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Abstract

The cost of germline maintenance gives rise to a trade-off between lowering the deleterious muta-

tion rate and investing in life history functions. Therefore, life history and the mutation rate evolve

jointly, but this coevolution is not well understood. We develop a mathematical model to analyse

the evolution of resource allocation traits affecting simultaneously life history and the deleterious

mutation rate. First, we show that the invasion fitness of such resource allocation traits can be

approximated by the basic reproductive number of the least-loaded class; the expected lifetime pro-

duction of offspring without deleterious mutations born to individuals without deleterious mutations.

Second, we apply the model to investigate (i) the joint evolution of reproductive effort and germline

maintenance and (ii) the joint evolution of age-at-maturity and germline maintenance. This analysis

provides two biological predictions. First, under higher exposure to environmental mutagens (e.g.

oxygen), selection favours higher allocation to germline maintenance at the expense of life history.

Second, when exposure to environmental mutagens is higher, life histories tend to be faster with

individuals having shorter life spans and smaller body sizes at maturity. Our results suggest that

mutation accumulation via the cost of germline maintenance is a major force shaping life-history

traits.

Keywords: life-history evolution, mutation accumulation, adaptive dynamics, cost of fidelity, mutation

rate evolution
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1 Introduction

Maintaining and accurately transmitting genetically encoded information is central for every living or-

ganism. Mutations induce errors in the processing of genetic information and their effects on fitness are

generally (mildly) deleterious (Eyre-Walker and Keightley, 2007). Therefore, it is likely that selection

primarily favours a reduction of the mutation rate of organisms (Sniegowski et al., 2000). Yet, investing

resources into germline maintenance is physiologically costly (Kirkwood, 1986; Maklakov and Immler,

2016; Monaghan and Metcalfe, 2019; Chen et al., 2020). Therefore, the balance between selection against

deleterious mutations driving for lower mutation rates and selection for reduced physiological cost in-

creasing mutation rates is expected to lead to a positive evolutionary equilibrium rate of mutation. This

argument has been formalised in a number of classical population genetic models assuming semelparous

reproduction (e.g. Kimura, 1967; Kondrashov, 1995; Dawson, 1998, 1999; Johnson, 1999b; André and

Godelle, 2006; Gervais and Roze, 2017) as well iteroparous reproduction (Lesaffre, 2021) to show that

evolution indeed favours an evolutionary stable non-zero mutation rate. These studies emphasise the

role of the physiological cost of germline fidelity in explaining the patterns of mutation rates but do

not connect the cost of germline fidelity explicitly to life-history evolution, which depends on underlying

physiological trade-offs.

Indeed, a central premise made in life-history theory is that life-history trade-offs are mediated through

the allocation of resources to different life-history functions, such as growth, reproduction, and mainte-

nance of soma, or information gathering and processing (Stearns, 1992; Roff, 2008). Since germline

maintenance takes a toll on available resources, mutation rate evolution and life-history evolution are

tied together through a resource allocation trade-off. This implies that the rate of deleterious mutations

should evolve jointly with life history and affects various life-history traits, such as reproductive effort,

age-at-maturity, adult body size, and expected lifespan. Yet the bulk of models about the evolution of

mutation rates, which often go under the heading of modifier models, consider physiologically neutral

mutation rate (e.g. Leigh, 1970; Gillespie, 1981; Holsinger and Feldman, 1983; Liberman and Feldman,

1986; Gerrish et al., 2007; Altenberg et al., 2017a; Baumdicker et al., 2020). And while the effect of

fixed mutation rate on life-history trade-offs has been studied before (e.g. Charlesworth, 1990; Dańko

et al., 2012), these models suggest that a relatively high level of mutation rates is needed for mutation

accumulation to alter life-history trade-offs. This led to the conclusion that mutation accumulation is a

minor force in shaping life-history traits (Dańko et al., 2012). But these studies view mutation rates as

fixed traits acting only as a hindrance to adaptive life-history evolution. Hence, no study has yet inves-

tigated the joint evolution of both life-history and deleterious mutation rates via allocation to germline

maintenance.

The aim of this paper is to start to fill this gap by formally extending evolutionary invasion analysis–

“ESS” theory–(e.g., Maynard Smith, 1982; Eshel and Feldman, 1984; Metz et al., 1992; Charlesworth,

1994), which has been routinely applied to life-history evolution (e.g., León, 1976; Michod, 1979; Schaf-
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fer, 1982; Iwasa and Roughgarden, 1984; Stearns, 1992; Perrin, 1992; Perrin and Sibly, 1993; Cichon and

Kozlowski, 2000; Iwasa, 2000; Day and Taylor, 2000), to the case where life-history trait(s) evolving by se-

lection also control the rate of deleterious mutations. This covers the situation where life-history resource

allocation schedules evolve on a background where deleterious mutation accumulation can occur. Our

formalisation thus aims to integrate both the standard theories of life-history evolution and deleterious

mutation rate accumulation.

The rest of this paper is organised into two parts. First, we characterise the invasion process of a

mutant life-history trait affecting the load of deleterious mutation accumulation in an age-structured pop-

ulation. We show that ascertaining the joint evolutionary stability of life-history schedules and mutation

rates of deleterious mutations is usually complicated, but under certain biologically feasible conditions; in

particular, when the zero mutation class (least-loaded class) dominates the population in frequency, evo-

lutionary stability can be ascertained from the basic reproductive number of the least-loaded class alone

(expected lifetime production of offspring with no mutations born to individuals with no mutations).

Second, we analyse and solve two concrete biological scenarios: (i) joint evolution between reproduc-

tive effort and germline maintenance, where individuals face a trade-off between allocating resources to

survival, reproduction and germline maintenance and (ii) joint evolution between age-at-maturity and

germline maintenance, where individuals face a trade-off between allocating resources to growth, repro-

duction and germline maintenance. These scenarios allow us to illustrate how our model can be applied

to analyse questions in life history and mutation rate evolution and provide predictions about how life

history and mutation rate evolve jointly. It also allows us to verify that the analysis based on the basic

reproductive number of the least-loaded class as an invasion fitness proxy is a useful approximation as

analytical predictions match closely with the results from individual-based stochastic simulations.

2 Model

2.1 Main biological assumptions

We consider a panmictic population of haploid individuals reproducing asexually. The population size is

assumed to be large enough to neglect the effect of genetic drift and is regulated by density-dependent

competition. Individuals in the population are structured into age classes and each individual undergoes

birth, possibly development, reproduction, and death. Age classes can be either continuous or discrete,

and in the discrete case, an individual in the age range [a − 1, a] for a = 1, 2, 3, ..., will, by convention,

belong to the a-th age class and so we begin counting discrete age classes with 1 (one of the two possible

conventions to count discrete age classes, Fig. 3.1 Case, 2000). An individual of age class a is characterised

by a type θ(a) = (u(a), nm(a)), which consists of two genetically determined components (see Table 1 for

a list of symbols and more formalities). The first component, u(a), is the individual’s life-history trait

expressed in age class a; namely, a resource allocation decision to different life-history functions (e.g.

growth, reproduction, or somatic maintenance, see e.g. Stearns, 1992; Perrin, 1992; Perrin and Sibly,
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1993; Day and Taylor, 2000). We denote by u = {u(a)}a∈T the whole life-history schedule or a path

over all possible age classes T an individual can be in (formally, u ∈ U[T], where U[T] is the set of all

admissible life-history schedules with domain T, which for for discrete age classes is T = {1, 2, .., T} and

for continuous age classes is T = [0, T ] when the maximum lifespan is T ). The second component, nm(a),

represents the number of deleterious germline mutations of an individual belonging to the a-th age class,

which, by definition, affects negatively viability traits (e.g. physiology, reproduction). Hence, nm(a) can

be thought of as the load of deleterious mutations as considered in classical population genetic models of

mutation accumulation (e.g., Kimura and Maruyama, 1966; Haigh, 1978; Dawson, 1999; Bürger, 2000),

but here extended to an age-structured model (see also Steinsaltz et al., 2005 for aged-structured mutation

accumulation model). As such, nm = {nm(a)}a∈T represents the profile of deleterious mutations across

the lifespan.

We envision that the genotype determining the type θ = {θ(a)}a∈T = (u, nm) of an individual

consists of two separate positions (or loci) that are necessarily linked under asexual reproduction, one

locus determining u and the other nm (see Fig. 1). The mutation rate at the life-history trait u locus is

assumed to be fixed and is thus exogenously given. However, this trait is assumed to control allocation

to germline maintenance and other life-history functions, and thus to control the mutation rate at the

locus where the nm deleterious mutations accumulate whose number are thus endogenously determined

(Fig. 1).

We assume that the effective number of births b(a) and the death rate d(a) of an individual of age a

can depend on both the number of deleterious mutations nm(a) at age a and the life-history schedule u.

The life history schedule u thus not only affects the vital rates, as usually assumed in life-history theory

but also the rate of deleterious mutation accumulation (see also Fig. 1). The vital rates may further

depend on properties of the population, such as age class densities and allele frequencies, but we leave

this dependence implicit. We note that when measured on an exponential scale, the death and mutation

rates define a survival probability exp(−d(a)) and an immutability probability exp(−µ(a)) (probability

that no mutations occur in an individual of age a). Note that for a discrete-time process, the birth

function b(a) gives the expected number of offspring produced by an individual of age a, while for a

continuous time process, b(a) is defined as the rate at which an individual produces a single offspring.

Finally, we make the following assumptions that are central to our analysis.

1. Mutations at the locus determining nm can only be deleterious or neutral. The effective birth rate

bi(a), survival probability exp(−di(a)), and immutability probability exp(−µi(a)) of an individual

at age a with nm(a) = i mutations are non-increasing functions of the number of mutations.

Formally, bi(a) ≥ bi+1(a), di(a) ≤ di+1(a), and µi(a) ≤ µi+1(a).

