in this paper. The pure equilibria of such continuous-action games448

do not predict the independent randomization characteristic of mixed-strategy equilibria of binary-action449

games, which received only partial empirical support in the context of the sentinel behavior of Arabian450

babblers (Heifetz et al., 2021). Further, such pure equilibria in continuous action games are not prone to451

the well-known peculiarity of mixed-strategy equilibria that individuals with higher costs or lower benefits452

cooperate with a higher probability at equilibrium (Diekmann, 1994). Considering continuous-action453

models would also allow us to explore if our result that shirking decreases with group size holds more454

generally or is a peculiarity of the binary-action models we have used here.455
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A Proofs463

A.1 Proof of Lemma 2464

The equation πζ,n+1(q) = πζ,n(q) has a unique solution in the interval (0, 1), given by q = ζ/n. From465

the unimodality properties of the pivot probability πζ,n(q) listed in Section 2.2, ζ/(n − 1) maximizes466

πζ,n(q) over q ∈ (0, 1). Thus, recalling the definition of the critical cost c̄ζ,n given in Eq. (9), we have467

c̄ζ,n = πζ,n (ζ/(n− 1)) > πζ,n (ζ/n) = πζ,n+1 (ζ/n) = c̄ζ,n+1. This proves that c̄ζ,n is strictly decreasing468

in n and thus maximized at the smallest possible value of n, which is n = ζ + 2. After setting n = ζ + 2469

in (9) and simplifying this yields (15).470

To prove the limit result, setting m = n− 1 in (7) and (9) and taking the limit we obtain471

c̄∗ζ = lim
m→∞

(
m

ζ

)(
ζ

m

)ζ (
1− ζ

m

)m−ζ

,

so that (16) follows from the Poisson approximation to the binomial distribution.472

Finally, to prove that c̄†ζ and c̄∗ζ are decreasing in ζ, note that we can write c̄†ζ = 1/ (1 + 1/ζ)
ζ
and473

c̄∗ζ+1/c̄
∗
ζ = (1/e) (1 + 1/ζ)

ζ
. The function (1 + 1/x)x increases with x for x > 0 (see, e.g., Hardy et al.474

1952, Theorem 140) and its limit as x approaches infinity is e. Hence, c̄†ζ increases with ζ and c̄∗ζ+1/c̄
∗
ζ < 1475
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holds for all ζ ≥ 1.476

A.2 Proof of Lemma 3477

For c < c̄ζ,n+1 it follows from Lemma 1.3 that for group size n+1 the replicator dynamics has two interior478

rest points satisfying qsζ,c(n+ 1) < ζ/n < quζ,c(n+ 1). From Lemma 2 the inequality c < c̄ζ,n+1 implies479

c < c̄ζ,n. Hence, the replicator dynamics also has two interior rest points for group size n. Applying Lemma480

1.3 again these rest points satisfy qsζ,c(n) < ζ/(n− 1) < quζ,c(n). From Proposition 1 in Peña and Nöldeke,481

2018 we have qsζ,c(n+ 1) < qsζ,c(n) and quζ,c(n+ 1) < quζ,c(n). At the beginning of the proof of Lemma 2482

we have established πζ,n (ζ/n) = c̄ζ,n+1. As πζ,n (q) is increasing in q for q < ζ/(n − 1) and c < c̄ζ,n+1483

holds, the pivotality condition (8) implies the remaining inequality in (20), namely qsζ,c(n) < ζ/n.484

A.3 Proof of Proposition 2485

It is immediate from Eq. (19) that uζ,c(n) = 0 holds if n > n̄ζ,c. Further, it is also immediate from Eq.486

(19) that n = n̄ζ,c implies uζ,c(n) > uζ,c(n + 1) = 0. To prove the proposition it remains to consider487

the case qζ,c(n) = qsζ,c(n) and qζ,c(n + 1) = qsζ,c(n + 1). We may therefore assume throughout the488

following that qζ,c(n) and qζ,c(n + 1) satisfy the pivotality condition (8) and, from Lemma 3, satisfy489

0 < qζ,c(n+ 1) < qζ,c(n) < ζ/n.490

Showing that uζ,c(n+ 1) < uζ,c(n) holds is equivalent to showing that 1− uζ,c(n+ 1) > 1− uζ,c(n) holds.491