2. Deleterious mutations can only accumulate within an individual. There are no back mutations and

an individual with i mutations can only mutate towards having i+ 1 mutations.

These assumptions are standard in population genetics (e.g. Kimura, 1967; Leigh, 1970; Haigh, 1978;

Dawson, 1998; Johnson, 1999a; Gillespie, 2004) and we are here endorsing these assumptions in formal-
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ising selection at the life-history locus. Namely, the objective of our analysis is to develop a tractable

evolutionary invasion analysis to evaluate candidate evolutionary stable life-history trait u∗ ∈ U[T] that

will be favoured by long-term evolution.

2.2 Invasion analysis

For a moment let us ignore the the effect of deleterious mutations. Then, evolutionary invasion analysis

(e.g., Eshel and Feldman, 1984; Parker and Maynard Smith, 1990; Metz et al., 1992; Charlesworth, 1994;

Ferrière and Gatto, 1995; Eshel, 1996; Otto and Day, 2007; Mullon et al., 2016; Avila and Mullon,

2023) can be applied straightforwardly to our model as follows. Mutations at the life-history trait

are postulated to be rare so that one can focus on the invasion fitness ρ(u,v) of a mutant trait u

introduced in a population monomorphic for some resident life-history trait v and that has reached its

demographic equilibrium. The invasion fitness can be interpreted as the per capita number of mutant

copies produced per unit time by the mutant lineage descending from a single initial mutation when the

mutant reproductive process has reached a stationary state distribution (over ages and the number of

deleterious mutations) in a resident population and the mutant remains overall rare (i.e., the geometric

growth ratio of the mutant). To invade the population, the invasion fitness must exceed unity ρ(u,v) > 1;

otherwise, the mutant will go extinct with probability one in an (infinitely) large population (Harris, 1963;

Mode, 1971). A trait value u∗ will be called uninvadable if it is resistant to invasion by all trait values

in the trait space: ρ(u,u∗) ≤ 1 for all u ∈ U[T]. Hence, an uninvadable trait u∗ maximises the invasion

fitness of the mutant holding the resident at the uninvadable population state; namely, u∗ solves the

maximization problem: maxu∈U[T] ρ(u,u
∗), whereby u∗ defines a candidate endpoint of evolution.

To be a meaningful endpoint of evolution, an uninvadable trait needs to be an attractor of the

evolutionary dynamics and thus be convergence stable (Eshel and Motro, 1988; Geritz et al., 1998; Leimar,

2009a). When mutant and resident traits are sufficiently close to each other so that selection is weak,

mutants increasing invasion fitness will not only invade the resident population but also become fixed

in it (Eshel et al., 1997, a result applying to the present and more complicated demographic scenarios,

Rousset, 2004; Priklopil and Lehmann, 2021). Therefore, invasion fitness alone under weak phenotypic

deviations allows to determine whether gradual evolution under the constant influx of mutations will drive

a population towards the uninvadable population state, regardless of patterns of frequency-dependence.

An evolutionary invasion analysis thus generally consists of both using invasion fitness to (i) characterise

uninvadable trait values and (ii) determine whether these are attractors of the evolutionary dynamics,

thus allowing to make definite statements about joint evolutionary dynamics. Useful summaries of these

concepts can be found in Geritz et al. (1998); Leimar (2009b) and individual-based stochastic simulations

have repeatedly validated the conclusions of this approach in genetic explicit contexts (e.g., Mullon et al.,

2018; Mullon and Lehmann, 2019, see also Otto and Day, 2007; Dercole and Rinaldi, 2008 for textbook

discussions). This approach to characterise stable and attainable life histories has indeed been in use

more or less explicitly in standard life-history theory for decades and underlies most life-history evolution
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results (e.g., Hamilton, 1967; León, 1976; Michod, 1979; Schaffer, 1982; Iwasa and Roughgarden, 1984;

Perrin, 1992; Perrin and Sibly, 1993; Charlesworth, 1994; Day and Taylor, 2000; Cichon and Kozlowski,

2000; Iwasa, 2000; Irie and Iwasa, 2005; Rueffler et al., 2013; Metz et al., 2016; Avila et al., 2019).

We next push forward this approach into the realm where life-history evolution interacts with mutation

accumulation and thus relax the standard life-history theory assumption that the rate of deleterious

mutations is zero.

2.3 Invasion analysis with mutation accumulation

2.3.1 Mutation-selection balance in the resident population

Let us now consider that deleterious mutations can accumulate. We still assume that mutations at

the life-history locus are rare enough so that whenever a mutant trait u arises, it does so in a resident

population monomorphic for some resident life-history trait v. But owing to the occurrence of deleterious

mutations, the resident population will be polymorphic for the number of deleterious mutations in the

nm locus, and this polymorphism will depend on v. The resident population is then assumed to have

reached a mutation-selection equilibrium for deleterious mutations and the resident trait v thus determines

a resident probability distribution p(v) over the different number of deleterious mutations carried by

individuals across the different age-classes. This assumption is nothing else than the usual assumption of

the internal stability of the resident population used in invasion analysis (see e.g. Altenberg et al., 2017a;

Eshel and Feldman, 1984; Metz et al., 1992). Here, it entails that the resident population has reached an

equilibrium for both demographic and genetic processes.

In the absence of age classes, p(v) is the equilibrium probability distribution for the number of

deleterious mutations in standard selection-mutation balance models (see Bürger, 2000 for a general

treatment and where the sample space of p(v) reduces to N). For instance, when the number of novel

(deleterious) mutations follows a Poisson distribution with the mean rate µ and each additional mutation

decreases baseline fecundity by a constant multiplicative factor σ in a semelparous population, then p(v)

is Poisson distributed with mean µ/σ (Haigh, 1978, Bürger, 2000, p. 300). This holds in an age-structured

population across age classes under a certain but limited number of conditions (Steinsaltz et al., 2005).

More generally, p(v) will depend on the details of the model.

The key feature of the invasion process of a mutant u in a resident population v is that it depends

on which mutational background it arises, which in turn depends on the distribution p(v). Therefore

characterising the invasion fitness of a mutant is not straightforward (see Appendix A.1 for the details

of the invasion process with mutation accumulation). This is because under the assumptions about

the mutation process of our model, the invasion fitness of the life-history trait depends on how many

deleterious mutations the individual carrying that trait has (formally, the invasion process is reducible,

see Appendix A.1 and also Altenberg, 2009, p. 1278). In Appendix A.1 we show that the invasion fitness

of other classes can not be higher than the invasion fitness of the least-loaded class. And thus, as a first

step, it is reasonable to consider a situation where the mutation-selection process is such that the least-
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loaded class–individuals with zero mutations–dominates the population in frequency (i.e. the frequency of

the zero-class individuals is close to one). If selection is stronger than mutation, then deleterious alleles

will tend to be purged and the mutation-selection balance will be far away from the error threshold

of mutation accumulation or meltdown of asexual populations (e.g., Eigen, 1971; Lynch et al., 1993;

Szathmary and Maynard Smith, 1997). For instance, in the aforementioned classical mutation-selection

equilibrium model (Haigh, 1978, Bürger, 2000), the frequency of the zero mutation class is e−µ/σ. So when

µ ≪ σ, say for definiteness the selection coefficient is one order of magnitude larger than the mutation

rate (e.g. for µ = 0.01 and σ = 0.1, µ/σ = 0.1), then the least loaded class dominates in frequency

(e−µ/σ ≈ 0.9). Under these conditions, the click rate of Muller’s ratchet, which is the rate at which

individuals with the least amount of deleterious mutations in the population become extinct, is small for

finite but sufficiently large population sizes. For instance, in a population of size N = 1000, the click

rate is 8.4 × 10−34 (obtained from 1/τ where τ = σ
√

2πN/µ × exp
(
N
(
σ − µ

(
1− log

(
µ
σ

))))
/(σ − µ)2

is the inverse of the click rate, see eq. 23 Metzger and Eule, 2013, where σ = s and µ = u). Hence, the

click rate of Muller’s ratchet can be considered negligible compared to the scale of mutation rates. Thus,

whenever the selection coefficient is one order of magnitude larger than the mutation rate, whenever a

mutant life-history trait u appears in a resident v population, it is likely to arise on a zero mutation

background.

2.3.2 Invasion analysis for dominating least loaded class

Now fully endorsing the assumption that the least-loaded class dominates in frequency the resident

population, which allows to characterise uninvadability and convergence stability directly from the basic

reproductive number of the least-loaded class R̃0(u,v). This is the expected number of offspring without

mutations produced by an individual without mutations over its lifespan and is a fitness proxy for invasion

fitness ρ(u,v) whereby an uninvadable strategy u∗ solves the maximization problem maxu∈U[T] R̃0(u,u
∗)

(see Appendix A for a proof). In a discrete age-structured population, the basic reproductive number of

the least-loaded class is given explicitly in terms of vital rates as

R̃0(u,v) =

T∑
a=1

b̃0(a,u,v)l̃0(a,u,v), (1)

where

b̃0(a,u,v) = b0(a,u,v)× exp (−µf(a,u,v)) (2)

and

l̃0(a,u,v) = l0(a,u,v)× exp

(
−

a∑
t=1

µs(t,u,v)

)
with l0(a,u,v) =

a∏
t=1

s0(t,u,v). (3)

7



In eq. (2), b0(a,u,v) is the effective fecundity of an individual in the a-th age class with trait u and

exp (−µf(a,u,v)) is the probability that such an individual does not produce a mutated offspring with

µf(a,u,v) being the mutation rate during reproduction in the a-th age class (recall that a ∈ {1, 2, .., T}).

In eq. (3), l0(a,u,v) is the probability that an individual with trait u survives to age a, which depends on

its probability s0(a,u,v) = exp (−d0(a,u,v)) of survival over the age interval [a−1, a], where d0(a,u,v)

is its death rate. Finally, exp (−
∑a

t=1 µs(t,u,v)) is the probability that an individual with trait u does

not acquire any germline mutation until age a with µf(a,u,v) being the germline mutation rate when

being in the a-th age class. In eqs. (2)–(3), we have thus distinguished between the germline mutation

rate µf(a,u,v) when an offspring is produced and that rate µs(a,u,v) in the parent in the a-th age

class. When µf(a,u,v) = µs(a,u,v) = 0 for all a ∈ {1, 2, .., T}, eq. (1) reduces to the standard basic

reproductive number for age-structured populations (e.g. Charlesworth, 1994). We emphasise that we

allowed for fecundity, survival and mutation rate to be dependent on the whole life history schedule

because the evolving traits may affect physiological state variables (e.g. body size). As long as there is a

direct correspondence between age and physiological state (see e.g. the discussion in de Roos, 1997), then

the extension of current formalisation to physiologically-structured populations is direct (see also section

3.2 for an example). Further, since all rates in eqs. (2)–(3) depend on the resident trait v, individuals

can be affected by the trait of others and our thus covers frequency- and density-dependent interactions.

For a continuous set of age classes T = [0, T ], the basic reproductive number of the least-loaded class

is

R̃0(u,v) =

∫ T

0

b̃0(a,u,v)l̃0(a,u,v) da, (4)

(see Appendix A.1 for a proof)) where b̃0(a,u,v) takes the same functional form as in eq. (2) but is now

interpreted as the effective birth rate (of offspring with no mutations) at age a, and l̃(a,u,v) satisfies the

differential equation:

dl̃0(a,u,v)

da
= − [d0(t,u,v) + µs(t,u,v)] l̃0(a,u,v) subject to l̃0(0,u,v) = 1. (5)

We now make four observations on the use of R̃0(u,v) to characterise long-term coevolution for life-

history traits and mutation rates. (1) Because R̃0(u,v) depends on the amount of deleterious mutations

in the population solely via v, the distribution p(v) is needed only under frequency-dependent selection.

This makes life-history evolution in the presence of deleterious mutations tractable even if the underlying

evolutionary process of mutation is not (see section eq. 3.2 for an example). The characterisation of

uninvadability using R̃0(u,v) (and thus applying eqs. 1–5) generalises the results of Leigh, 1970 and

Dawson (1998, p. 148) to overlapping generations and an explicit life-history context. (2) Because R̃0(u,v)

takes the standard form of the basic reproductive number, the results of optimal control and dynamic

game theory can be applied to characterise uninvadability. This is useful in particular for reaction norm

and developmental evolution and formalising different modes of trait expressions (see Avila et al., 2021).
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(3) While low mutation rates relative to selection are presumed to be able to use R̃0(u,v) as a proxy for

invasion fitness, these mutation rates are endogenously determined by the uninvadable strategy. It is thus

plausible that the uninvadable mutation rate generally entails a low mutation rate. So the assumption of a

low mutation rate may not appear so drastic and the extent to which this assumption is limiting depends

on investigating explicit evolutionary scenarios. (4) If deleterious mutations are such that regardless

in which background the life-history mutation appears, the invasion process is fully characterised by

R̃0, which is the case for the standard mutation accumulation models with the multiplicative effect of

(deleterious) mutations (see Appendix A.1 for more details), then using R̃0 does no rely on making the

assumption of low (deleterious) mutation rates relative to selection.

All this gives good reasons to use R̃0(u,v) as a proxy of invasion fitness to understand life-history

evolution in the context of mutation accumulation and as such, in the rest of this paper we consider two

scenarios of the joint evolution of life history and mutation rate which we analyse by using R̃0(u,v). This

allows us to illustrate the different concepts, demonstrate the usefulness of focusing on R̃0(u,v) to get

insights about how life-history evolution interacts with mutation accumulation, and check how closely

our analysis matches with individual-based stochastic simulations.

3 Examples of life-history and mutation rate coevolution

3.1 Joint evolution of reproductive effort and germline maintenance

3.1.1 Biological scenario

Our first scenario considers the evolution of reproductive effort when resources can be allocated to

(germline) maintenance in an iteroparous population. To that end, we assume a population with a

large but fixed number N of individuals undergoing the following discrete-time life-cycle (see Table 2 for

a summary of key symbols for this example). (1) Each of the N adult individuals produces a large number

of juveniles and either survives or dies independently of other individuals. Juveniles and surviving adults

acquire mutations at the deleterious allele locus at the same rate. (2) Density-dependent competition

occurs among juveniles for the vacated breeding spots (left by the dead adults) and the population is

regulated back to size N .

We postulate that an individual has a life-history trait consisting of two components u = (ug, us)

(u ∈ U[T] = [0, 1]2), which determines how a fixed amount of resources available to each individual is

allocated between three physiological functions: (i) a proportion (1−ug)(1−us) of resources is allocated

to reproduction, (ii) a proportion (1 − ug)us of resources is allocated to survival, and (iii) a proportion

ug of resources is allocated to germline maintenance.

We assume that an individual with trait u and i deleterious mutations has the following fecundity

fi(u), survival probability si(u), and mutation rate µ(u) [at giving birth and when surviving to the next
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generation, i.e., µ(u) = µf(u) = µs(u)]:

fi(u) = f0(u)× (1− σf)
i

si(u) = s0(u)× (1− σs)
i

µ(u) = µb (1− ug)
αµ ,

(6)

where σf and σs are, respectively, the reductions in fecundity and survival from carrying an additional

deleterious mutation (that are assumed to act multiplicatively), µb is the baseline mutation rate (mutation

rate when allocation to germline maintenance is at its minimum, ug = 0), and αµ is the maintenance

scaling factor (a parameter tuning how investing a unit resource into maintenance translates into reducing

the mutation rate). We assume that αµ > 1, such that µ(u) has decreasing negative slopes in ug and

hence exhibits diminishing returns from investment into germline maintenance. The parameter αµ can

thus be interpreted as the “efficiency” of converting resources to lowering the mutation rates (since higher

values of αµ correspond to lower mutation rates). The quantities f0(u) and s0(u) are, respectively the

fecundity and survival of the least-loaded class and they are written as

f0(u) = fb

(
(1− us)(1− ug)

)αf

s0(u) = sb

(
us(1− ug)

)αs

.
(7)

Here, fb and sb are, respectively, the baseline fecundity and baseline probability of survival; αf and αs are,

respectively, the fecundity and survival scaling factors (parameters tuning how a unit resource translates

into fecundity and survival). We assume that αf, αs ≤ 1 whereby both survival and fecundity have

decreasing positive slopes in the net amount of resources allocated to them and thus exhibit diminishing

returns. Smaller values of αf and αs correspond to more efficient returns of investing resources into

reproduction and survival, respectively.

In the absence of deleterious mutations, the model defined by eq. (6) reduces to the standard model

of reproductive effort of life-history theory with trade-off between reproduction and survival (Charnov,

1993; Pen, 2000; Case, 2000). Conversely, with no overlapping generations and no life-history evolution,

the model reduces to the classical model of mutation accumulation (Haigh, 1978; Bürger, 2000), and with

zero survival and resource allocation evolution, it is equivalent to the asexual model of Dawson (1998).

The model thus combines an unexplored trade-off between life-history traits (survival and reproduction)

and immutability (germline maintenance).

3.1.2 Uninvadable and convergence stable strategies

We now carry out the invasion analysis. To that end, we use eqs. (6)–(7) to first evaluate the basic

reproductive number R̃0(u,v) for this model (see Appendix B.1 where we also show that the equilibrium

distribution p(v) of individuals with different numbers of mutations follows a Poisson distribution with

mean λ(v) = µ(v)/σ). From eq. (B.4) we obtain that the selection gradient (e.g., Parker and May-
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nard Smith, 1990; Frank, 2008; Geritz et al., 1998; Rousset, 2004) on maintenance can be written as

∂R̃0(u,v)

∂ug

∣∣∣∣∣ug=vg
us=vs

=
1

(1− s̄(v)) (1− vg)

(
αµµ(v)−

[
αss̄(v) + αf (1− s̄(v))

])
, (8)

which displays a trade-off between allocating resources to maintenance vs into the two vital rates. The

first term in eq. (8) is the marginal benefit of investment into repair, which is an increasing function

of µb and αµ. The second term is the marginal cost of investment into maintenance, which depends

on the weighted sum over average survival and open breeding spots. Thus we find that an increase in

the baseline mutation rate and more efficient returns from investment into germline maintenance and

vital rates promote allocation to maintenance (increasing αµ and decreasing αs and αf). Meanwhile, the

selection gradient on survival can be written as

∂R̃0(u,v)

∂us

∣∣∣∣∣ug=vg
us=vs

=
1

1− s̄(v)

(
αss̄(v)

vs
− αf(1− s̄(v))

(1− vs)

)
, (9)

where the terms in the parenthesis display the trade-off between allocating resources into survival vs

fecundity (i.e. the classical reproductive effort trade-off, e.g. Pen, 2000, eq. 4) with the difference that

it is here affected by the mutation rate. The first term in eq. (9) is the marginal benefit of investment

into survival, which is a decreasing function of vg. In contrast, the second term is the marginal benefit

of investment into fecundity, and it is an increasing function of vg. Thus, all else being equal, higher

allocation to germline maintenance promotes fecundity over survival. We also find that an increase in

the baseline mutation rate µb(vg) favours higher allocation to survival (by increasing s̄(v)).

A necessary condition for (u∗
g, u

∗
s ) = u∗ to be an evolutionary equilibrium is that the selection gra-

dients vanish at this point (for an interior equilibrium, i.e. 0 < u∗
g, u

∗
s < 1, ∂R̃0(u,v)/∂us = 0 and

∂R̃0(u,v)/∂ug = 0 at v = u = u∗). Without further assumptions on eqs. (8)–(9), we were unable to

find such analytical solutions. However, when assuming that the efficiency of investing resources into

fecundity and survival is the same (i.e. setting αs = αf = α), we find that the solution takes two forms,

depending on the parameter values. First, when µb ≤ α/αµ, then u∗
g = 0 and u∗

s = (exp(µb)/sb)
1/(α−1).