From (2) and (13) this inequality is in turn equivalent to492

n∑
k=ζ

(
n

k

)
(qζ,c(n+ 1))

k
(1− qζ,c(n+ 1))

n−k
>

n−1∑
k=ζ

(
n− 1

k

)
(qζ,c(n))

k
(1− qζ,c(n))

n−1−k
. (27)

Begin by noting that (27) holds if the inequality493 (
n

k

)
(qζ,c(n+ 1))

k
(1− qζ,c(n+ 1))

n−k ≥
(
n− 1

k

)
(qζ,c(n))

k
(1− qζ,c(n))

n−1−k
(28)

holds for all k ∈ {ζ, . . . , n− 1}, This is so because the last summand on the left side of (27), that is,494

(qζ,c(n+ 1))
n
, is strictly positive.495

Let496

L(k) =

(
n−1
k

)
(qζ,c(n))

k
(1− qζ,c(n))

n−1−k(
n
k

)
(qζ,c(n+ 1))

k
(1− qζ,c(n+ 1))

n−k
(29)

denote the likelihood ratio for having, among the co-players of a focal individual, exactly k shirkers at the497

minimal rest point with group sizes n and n+ 1. Obviously, (28) is equivalent to the claim that L(k) ≤ 1498

holds for k ∈ {ζ, . . . , n− 1}.499

Because both qζ,c(n) and qζ,c(n+1) satisfy the pivotality condition (8), we know that for k = ζ the terms500

on the left side and the right side of (28) are both equal to c. This shows L(ζ) = 1.501
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From (29) we have L(k + 1) = r(k)L(k), where502

r(k) =

(
n− 1− k

n− k

)
·
(

qζ,c(n)

qζ,c(n+ 1)

)
·
(
1− qζ,c(n+ 1)

1− qζ,c(n)

)
is strictly decreasing in k. Hence, provided that we can establish L(ζ + 1) ≤ 1 or, equivalently (from503

L(ζ) = 1), r(ζ) ≤ 1, our proof is finished (as r(ζ) ≤ 1 implies r(k) < 1 for all k > ζ, and thus L(k) < 1504

for all k > ζ + 1).505

We first demonstrate r(ζ) ≤ 1 for cost sufficiently close to (but below) the threshold c̄ζ,n+1 at which the506

stable interior rest point qsζ,c(n+ 1) disappears. Straightforward calculations (see the beginning of the507

Proof of Lemma 2) show that508

πζ,n

(
ζ

n

)
= πζ,n+1

(
ζ

n

)
= c̄ζ,n+1.

It then follows from Lemma 3 that both both qζ,c(n+ 1) and qζ,c(n) converge to ζ/n as c converges to509

c̄ζ,n+1 from below. When c converges to c̄ζ,n+1 from below, r(ζ) thus converges to (n− 1− ζ)/(n− ζ) < 1,510

implying that r(ζ) < 1 holds for all sufficiently high c < c̄ζ,n+1.511

Now suppose there exists some c ∈ (0, c̄ζ,n+1) such that L(ζ + 1) > 1 holds. As qζ,c(n) and qζ,c(n+ 1)512

are both continuous in c and the likelihood ratio (29) is also continuous in these probabilities it follows513

that there exists c ∈ (0, c̄ζ,n+1) such that L(ζ + 1) = 1 holds. Fix such c. From L(ζ) = 1, we then have514

r(ζ) = 1. Because r(k) is strictly decreasing in k, we then have r(k) > 1 for all k < ζ and r(k) < 1 for all515

k > ζ. This implies L(k) < 1 for all k > ζ + 1 and also L(k) < 1 for all k < ζ. But this is impossible516

because the probabilities for obtaining k = 0, . . . n+ 1 shirkers need to sum to one for both group sizes.517

We conclude that L(ζ + 1) ≤ 1 holds for all c ∈ (0, c̄ζ,n+1), thus finishing the proof.518

A.4 Proof of Proposition 3519

We have already noted in the proof of Proposition 2 that qζ,c(n+1) and qζ,c(n) both converge to ζ/n as c520

converges to c̄ζ,n+1 from below. From (12) the corresponding limit values of the success probabilities ϕζ,c(n)521

and ϕζ,c(n+ 1) when c → c̄ζ,n+1 are given by Πζ,n(ζ/n) for group size n and by Πζ,n+1(ζ/n) for group522

size n+1. Observing that Πζ,n+1(q) < Πζ,n(q) holds for all q ∈ (0, 1), it follows that ϕζ,c(n+1) < ϕζ,c(n)523

holds for c sufficiently close to but smaller than c̄ζ,n+1.524

The argument demonstrating the inequality ϕζ,c(n+ 1) > ϕζ,c(n) for c sufficiently close to 0 requires a525

detailed investigation of the limit behavior of these success probabilities when c → 0. We thus proceed in526

a number of steps.527

First, in the limit when c tends to zero both qζ,c(n) and qζ,c(n+ 1) converge to zero, i.e.,528

lim
c→0

qζ,c(n) = lim
c→0

qζ,c(n+ 1) = 0. (30)

This is immediate from the properties of the pivot probabilities we noted in Section 2.3 and the fact (cf.529

Eq. (20) in the statement of Lemma 3) that the stable interior rest points qζ,c(n) and qζ,c(n+ 1) lie in530

(0, ζ/n) for all c ∈ (0, c̄ζ,n+1) (and thus cannot converge to 1).531
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Second, it is immediate from (30) and the fact that the success probability is equal to 1 when the532

proportion of shirkers in the population is zero that533

lim
c→0

ϕζ,c(n+ 1) = lim
c→0

ϕζ,c(n) = 1. (31)

Hence, a sufficient condition for the inequality ϕζ,c(n+ 1) > ϕζ,c(n) to hold for sufficiently small c is that534

the inequality535

dϕζ,c(n+ 1)

dc
>

dϕζ,c(n)

dc
(32)

holds for all sufficiently small c.536

Third, using (12) and the chain rule, we have537

dϕζ,c(n+ 1)

dc
=

dΠζ,n+1(qζ,c(n+ 1))

dq

dqζ,c(n+ 1)

dc
. (33)

Either by direct calculation or by applying the derivative rule for polynomials in Bernstein form (see, e.g.,538

Peña et al. 2014, Eq. 5), we find539

dΠζ,n+1(qζ,c(n+ 1))

dq
= −(n+ 1)πζ,n+1(qζ,c(n+ 1)) = −(n+ 1)c, (34)

where the last equality uses the pivotality condition (8). Using (8) once more, we can apply the implicit540

function theorem to determine541

dqζ,c(n+ 1)

dc
=

1
dπζ,n+1(qζ,c(n+1))

dq

. (35)

Combining these calculations by substituting (34) and (35) into (33), we have542

dϕζ,c(n+ 1)

dc
= − (n+ 1)c

dπζ,n+1(qζ,c(n+1))
dq

. (36)

Similarly, we obtain543

dϕζ,c(n)

dc
= − nc

dπζ,n(qζ,c(n))
dq

. (37)

Substituting (36) and (37) into (32), and rearranging, it follows that condition (32) is equivalent to544 (
n+ 1

n

)
dπζ,n(qζ,c(n))

dq
<

dπζ,n+1(qζ,c(n+ 1))

dq
. (38)

Fourth, we can again use either direct calculation or apply the derivative rule for polynomials in Bernstein545

form to the definition of the pivot probabilities in (7) to determine the two derivatives appearing in (38).546
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This yields547

dπζ,n+1(qζ,c(n+ 1))

dq
= n

[(
n− 1

ζ − 1

)
qζ,c(n+ 1)ζ−1(1− qζ,c(n+ 1))n−ζ

−
(
n− 1

ζ

)
qζ,c(n+ 1)ζ(1− qζ,c(n+ 1))n−1−ζ

]
,

dπζ,n(qζ,c(n))

dq
= (n− 1)

[(
n− 2

ζ − 1

)
qζ,c(n)

ζ−1(1− qζ,c(n))
n−1−ζ

−
(
n− 2

ζ

)
qζ,c(n)

ζ(1− qζ,c(n))
n−2−ζ

]
.