This means that when the baseline mutation rate µb is lower than the threshold α/αµ given by the effi-

ciency parameters, germline maintenance does not evolve. Hence, when investment into vital rates and

maintenance is more efficient (i.e. the threshold α/αµ is smaller), then allocation to maintenance evolves

for lower values of baseline mutation rate (recall that α is the inverse efficiency of investment into vital

rates, while αµ is the efficiency of investment into maintenance). The equilibrium mutation rate, in this

case, is equal to the baseline mutation rate µ(u∗) = µb and and the mean number of novel mutations is

λ(u∗) = µb/σ, as expected when there is no germline maintenance. Second, when µb > α/αµ, there is a
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unique interior equilibrium:

u∗
g = 1−

(
α

αµµb

) 1
αµ

u∗
s =

exp( α
αµ

)
(

α
αµµb

)− α
αµ

sb


1

α−1

(10)

with corresponding expressions for the mutation rate µ(u∗) and mean number of novel (deleterious)

mutations λ(u∗) taking the following form

µ(u∗) = α/αµ λ(u∗) = α/(αµσ). (11)

Fig. (2) illustrates these equilibrium strategies u∗ = (u∗
g, u

∗
s ) (panels a and b), the corresponding mutation

rate µ(u∗) (panel c) and the mean number of novel mutations λ(u∗) (panel d) as a function of the

baseline mutation rate µb for different values of the scaling parameter α of vital rates. Fig. (2) shows

that investment into maintenance is higher when the baseline mutation rate µb increases and when

investment into vital is more efficient (α ≪ 1).

Three main conclusions can be drawn from this analysis. First, selection favours physiologically costly

germline maintenance at the expense of lowering investment into vital rates (survival and reproduction)

when the mutation rate is high enough (whenever µb > α/αµ). Investment into maintenance evolves for

lower values of µb, but then levels off faster when investment into maintenance is more efficient (for larger

αµ; see section 1.5.5. in S.I. for graphical illustration). Second, when germline maintenance evolves, the

mutation rate, µ(u∗), depends only on the efficiency parameters (α and αµ) and is independent of the

baseline mutation rate µb (see Fig. 2c and eq. 11). This is so in this model because the effect of µb

on the cost of germline maintenance via the expected survival s̄(u∗) cancels out due to the nature of

density-dependence (decrease in expected survival is cancelled out by the increase in the expectation of

acquiring a breeding spot; see eq. (8) when taking αs = αf = α). Third, higher allocation to reproduction

at the expense of survival occurs as µb increases (Fig. 2b). This is so because the effect of the mutation

rate on fitness is similar to that of external mortality and thus decreases the value of allocating resources

to survival. As a result, reproduction is prioritised when µb is large. This effect is more pronounced

when investment into vital rates and maintenance is less efficient (α is larger or αµ is smaller; see also

section 1.5.5. in S.I.). We also find that immortality (complete survival, s̄(u∗) = s0(u
∗) = 1) can evolve

in our model only in the absence of external mortality (sb = 1) and zero baseline mutation rate (µb = 0,

see eq. (10)). In section 1.1.4. of S.I., we numerically checked that our results are qualitatively robust

when relaxing the assumption that the scaling factors of investment into reproduction and survival are

not equal αf ̸= αs.

Using the standard local analysis (Eshel, 1983; Taylor, 1989; Geritz et al., 1998; Mullon et al., 2016

and see section 1.5.3. in S.I.), we checked that the strategy u∗ defined by eq. (10) is also convergence

stable and locally uninvadable for biologically realistic parameter values (e.g. for the parameter values

in Fig. 2). Since there is a unique solution, the local analysis implies that u∗ is also the global maximum
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(Sydsaeter et al., 2008) and thus the globally uninvadable strategy. The results from individual-based

stochastic simulations, Fig. (3) confirms that the co-evolutionary dynamics indeed converges towards the

uninvadable strategy u∗ (eq. 10) predicted by the analytical model. We can observe from Fig. (2) that

the analytically obtained results (eq. 10–11) correspond very closely to those obtained by carrying out

individual-based stochastic simulations of the full process, which implements the life-cycle and assump-

tions of the present biological scenarios but allows for mutation at the life-history locus (e.g. Fig. 1 and

see Appendix C.1 for the description of the simulations, Table C-4 for the standard deviations around

the mean traits, and the S.I. for the Mathematica code of the simulations). We observed that simulation

results generally matched well with the analytical predictions when the selection coefficient is one order

of magnitude larger than the baseline mutation rate (e.g., recall the first paragraph of section 2.3.2).

3.2 Joint evolution of age at maturity and germline maintenance

3.2.1 Biological scenario

Our second scenario considers the evolution of age-at-maturity when mutation accumulation can occur

during growth and reproduction. To that end, we consider that age is continuous, and each individual

undergoes the following events. (1) An individual is born and grows in size until it reaches maturity

(growth phase). (2) At maturity, an individual starts to reproduce at a constant rate, and fecundity is

assumed to be density- and size-dependent (reproductive phase). (3) Throughout their lives, individuals

can die at some constant rate and acquire germline mutations. We postulate that individuals have again

a life-history trait consisting of two components u = (ug, um), where ug is the allocation to germline

maintenance (lowering the mutation rate) and um is the age-at-maturity (see Table 3 for a summary of

key symbols for this example). The life-history trait u determines how resources are allocated between

three physiological functions: (i) a proportion ug of resources is allocated to the maintenance of the

germline at any age a, (ii) a proportion (1− ug) of resources are allocated to growth when an individual

is of age a < um, (iii) a proportion (1− ug) of resources is allocated to reproduction when an individual

is at age a ≥ um, (hence u ∈ U[T] = [0, 1]× R+).

We assume that the effective fecundity, death, and mutation rate of an individual with trait u and i

deleterious mutations in a population with resident trait v is given by

b̃i(u,v) = b̃0(u,v)− iσb if age a ≥ um, zero otherwise

di = db + iσd

µs(ug) = µb(1− ug)
αµ ,

(12)

where σb and σd are, respectively, the additive effects on fecundity and death rate from carrying delete-

rious mutations. The death rate of an individual of the least-loaded class is given by the baseline death
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rate db and the effective birth rate of zero class individuals of the least-loaded class is given by

b̃0(u,v) = B(xm(u))(1− uαb
g )(1− γN(v))︸ ︷︷ ︸

b0(u,v)

exp(−µf), (13)

where B(xm(u)) = axm(u)
c is the surplus energy rate, i.e., the rate of energy available to considered

life-history functions, where xm(u) is size-at-maturity and a > 0 and 0 < c < 1 are parameters. Here,

(1− uαb
g ) represents how reproduction depends on the allocation strategy and uαb

g represents the cost to

reproduction when allocating a proportion ug of resources to germline maintenance. The parameter αb

is a scaling factor (αb > 1 corresponds to diminishing returns of investing resources into reproduction),

αb can be interpreted as the efficiency parameter. The term (1− γN(v)) accounts for density-dependent

regulation of reproduction, where N(v) is the total population size of the resident population, which can

be solved analytically (see eq. (B.8) of Appendix (B.2)), and γ tunes the intensity of density dependence.

Finally, exp(−µf) is the probability that the offspring do not acquire new mutations during reproduction

where the mutation rate at giving birth µf is assumed constant. In order to close the expression for

the birth rate, we need an explicit expression for size at maturity xm(u). During the growth phase, we

postulate that size follows the differential equation

dx(t)

dt
= βB(x(t))(1− uαb

g ) with i.c. x(0) = x0, (14)

where B(x(t)) is the surplus energy rate and (1−uαb
g ) represents the proportional allocation of resources

devoted towards growth (instead of repair). For tractability, we assume that (1 − uαb
g ) has the same

functional form as the proportional allocation towards reproduction (eq. 13) and β allows to tune how

much resources are needed to grow one unit, compared to the resources needed to produce one offspring.

We further assume that the surplus energy rate is given by the power law B(x(t)) = ax(t)c, which is

considered to be appropriate for modelling size/age-at-maturity under determinate growth (see Day and

Taylor (1996) for a justification). It follows from integrating eq. (14) that the size at maturity takes the

form

xm(u) =
(
βa(1− c)(1− uαb

g )um + x1−c
0

) 1
1−c

. (15)

In the absence of mutation rate, the model reduces to the standard model of age-at-maturity (Kozlowski,

1992; Day and Taylor, 1997; Stearns, 1992; Roff, 2008). The model thus combines unexplored trade-

offs between life-history traits (growth and reproduction) and immutability (germline maintenance and

repair).

3.2.2 Uninvadable and convergence stable strategies

Let us now carry out the invasion analysis for which we first evaluate the basic reproductive number

for this model (see Appendix B.1). Then using eq. (B.8) along with eq. (15), we find that the selection
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gradient on maintenance can be written as

∂R̃0(u,v)

∂ug

∣∣∣∣∣um=vm
ug=vg

=
αµµs(vg)

(1− vg)

(
vm +

1

µs(vg) + db

)
− αbv

αb−1
g

(
β
cvmB(xm(v))

xm(v)
+

1

(1− vαb
g )

)
, (16)

where the two terms display the trade-off between allocating resources into maintenance vs. growth

and reproduction. The first term is the marginal benefit of investing into germline maintenance and it

increases with the age-of-maturity and the expected lifespan. The second term is the marginal cost of

investing into maintenance, which is a weighted sum of the expected loss in growth and reproduction. The

marginal cost of maintenance is smaller when size-at-maturity xm(v) is larger (since B(xm(v))/xm(v)

decreases with xm(v) for 0 < c < 1). This implies that all else being equal, organisms that grow larger

should invest more into germline maintenance. Note that the selection gradient is independent of the

mutation rate µf at giving birth. We find that the selection gradient on the age-at-maturity can be

written as

∂R̃0(u,v)

∂um

∣∣∣∣∣um=vm
ug=vg

= c×
β
(
1− vαb

g

)
B(xm(v))

xm(v)
− (µ(vg) + db). (17)

The first term is the marginal benefit of investment into growth and thus the benefit for maturing later,

while the second term is the marginal cost of investment into growth and thus the benefit for maturing

earlier. We can see that the increase in mutation rate will select for earlier age-at-maturity. This implies

that organisms with lower germline mutation rate can grow larger.