Using these expressions, we can rewrite (38) as548

K(c) >
n+ 1

n
, (39)

where549

K(c) =
n
[(

n−1
ζ−1

)
qζ,c(n+ 1)ζ−1(1− qζ,c(n+ 1))n−ζ −

(
n−1
ζ

)
qζ,c(n+ 1)ζ(1− qζ,c(n+ 1))n−1−ζ

]
(n− 1)

[(
n−2
ζ−1

)
qζ,c(n)ζ−1(1− qζ,c(n))n−1−ζ −

(
n−2
ζ

)
qζ,c(n)ζ(1− qζ,c(n))n−2−ζ

] . (40)

Fifth, we have550

lim
c→0

qζ,c(n+ 1)

qζ,c(n)
=

(
n− ζ

n

)1/ζ

. (41)

To see this, observe that from the pivotality condition (8) we have πζ,n+1(qζ,c(n+ 1)) = πζ,n(qζ,c(n)) for551

all c ∈ (0, c̄ζ,n+1). Substituting from the definition of the pivot probabilities in (7) it follows that552

(
n

n− ζ

)(
qζ,c(n+ 1)

qζ,c(n)

)ζ (
(1− qζ,c(n+ 1))n−ζ

(1− qζ,c(n))n−1−ζ

)
= 1 (42)

holds for all c ∈ (0, c̄ζ,n+1). Clearly, the equality in (42) is preserved in the limit when c → 0. Using (30)553

to conclude that the third ratio on the left side of (42) converges to 1, we thus have554

(
n

n− ζ

)
lim
c→0

(
qζ,c(n+ 1)

qζ,c(n)

)ζ

= 1,

implying (41).555

Sixth, making use of (30) and (41) it is straightforward to show that556

lim
c→0

K(c) =

(
n

n− 1

)(
n− 1

n− ζ

)(
n− ζ

n

) ζ−1
ζ

=

(
n

n− ζ

) 1
ζ

,

where K(c) had been defined in (40). It follows that (39) holds for all sufficiently small c if557

(
n

n− ζ

) 1
ζ

>
n+ 1

n
. (43)

Observe that for ζ = 1 the inequality in (43) reduces to n2 > (n+ 1)(n− 1), which holds for all n.558
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Seventh, to finish the proof it remains to establish (43) for 1 < ζ < n− 1. As we have already seen that559

(43) holds for ζ = 1 it suffices to argue that for any given n ≥ 3 the left side of (43) is increasing in ζ over560

the relevant range. Using the change of variable x = (n− ζ)/ζ this follows from the fact that (1+ 1/x)x+1
561

is decreasing in x for x > 0 (see, e.g., Hardy et al. 1952, last line on page 102).562

A.5 Proofs of Lemma 4 and Proposition 4563

Let564

λζ,c(n) = (n− 1) · qζ,c(n),

and565

λ∗
ζ,c = lim

n→∞
λζ,c(n).

Taking into account that Lemma 1.3 implies λζ,c(n) < ζ for all n, arguments that are otherwise identical to566

the ones in the proof of Lemma 3 in Nöldeke and Peña, 2020 establish Lemma 4 provided that λ∗
ζ,c = µ∗

ζ,c567

holds. As both µζ,c(n)− λζ,c(n) = qζ,c(n) and limn→∞ qζ,c(n) = 0 hold, this is the case.568

We have already noted in the text that the equalities p∗ζ,c = 1 and u∗
ζ,c = ϕζ,c(n)− c in the statement of569

Proposition 4 follow from Lemma 1.3. From a generalization of the classical Poisson approximation (see,570

e.g., Billingsley 1995, Theorem 23.2) µζ,c(n) → µ∗
ζ,c implies Πζ,n (qζ,c(n)) → Pζ(µ

∗
ζ,c). From (12) and the571

definition of ϕ∗
ζ,c this implies ϕ∗

ζ,c = Pζ(µ
∗
ζ,c), establishing the remaining equality in (26). An analogous572

argument, using the equality λ∗
ζ,c = µ∗

ζ,c established in the above proof of Lemma 4 and Eq.(13), shows573

that u∗
ζ,c = Pζ−1(µ

∗
ζ,c) > 0, where the inequality follows from µ∗

ζ,c > 0. The proof is finished by observing574

that the inequality ϕ∗
ζ,c > c then follows from u∗

ζ,c = ϕ∗
ζ,c − c.575
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Hardy, G.H., Littlewood, J.E., Pólya, G., Pólya, G., et al., 1952. Inequalities. Cambridge University Press.618

Heifetz, A., Heller, R., Ostreiher, R., 2021. Do Arabian babblers play mixed strategies in a “volunteer’s619

dilemma”? Journal of Behavioral and Experimental Economics 91, 101661. doi:10.1016/j.socec.620