By first solving ∂R̃0(u,v)/∂um = 0 for u∗
m when evaluated at v = u = u∗, we obtain

u∗
m(u

∗
g) =

1

1− c
×
(

c

db + µs(u∗
g)

− x0

β[1− (u∗
g)

αb ]B(x0)

)
, (18)

which is a function u∗
g. Eq. (18) says that individuals tend to mature later, when individuals growth rate

at birth ẋ(0) (= β[1−(u∗
g)

αb ]B(x0)) is higher and/or when death rate db, mutation rate µs(u
∗
g), and birth

size x0 are smaller (holding everything else constant). When µb → 0 and u∗
g → 0, age-at-maturity reduces

to u∗
m = (1− c)−1[c/db −x0/[βax

c
0], which is consistent with standard results about the optimal age/size

at maturity (see e.g. Day and Taylor, 1996) and it is useful to compare how an allocation to germline

maintenance affects the age-at-maturity. In order to determine the joint equilibrium u∗ = (u∗
m, u

∗
g), we

need to substitute eq. (18) into eq. (17) and solve for u∗
m and u∗

g at v = u∗. We were unable to obtain

an analytical solution for the general case. But restricting attention to αµ = αb = 2 (i.e. assuming

diminishing returns of investment into germline maintenance and reproduction) and biologically feasible

set of solutions (such that 0 < u∗
g < 1 and u∗

m > 1; see section 2.1.3 of S.I. for calculations), we find that
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there is a unique interior equilibrium

u∗
g =

2µb + db −
√
db(db + 4µb)

2µb

u∗
m =

1

(1− c)
×

[
c
(√d+

√
db + 4µb

2db
√
db + 4µb

)
− x0

βcB(x0)

(db + 2µb +
√

db(db + 4µb)

2
√

db(db + 4µb)

)] (19)

with the corresponding mutation rate given by

µ(u∗
g) =

(db −
√
db

√
db + 4µb)

2

4µb
, (20)

while the corresponding population size N(u∗) can also be explicitly expressed in terms of parameters but

remains complicated (see section 2.1.4. in S.I. for the full expression). See Fig. 4 for a graphical depiction

of the equilibrium strategy u∗ as a function of the baseline mutation rate (panels (a) and (b)) and the

corresponding equilibrium population size and mutation rate (panels (c) and (d)). Fig. (2) shows that

that investment into maintenance is higher when the baseline mutation rate is high and when external

mortality is low.

Three main results can be drawn from this analysis. First, as in the previous example, selection favours

physiologically costly germline maintenance at the expense of lowering the investment into life-history

functions (here, into growth and reproduction, see Fig. 4a). Here, the uninvadable mutation rate (µ(u∗))

monotonically increases with the baseline mutation rate (Fig. 4d). Second, we predict earlier age-at-

maturity when the baseline mutation rate is high (Fig. 4b). In fact,baseline mutation rate and external

mortality have qualitatively similar effects on fitness as they increase the marginal cost of investment

into growth (see the last term in eq. (17)). Thus, we find that the shift in growth-reproduction trade-off

towards reproduction is higher under: (i) high external mortality rates and (ii) high baseline mutation

rates. Since maturing earlier causes the growth period to be shorter, the body size at maturity xm(u
∗)

will also be smaller with a higher baseline mutation rate µb (Fig. 6a). Smaller body size at maturity,

in turn, causes the birth rate b0(u
∗,u∗) to be smaller (Fig. 6b). Third, a higher baseline mutation rate

causes a smaller equilibrium population size (Fig. 4c), which is a known result in population genetics (see

e.g. Gabriel et al., 1993).

The equilibrium strategy u∗ = (u∗
g, u

∗
m) determined by eq. (19) is convergence stable and locally

uninvadable (see section 2.5.4. and 2.5.5.in S.I. for derivation for the parameter values in Fig. 4 and).

Since eq. (19) is a unique equilibrium for the feasible trait space (see section 2.1.3 of S.I.), then local

uninvadability implies global uninvadability. Using individual-based stochastic simulations, we were able

to confirm that u∗ = (u∗
g, u

∗
m) given in eq. (19) is indeed a stable attractor of the evolutionary dynamics

(see Fig. 5 for a graphical depiction of convergence in the individual-based simulations for four different

initial population states). Fig. (4) also illustrates the equilibrium population size N(u∗) (panel c), and

the uninvadable mutation rate µ(u∗
g) (panel d) as a function of the baseline mutation rate µb. Fig. (6)

illustrates the body size at maturity xm(u
∗) (panel a) and the effective birth rate b̃0(u

∗,u∗) at the
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uninvdable population state as a function of baseline mutation rate. Overall, Fig. (4) demonstrates,

again, that the analytically obtained results (here using eqs. 19–20) correspond very closely to those

obtained by carrying out individual-based simulations of the full process (see Appendix C.2 for the

description of the simulations, Table C-5 for the standard deviations around the mean traits, and section

2.3. in S.I. file for the Mathematica code).

4 Discussion

We formalised selection on resource allocation traits affecting life history and the deleterious mutation

rate under asexual reproduction. When selection against deleterious mutations is high compared to the

deleterious mutation rate, the class of individuals having the fewest such mutations (the least-loaded

class) dominates in frequency the population and thus determines the fate of any mutant modifier allele

affecting the deleterious mutation rate and life history. While this is a well-known result (e.g. Kimura,

1967; Kondrashov, 1995; Dawson, 1998, 1999; Johnson, 1999b; André and Godelle, 2006; Gervais and

Roze, 2017), we here extended this result by allowing for reproduction and survival to be age-dependent

under iteroparous reproduction and allowing for modifier alleles to affect jointly life-history and mutation

rates via allocation to germline maintenance. Then, the basic reproductive number of the least-loaded

class (eq. 1 and eq. 4) allows to characterise the joint evolutionary stable life-history and deleterious

mutation rate. We analysed two specific models to illustrate this approach: (1) joint evolution between

reproductive effort and the mutation rate and (2) joint evolution between the age-at-maturity and the

mutation rate. These two models confirmed the validity of using the least-loaded class as a fitness proxy

by comparing results to those obtained by individual-based stochastic simulations (Figs. 2–5) and provide

several insights about the joint evolution of life-history and deleterious mutation rate.

The first model shows that a positive deleterious mutation rate evolves when selection against increas-

ing the mutation rate is balanced by the cost of germline maintenance. This extends established results

(Kimura, 1967; Kondrashov, 1995; Dawson, 1998, 1999) to an explicit life history context. We find that

the trade-off between reproduction and survival shifts towards higher allocation into reproduction under

a high baseline mutation rate. This confirms the numerical observation of Charlesworth (1990) that a

higher level of a fixed mutation rate (no germline maintenance) causes higher allocation to reproduction

over survival. We further predict that the shift in survival-reproduction trade-off towards reproduction

is stronger: (i) when the conversion of resources into vital and germline maintenance is less efficient (e.g.

in environments where organisms have high maintenance costs, e.g., colder climates), (ii) high external

mortality rates (e.g., high predation environment), and (iii) high baseline mutation rates (e.g., induced

by environmental stressors). We also find that immortality (complete survival) cannot evolve even in an

environment with no external mortality because the mutation rate cannot be brought down to zero. This

highlights the less appreciated role of mutation accumulation, which in addition to extrinsic environ-

mentally caused hazards emphasised previously (Medawar, 1952; Hamilton, 1966; Charlesworth, 1994),

can thus prevent the evolution of immortality. This means that the forces of selection on survival and
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reproduction (Hamilton, 1966; Ronce and Promislow, 2010) also decline due to mutation. Overall, this

example reveals that endogenous and/or exogenous factors that increase the baseline mutation rate cause

lower lifespans through higher allocation to fecundity.

The model for the joint evolution of age-at-maturity and the mutation rate similarly yields that a

positive evolutionary stable mutation rate, but now germline maintenance trades off against investment

into growth and reproduction. This extends the observation of Dańko et al. (2012) from a numerical

model that looked at the effect of fixed mutation rate on the age-at-maturity. They found that a higher

fixed mutation rate (no germline maintenance) causes earlier age-at-maturity, but they concluded that

this effect would be relatively small and observable only under extreme conditions. By contrast, we show

that mutation rate can significantly affect life-history trade-offs since allocation to germline maintenance

co-evolves with life history. We predict that higher mutation rates are expected to be correlated with

smaller size-at-maturity (earlier switch to reproduction) and lower equilibrium population size. Increased

baseline mutation rate thus increases the effect of genetic drift and when the population size is small

enough the force of genetic drift can no longer be ignored (Lynch et al., 2016), which can eventually lead

to a positive feedback between drift and mutation accumulation, i.e., the mutational meltdown of the

(asexual) population (Gabriel et al., 1993). Our simulations show, however, that even for a population

of about 2000 individuals, genetic drift does not significantly affect the predictions of our model (see

Fig. 4). Using individual-based simulations, the joint evolution between somatic maintenance, germline

maintenance, size-at-maturity, and population size has been explored by Rozhok and DeGregori (2019)

who found that selection for higher body size (by imposing size-dependent mortality) can lead to higher

germline mutation rate because more resources need to be invested into somatic maintenance. Thus, they

found that a higher germline mutation rate and size-at-maturity are expected to be positively correlated,

which is an opposite prediction from our result. Further studies clarifying the selection pressures involved

in the trade-off between growth and investment into the maintenance of germline and soma, can shed

light on how patterns of body size, longevity and mutation rate are expected to be correlated.

Two findings about how life history evolves jointly with deleterious mutation rate emerge from our

models. First, the trade-off between lowering the rate of mutations vs investing in life-history func-

tions affects the evolutionary outcome of life-history trade-offs (e.g. survival–vs–reproduction or growth–

vs–reproduction). Hence, mutation accumulation can have a significant effect on life-history evolution

through the process of joint evolution that previous models focusing on the effect of fixed mutation rates

on life-history evolution have not revealed (Charlesworth, 1990; Dańko et al., 2012). Looking at the

effect of fixed mutation rates on life history evolution underestimates the effect of deleterious mutation

accumulation on life history evolution, as it does not consider the physiological cost of immutability on

life history evolution. Second, factors that contribute to higher baseline mutation rate select for faster

life histories: higher investment into current reproduction at the expense of survival and earlier age–

at–maturity. Factors that could increase the baseline mutation rate include factors that increase DNA

replication errors (number of germ-line cell divisions) or environmental mutagens (oxygen level, nutrition
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quality, see e.g. Ferenci, 2019 for a review).

Our analysis is based on a number of simplifying assumptions, most notably (i) a separation between

life-history traits (e.g., the timing of reproduction, age and size at maturity, longevity) and traits that

could be referred to as viability traits, such as morphology and physiology, (ii) that mutations are

only deleterious at the viability traits, and (iii) that reproduction is asexual. The separation between

life-history traits and viability traits allows us to focus on the life-history resource allocation trade-off

and avoids modelling the viability traits mechanistically. This separation makes biological sense for

organisms that have similar viability traits but differ in their life history. For instance, both annual and

perennial plants can have similar cellular pathways for photosynthesis and oxidative phosphorylation,

where deleterious mutations can affect the functionality of these pathways that are under strong selection.

For such organisms, our model thus consists of characterising the optimal life history and how the mutation

rate at the cellular machinery evolves. While other formulations are possible and could be explored in

future work, our approach has analytical traction and is conceptually equivalent to the separation between

modifier locus and loci affecting vital rates from modifier theory, where modifier alleles affect the pattern

of transmission of other traits (e.g., Leigh, 1970; Altenberg, 2009). In our model, modifier alleles are also

under direct selection owing to their effect on life history. From modifier theory, we know that regardless

of the details of transmission; namely, regardless of whether reproduction is asexual or sexual or the

exact pattern of mutation rates (whether they are reducible or not), a decrease in the mutation rate is

always favoured in the absence of trade-off with reproduction (Altenberg, 2009; Altenberg et al., 2017b).

Thus, in the presence of a trade-off in any genetic system, the evolutionary stable mutation rate will be

determined by the balance between the benefit of lowering the mutation rate and the benefit of increasing

the mutation rate and thus reducing the physiological cost of germline maintenance (e.g. André and

Godelle, 2006; Kondrashov, 1995; Dawson, 1998). Under sexual reproduction however, fewer resources

will be allocated to germline maintenance (Kondrashov, 1995; Dawson, 1998; André and Godelle, 2006;

Altenberg, 2009) because deleterious mutations are linked under asexual reproduction, and this linkage is

broken down by recombination under sexual reproduction whereby the benefit of lowering the mutation is

smaller (Dawson, 1998; Gervais and Roze, 2017). However, any direct effect that the modifier has would

be experienced in the same way regardless of the reproductive system. In summary, while genetic details

might be important to compare the quantitative effect of the reproductive system on the joint evolution

of mutation rate and life history, they are unlikely to qualitatively affect our main prediction that the

cost of germline maintenance is a significant force affecting life-history traits.

Our model can be further extended to study several open questions in life-history theory and mutation

accumulation theory. First, our model can be applied to understand the role of germline maintenance in

explaining the evolution of ageing. Current theories of ageing either rely on mutation accumulation in the

germline (Medawar, 1952) or are based on a trade-off between reproduction and survival (disposable soma

and antagonistic pleiotropy theories of ageing; Williams, 1957; Kirkwood, 1977; Cichon and Kozlowski,

2000), but no theoretical study has explored how these processes evolve jointly when germline maintenance
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is costly. Second, our model can also be extended to study the Lansing effect, a widely reported negative

effect of parental age on offspring fitness (e.g. Monaghan et al., 2020). Third, extending our model

for sexual reproduction would allow studying how sex-specific differences in germline maintenance can

induce sex differences in life-history trade-offs (Maklakov and Lummaa, 2013). Our hope is that the

formalisation proposed in this paper can be fruitfully used to these ends.
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A Invasion process with mutation accumulation

In this appendix, we prove that the basic reproductive number R̃0(u,v) defined by eq. (1) (in discrete-

time) and eq. (4) (in continuous-time) is an appropriate invasion fitness proxy when the least loaded class

dominates in frequency the resident population. To that end, we first characterise the mutant invasion

process by following the assumptions of the main text section 2.1 and then derive the renewal equations

in dicrete-and continuous-time (section A.2), which give rise to using R̃0(u,v) as a fitness proxy.

A.1 Reducible invasion process

Since the resident population is assumed to have reached a mutation-selection balance and is thus at

a genetic-demographic equilibrium, i.e. the standard internal stability assumptions of invasion analysis

(Eshel and Feldman, 1984; Altenberg et al., 2017b; Metz, 2011), the mutant allele for trait u can arise

in individuals carrying different numbers of deleterious mutations. Hence, the invasion process of u is

contingent on the genetic background in which it arises. We refer to the initial carrier of the u trait as the

progenitor (or ancestor) of u. The invasion fitness of mutant u is then determined by the size of the lineage

of the progenitor, which consists of all of its descendants carrying u far into the future. Namely, the

immediate descendants of the progenitor, including the surviving self, the immediate descendants of the

immediate descendants, etc., covering the whole family history tree ad infinitum. Crucially, descendants

may accumulate deleterious mutations during the initial growth or extinction of the mutant lineage when

this lineage is rare (referred throughout as the “invasion process”). As such, the invasion process, whether

in continuous or discrete time, can be regarded as a multitype age-dependent branching process (Mode,

1968, 1971) since during the growth or extinction of the mutant lineage, novel genotypes are produced

by mutation.

To analyse this invasion process, it is useful to organise individuals into equivalence classes. The

defining feature of an equivalence class is that it is a collection of states of a process among which

transitions eventually occur, so the states are said to communicate (Karlin and Taylor, 1975, p. 60). The

equivalence class Ci will stand for all mutant individuals carrying i deleterious mutations and thus consist

of individuals of all ages. This is an equivalence class because, through survival and reproduction, an

individual of any age with i mutations may eventually transition to become an individual of any other age

(in the absence of menopause). This follows from the fact that the process of survival and reproduction

in an age-structured population in the absence of mutations (and menopause) is irreducible (Karlin and

Taylor, 1975, p. 60), since starting in any age-class, eventually, every age class can be reached by the

members of a lineage of individuals. Owing to our assumptions that mutations are deleterious and can

only accumulate, however, starting in a given mutational class, it is possible to enter another class, but

not transition back from that class (otherwise the two classes would form a single class) whereby the

process of mutation is reducible, since a lineage of individuals cannot go from any mutational class to any

other mutation class. Equivalence class Ci+1 is then said to follow class Ci since individuals in equivalence
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class i can only transition to class i+ 1 by acquiring mutations. This means that the invasion process is

reducible and can be regarded as a reducible multitype age-dependent branching process (Nair and Mode,

1971; Mode, 1971). Reducibility typically arises in population genetics models without back-mutations

but sometimes also occurs in other models in ecology and evolution, e.g. when some class of individuals

do not contribute to reproduction, as is, for instance, the case under menopause (e.g. Caswell, 2000;

Altenberg, 2009; Bode et al., 2006; Stott et al., 2010; McDonald, 2015).

To see why the notion of an equivalence class is useful to understand the mutant invasion process,

let us first focus on a discrete-time process with T discrete age classes and denote by ni(t) the expected

number of individuals at time t = 0, 1, 2, ..., in class Ci that descend from a single class Ci newborn

progenitor born at t = 0 (i.e. ni(0) = 1). Thus, ni(t) is the expected lineage size of class Ci individuals

descending from a newborn progenitor of class Ci (including the surviving self). Accounting entails that

ni(t) satisfies the renewal equation

ni(t) = l̃i(t) +

t∑
a=1

ni(t− a)b̃i(a)l̃i(a), (A.1)

where l̃i(a) is the probability that a Ci class newborn survives to the a-th age class and has not acquired

any new mutation, and b̃i(a) is the expected number of (newborn) offspring without mutations produced

by an individual belonging to the a-th age class and being of mutation class Ci. Eq. (A.1) is derived in

Appendix A.2.1 from branching process considerations and its left-hand side can be understood as follows.

First, l̃i(t) accounts for the survival and immutability of the progenitor itself until age t. Second, b̃i(a)l̃i(a)

is the progenitor’s expected number of offspring of class Ci born during the time interval corresponding

to the a-th age class and each of these newborns contribute an expected number ni(t − a) of class Ci

individuals to the progenitor’s total lineage size at t. This is so because as long as the mutant is rare,

each newborn starts a new independent lineage and adding all terms together, the right-hand side of

eq. (A.1) thus gives the total lineage size of the progenitor (see Appendix A.2.1 for more details).

A key feature of eq. (A.1) is that it depends only on the vital rates and states of individuals of class

Ci. As such, eq. (A.1) is functionally equivalent to the standard renewal equation of population dynamics

in discrete age-structured populations (Charlesworth, 1994, eq. 1.34), but recall that ni(t) counts total

lineage size in class Ci and not zygote size as in the classical theory of age-structured populations. It

then follows from the classical theory of age-structured populations (e.g., Charlesworth, 1994, p. 25-26)

or the branching process formulation (Mode, 1974) that asymptotically, as t → ∞, the number ni(t)

grows geometrically as

ni(t) ∼ ρti Ki, (A.2)

where Ki is a constant depending on the process and ρi is the unique root satisfying the characteristic

(or Euler-Lotka) equation
∑T

a=1 ρ
−a
i b̃i(a)l̃i(a) = 1.