2021.101661.621

Hofbauer, J., Sigmund, K., 1998. Evolutionary Games and Population Dynamics. Cambridge University622

Press.623

Isaac, R.M., Walker, J.M., Williams, A.W., 1994. Group size and the voluntary provision of public goods:624

Experimental evidence utilizing large groups. Journal of Public Economics 54, 1–36. URL: https:625

//www.sciencedirect.com/science/article/pii/004727279490068X, doi:10.1016/0047-2727(94)626

90068-X.627

29

https://www.sciencedirect.com/science/article/pii/S0022519388802194
https://www.sciencedirect.com/science/article/pii/S0022519388802194
https://www.sciencedirect.com/science/article/pii/S0022519388802194
http://dx.doi.org/10.1016/S0022-5193(88)80219-4
https://doi.org/10.1007/BF02460000
http://dx.doi.org/10.1007/BF02460000
https://doi.org/10.1007/s11538-018-00545-1
http://dx.doi.org/10.1007/s11538-018-00545-1
https://doi.org/10.1007/s001820400183
http://dx.doi.org/10.1007/s001820400183
https://www.cambridge.org/core/article/provision-of-collective-goods-as-a-function-of-group-size/27838ADAE1E2C54F2A038687B53AFBF4
https://www.cambridge.org/core/article/provision-of-collective-goods-as-a-function-of-group-size/27838ADAE1E2C54F2A038687B53AFBF4
https://www.cambridge.org/core/article/provision-of-collective-goods-as-a-function-of-group-size/27838ADAE1E2C54F2A038687B53AFBF4
https://www.cambridge.org/core/article/provision-of-collective-goods-as-a-function-of-group-size/27838ADAE1E2C54F2A038687B53AFBF4
https://www.cambridge.org/core/article/provision-of-collective-goods-as-a-function-of-group-size/27838ADAE1E2C54F2A038687B53AFBF4
http://dx.doi.org/10.2307/1959515
https://www.sciencedirect.com/science/article/pii/S016517651830140X
https://www.sciencedirect.com/science/article/pii/S016517651830140X
https://www.sciencedirect.com/science/article/pii/S016517651830140X
http://dx.doi.org/10.1016/j.econlet.2018.04.011
https://www.jstor.org/stable/174243
https://www.jstor.org/stable/174243
https://www.jstor.org/stable/174243
https://www.cambridge.org/core/article/collective-action-and-the-group-size-paradox/50A8854104F1667DA7C5B0B1704FD3A7
https://www.cambridge.org/core/article/collective-action-and-the-group-size-paradox/50A8854104F1667DA7C5B0B1704FD3A7
https://www.cambridge.org/core/article/collective-action-and-the-group-size-paradox/50A8854104F1667DA7C5B0B1704FD3A7
http://dx.doi.org/10.1017/S0003055401003124
http://dx.doi.org/10.1017/S0003055401003124
http://dx.doi.org/10.1017/S0003055401003124
http://dx.doi.org/10.1016/j.socec.2021.101661
http://dx.doi.org/10.1016/j.socec.2021.101661
http://dx.doi.org/10.1016/j.socec.2021.101661
https://www.sciencedirect.com/science/article/pii/004727279490068X
https://www.sciencedirect.com/science/article/pii/004727279490068X
https://www.sciencedirect.com/science/article/pii/004727279490068X
http://dx.doi.org/10.1016/0047-2727(94)90068-X
http://dx.doi.org/10.1016/0047-2727(94)90068-X
http://dx.doi.org/10.1016/0047-2727(94)90068-X


Krause, J., Ruxton, G.D., 2002. Living in Groups. Oxford University Press.628

Lehmann, L., Rousset, F., 2010. How life history and demography promote or inhibit the evolution629

of helping behaviours. Philosophical Transactions of the Royal Society B: Biological Sciences 365,630

2599–2617. URL: https://doi.org/10.1098/rstb.2010.0138, doi:10.1098/rstb.2010.0138.631

MacNulty, D.R., Smith, D.W., Mech, L.D., Vucetich, J.A., Packer, C., 2012. Nonlinear effects of group632

size on the success of wolves hunting elk. Behav Ecol 23, 75–82. URL: https://doi.org/10.1093/633

beheco/arr159, doi:10.1093/beheco/arr159.634
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