Since individuals of class i contribute to individuals of class i+ 1 through mutations, the equivalence
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class Ci+1 follows class Ci, then ni(t) does not describe the total expected lineage size of the progenitor.

However, owing to the assumptions that mutations are deleterious and can only accumulate, the growth

ratio ρi is at least as large as ρi+1, i.e., ρi ≥ ρi+1 for all i. This implies that when the ancestor is of type

i, the expected lineage size is determined by the growth ratio ρi, since it dominates that of any other

following equivalence class. Hence, asymptotically, the total expected lineage of an Ci class progenitor

has a geometric growth ratio ρi. It further follows from the theory of multitype age-dependent branching

processes that the realised lineage size of a single progenitor (a random variable) has growth ratio ρi

if ρi > 1 and otherwise if ρi ≤ 1, the lineage goes extinct with probability one (Mode, 1971, Theorem

7.2 p. 245, Corrolary 6.1 p. 280, see also Mode, 1974 for the single type case). Further, ρi ≤ 1 if and

only if R̃i ≤ 1, where R̃i =
∑T

a=1 b̃i(a)l̃i(a) is the expected number of offspring of a progenitor of type

i produced throughout its lifespan (i.e. Mode, 1971, Theorem 7.2 p. 245, Corrolary 6.1 p. 280, see also

Karlin and Taylor, 1981, p. 424, Caswell, 2000). Hence, ρi is an appropriate measure of invasion fitness

and R̃i is an appropriate proxy of it for a type i mutant u arising in a resident v background. The same

argument can be made for continuous-time processes, in which case, the invasion fitness of a mutant

arising in a progenitor in class Ci is ρi = exp (ri), where ri is the rate of natural increase of the lineage

size of a progenitor of type i, i.e., the Malthusian growth rate and for which R̃i =
∫ T

0
b̃i(a)l̃i(a) da is an

appropriate invasion fitness proxy (see Appendix A.2.2 for a derivation).

The key feature of the invasion process in a population with distinct mutational equivalence classes is

that the invasion fitness of a mutant life history trait thus depends on the class in which it appears (ρi for

class i), which in turn depends on the distribution p(v). This means that there are as many growth rates

as equivalence classes, since the invasion process is reducible (see also Altenberg, 2009, p. 1278). Therefore

characterising long-term evolution using a single representation of invasion fitness (or proxy thereof) is

at first glance unattainable as it requires to make the process irreducible, which can be achieved by

introducing back mutations or recombination. Reaching irreducibility in this way, however, would make

the model much more complicated. It also follows from these considerations, that when least-loaded class

dominates in frequency the population, the face of mutant u appearing in a resident v population is

determined from the growth ratio ρ0(u,v) of the least-loaded class only, since any mutant will appear on

the C0 background and so this is an appropriate overall measure of invasion fitness (ρ(u,v) = ρ0(u,v)).

Further, since ρ0(u,v) ≤ 1 ⇐⇒ R̃0(u,v) ≤ 1, where R̃0(u,v) is the basic reproductive number of

the least-loaded class, i.e. the expected number of class C0 offspring produced by a class individual C0

individual over its lifespan, is sufficient to characterise the fate of the mutant. This then justifies using

R̃0(u,v) as an invasion fitness proxy defined by eq. (1) and eq. (4) for discrete and continuous time

respectively. Further, if deleterious mutations are such that all the ρi’s are proportional to ρ0’s, which

is the case for the standard mutation accumulation models with multiplicative effect of (deleterious)

mutations, then using R̃0 does no rely on making the assumption of low mutation rates relative to

selection, since regardless in which background the mutation appears, it will grow proportionally to ρ0.
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A.2 Renewal equations from age-dependent branching process

We here derive the renewal eq. (A.1) for a discrete time process and its continuous time analogue from

underlying age-dependent branching process assumptions (Crump and Mode, 1968; Mode, 1968, 1971).

As such, we consider a full stochastic model of survival and reproduction to describe the fate, invasion or

extinction, of a mutation introduced as a single copy in a resident population. The defining assumption of

a branching process is that a new and independent copy of the process begins each time a new individual

is born (Harris, 1963; Mode, 1968, 1971).

To describe the branching process under our general assumptions of the main text section 2.1, let us

introduce the following notations, which will apply to both the discrete and continuous time processes.

First, let Zi(t) stand for the random number of individuals in class Ci at time t that descend from a single

newborn (age class zero) mutant progenitor in class Ci at t = 0, whereby Zi(0) = 1. Second, denote by

Li the random sojourn time of a progenitor of class Ci in that class; the progenitor exits class Ci either

because of death (in which case Li is the lifespan) and/or because a germline mutation occurred. Third,

let

θ(t− Li) =

 1 if t− Li ≥ 0

0 if t− Li < 0 ,
(A.3)

by the indicator random variable describing whether a progenitor of class Ci has exited class Ci by time

t (either by death and/or mutation). Namely, if θ(t−Li) = 0, then the progenitor is still in class Ci at t

(alive without having mutated). Finally, let ni(t) = E[Zi(t)] denote the expected number of individuals at

time t in class Ci that descend from a single class Ci newborn progenitor at t = 0, where the expectation

is over all stochastic events affecting survival and reproduction (we refer to Crump and Mode, 1968;

Mode, 1971 for a construction of the probability spaces for branching processes, here we simply assume

they exist).

A.2.1 Discrete time

Let us now focus on the discrete-time process where t = 0, 1, 2, ... and further introduce the random

number Wi(a) of offspring without new mutations born to the progenitor of class Ci during the time

interval corresponding to the a-th age group where a = 1, 2, ... so that, recall, we begin counting discrete

age classes with 1 (one of the two possible conventions to count discrete age classes, Fig. 3.1 Case, 2000).

Because a branching process starts afresh with the birth of any offspring, the random variable Zi(t)

satisfies the discrete time stochastic renewal equation

Zi(t) = 1− θ(t− Li) +

t∑
a=1

Zi(t− a)Wi(a), (A.4)

which can be understood as follows. First, if θ(t−Li) = 0, then the progenitor is still in class Ci at t and

thus contributes one individual to its lineage. Second, each offspring produced without mutation during
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the time interval corresponding to the a-th age class starts a new independent branching process and thus

contributes Zi(t−a) individuals of class Ci to the progenitor’s lineage at t. Summing over all offspring and

all age groups the progenitors can be in, we obtain the second term in eq. (A.4). In other words, the sum∑t
a=1 Zi(t− a)Wi(a) is the total random number of class Ci individuals at t that descendent from each

of the offspring of the progenitor including the surviving selves (i.e., offspring, offspring from offspring,

offspring from offspring from offspring, etc). Thus, the right-hand side of eq. (A.4) is the progenitor’s

random lineage size at t. Bearing differences of notations and context, eq. (A.4) is conceptually equivalent

to eq. (5.6) of Mode (1974).

Taking the expectation over realizations of the stochastic process over both sides of eq. (A.4) yields

E[Zi(t)] =1− E[θi(t− L)] +

t∑
a=1

E[Zi(t− a)Wi(a)] (A.5)

=1− E[θi(t− L)] +

t∑
a=1

E[Zi(t− a)]E[Wi(a)]

where the first equality follows from the linearity of the expectation operator and the second equality

follows from the assumption of the independence of each new branching process. In order to further

simplify this expression, we first note that the probability that the progenitor is still of class Ci at t is

l̃i(t) = 1 − P(Li ≤ t), and that by standard probability arguments, P(Li ≤ t) is the expectation of the

indicator random variable of the event that the progenitor exits class Ci at t: E[θ(t − Li)] = P(Li ≤

t) (Grimmett and Stirzaker, 2001). Second, we assume stochastic independence between survival and

reproduction, whereby the expected number of offspring without mutations born to a progenitor of class

Ci during the time interval corresponding to the a-th age class is E[Wi(a)] = b̃i(a)l̃i(a), which is the

probability l̃i(a) that the progenitor has survived until age class a without mutating times the expected

number b̃i(a) of its offspring without mutations produced when residing in the a-th age class. Substituting

these quantities into eq. (A.5) and noting that, by definition, ni(t − a) = E[Zi(t − a)], eq. (A.5) can be

written ni(t) = l̃i(t) +
∑t

a=1 ni(t− a)b̃i(a)l̃i(a), which is eq. (A.1). Bearing differences of notations and

context, eq. (A.5) is conceptually equivalent to eq. (5.11) of Mode (1974).

A.2.2 Continuous time

Let us now focus on the continuous time process where t ∈ [0,∞) and for this case, let Ni(t) denote the

random number of offspring without mutations produced until time t by a progenitor of class Ci, where

these offspring are produced at the random times T1(i) ≤ T2(i) ≤ ... ≤ TNi(t) with Tj(i) being the random

time until production of the j-th offspring. Thus, Ni(t) is a renewal counting (or point) process (Karlin

and Taylor, 1975, p. 31) with rate function b̃i(t)l̃i(t), where l̃i(t) is the probability that a progenitor of

class Ci is still in that class at time t (same as in the discrete-time case), and b̃i(t) is the birth rate

of offspring without mutations at t. Because a branching process starts again with the birth of each

offspring, the random variable Zi(t) satisfies under the continuous time process the stochastic renewal
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equation

Zi(t) = 1− θ(t− Li) +

Ni(t)∑
j=1

Zi(t− Tj(i)), (A.6)

where, as in the discrete case, 1 − θ(t − Li) counts the surviving progenitor without mutation and the

sum counts the total number of class Ci individuals at t that descend from each of the offspring of

the progenitor, where the progenitor’s offspring are produced at random times. Bearing differences of

notations and context, eq. (A.6) is conceptually equivalent to eq. (3.1) of Crump and Mode (1968).

Taking the expectation over realizations of the stochastic process over both sides of eq. (A.6) yields

E[Zi(t)] =1− E[θi(t− L)] + E
[Ni(t)∑

j=1

Zi(t− Tj(i))
]

(A.7)

=1− E[θi(t− L)] + E
[Ni(t)∑

j=1

E[Zi(t− Tj(i))]
]

=l̃i(t) + E
[Ni(t)∑

j=1

ni

(
t− Tj(i)

)]
,

where the second line follows from the independence of each new branching process and the third from

the definitions introduced above. Now, owing to Campbell’s theorem relating the rate of a renewal

counting process, here b̃i(a)l̃i(a), and the expectation of a random sum of a function over the process

(e.g., Kingman, 1992, p. 28), we have E
[∑Ni(t)

j=1 ni

(
t− Tj(i)

)]
=
∫ t

0
ni(t − a)b̃i(a)l̃i(a) da and therefore

the eq. (A.7) becomes

ni(t) = l̃i(t) +

∫ t

0

ni(t− a)b̃i(a)l̃i(a) da. (A.8)

Bearing differences of notations and context, eq. (A.8) is conceptually equivalent to eq. (6.1) of Crump

and Mode (1968) once the assumptions of their example 8.2 is endorsed, i.e., stochastic independence

between survival and reproduction.

Eq. (A.8) is also functionally equivalent to the standard renewal equation of population dynamics for

continous age-structured populations (Charlesworth, 1994, eq. 1.41). As such, and as for the discrete-

time case, it then follows from the standard results of population dynamic processes in age-structured

populations (Charlesworth, 1994, p. 27) or from the continuous time branching process formulation

(Crump and Mode, 1968) that asymptotically, as t → ∞, the number ni(t) grows geometrically as

ni(t) ∼ ρti Ki, (A.9)

where Ki is some constant depending on the process and ρi = exp(ri), where ri is the mutant growth
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rate (or Malthusian parameter), which is the unique root of the Euler-Lotka equation

∫ ∞

0

exp(−ari)b̃i(a)l̃i(a) da = 1. (A.10)

Thereby ri ≤ 0 ⇐⇒ R̃i ≤ 1 with R̃i =
∫∞
0

b̃i(a)l̃i(a) being the basic reproductive number of a class i

individual (Karlin and Taylor, 1981, p. 424, Mode, 1971, Theorem 7.2 p. 245, Corrolary 6.1 p. 280).

B Basic reproductive numbers

In this appendix, we present the explicit expressions for R̃0(u,v) for our two biological scenarios

B.1 Joint evolution of reproductive effort and germline maintenance

From the model assumptions given in main text section 3.1.1, we have that a juvenile surviving density-

dependent competition, has a survival probability of one to the adult stage and that each adult of the

least-loaded class survives to the next generation with probability s0(u). In the meantime, the probability

that each type of individual has not acquired a germline mutation is exp (−µ(u)). Therefore, for this

model eq. (3) becomes

l̃0(a,u,v) =

 exp (−µ(u)) if a = 1

s0(u)
a−1 exp (−µ(u)a) if a > 1 ,

(B.1)

while the effective fecundity of the least-loaded class (eq. 2) is

b̃0(a,u,v) = b̃0(u,v) = (1− s̄(v))
f0(u)

f̄(v)︸ ︷︷ ︸
b0(u,v)

(B.2)

since no mutation occurs specifically during reproduction (in addition of the germline mutation men-

tioned above). The effective fecundity depends on the mean survival and fecundity in the population,

respectively, s̄(v) =
∑∞

k=0 sk(v)pk(v) and f̄(v) =
∑∞

k=0 fk(v)pk(v). Here, pi(v) is the probability that

an individual randomly sampled from the resident population carries i deleterious mutations (and so

p(v) = {pi(v)}i∈N for this model). This can be understood by noting that (1− s̄(v)) is the fraction of

open breeding spots available to a juvenile and the probability that the offspring of a given adult acquires

a breeding spot depends on the fecundity of the adult relative to the population average fecundity (as

each juvenile is equally likely to acquire a breeding spot).

Since there is no fixed end to lifespan under the above life-cycle assumptions (so T → ∞), the basic

reproductive number of the least loaded class, eq. (1), is

R̃0(u,v) =

∞∑
a=1

b0(u,v)s0(u)
a−1 exp (−µ(u)a) , (B.3)
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which yields

R̃0(u,v) =
b0(u,v)

exp(µ(u))− s0(u)
, (B.4)

(all our mathematical computations can be followed and confirmed via an accompanying Supplementary

Information, S.I. consisting of a Mathematica notebook). Since b0(u,v) is multiplicatively separable

with respect to its arguments, then it follows from eq. (B.4) that the model satisfies the condition of an

optimisation principle (e.g., Metz et al., 2008). Namely, R̃0(u,v) = F1(u)F2(v) for the functions F1(u) =

f0(u)/[exp(µ(u))− s0(u)] depending only on the mutant and F2(v) = [1− s̄(v)]/f̄(v) depending only on

the resident. It follows that maximising F1(u) is sufficient to ascertain uninvadability and uninvadability

implies convergence stability when the evolutionary dynamics follow an optimization principle (Metz

et al., 2008). Further, the explicit expressions for s̄(v) and f̄(v), and thus the distribution p(v) are not

needed to carry out the invasion analysis. This allows to markedly simplify the evolutionary analysis,

but we will nevertheless work out the resident distribution p(v) so as to have a fully worked example

that allows for consistency checks and illustrating the concepts.

Since we consider a deterministic resident population process, the frequency pk satisfies at equilibrium

the equation

pk(v) =

k∑
i=0

ϕk−i(v)wi(v)pi(v), (B.5)

where wi(v) = si(v) + (1− s̄(v)) fi(v)/f̄(v) is the individual fitness– survival plus effective fecundity–of

an individual with i deleterious mutations, and ϕk is the probability that k deleterious mutations are

produced upon reproduction. Assuming that the mutation distribution is Poisson with mean µ(v) and

σs = σf = σ, then eq. (B.5) becomes structurally equivalent to eq. (1) of Haigh (1978) and eq. (5.3)

of Bürger (2000, p. 300) (with mean fitness w̄ = 1 since population size is constant) and as such the

equilibrium distribution p(v) is Poisson with mean λ(v) = µ(v)/σ (see also the section 1.1.1. in SM).

This completely characterises the genetic state of the resident population and implies that

s̄(v) = s0(v)e
−µ(v) and f̄(v) = f0(v)e

−µ(v). (B.6)

Substituting the explicit expression for the survival and effective fecundities (eq. B.6) into eq. (B.2) and

eq. (B.4) shows that in a monomorphic v population R̃0(v,v) = 1, as required for a consistent model

formulation. Eq. (B.6) generalises the standard mutation-accumulation model of population genetics to

overlapping generations with survival probability depending on the number of deleterious mutations (see

e.g. eq. 3.3 Kimura and Maruyama, 1966).
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B.2 Joint evolution of age at maturity and germline maintenance

From the model assumptions given in the main text section 3.2.1 and using eq. (4) (under T → ∞ since

there is also no definite end to lifepan), the basic reproductive number of the least-loaded class reduces

to

R̃0(u,v) = b̃0(u,v)

∫ ∞

um

l̃0(a,u,v) da, (B.7)

where l̃0(a,u,v) = exp
(
−(µ(ug) + db)a

)
. Substituting the expression for eq. (13) into eq. (B.7) and

integrating yields

R̃0(u,v) = B(xm(u))
(
1− uαb

g

)
exp(−µf)×

exp
(
−(µ(ug) + db)um

)
µ(ug) + db︸ ︷︷ ︸

F1(u)

× (1− γN(v))︸ ︷︷ ︸
F2(v)

. (B.8)

This shows that one can again express the basic reproductive number as a product of the form R̃0(u,v) =

F1(u)F2(v) and thus the optimisation principle (e.g. Metz et al., 2008) applies also in this model. This

means that evaluating N(v) explicitly is not needed to ascertain uninvadability (and uninvadability will

again imply convergence stability for this model). We will nevertheless work it out and in order to derive

an explicit expression for N(v) it suffices to note that in a monomorphic resident population at a joint

demographic and genetic equilibrium, each individual belonging to the least-loaded class must leave on

average one descendant with zero new mutations. Hence R̃0(v,v) = 1 implies that that the population

size at the demographic steady state is

N(v) =
B(xm(v))(1− vαb

g )− (db + µ(vg)) exp
(
µf + (µ(vg) + db)vm

)
γB(xm(v))(1− vαb

g )
, (B.9)

which holds regardless of the effects of deleterious mutations on the vital rates. This is a demographic

representation and generalisation of the surprising simple result noted for unstructured semelparous

populations of constant size that the nature of epistasis of deleterious mutations has no effect on the

genetic load (Kimura and Maruyama, 1966; Gillespie, 2004).

C Individual-based simulations

We here describe how we carried out the individual-based (stochastic) simulations used for the two model

examples in the main text. The simulation algorithms scrupulously implement the life-cycle assumption

of these models with the only differences relative to the analytical model being that (i) population size

is finite and (ii) the mutation rate at the life-history locus is positive µLH > 0 (but kept small) in

the simulations. This makes the evolutionary process in the simulations irreducible (see also discussion

section 2.3.2) and subject to genetic drift along with mutation and natural selection.
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C.1 Joint evolution of reproductive effort and germline maintenance

The simulation algorithm for this scenario (see section 1.3. of S.I for the Mathematica code) follows a

population composed of a finite and fixed number (=7500 in the simulations) of individuals, where each

individual is described by its genetic state (vector of traits consisting of allocation to maintenance, allo-

cation to survival and number of deleterious mutations the individual has). One life-cycle iteration then

proceeds as follows. We start by computing the fecundity of each adult individual, which is determined

by its trait values (eq. (6)). Then, we evaluate the survival probability of each adult individual according

to its trait values (the survival of an individual is given by a Bernoulli random variable with mean given

by its survival probability eq. (6)). After eliminating the dead individuals, we fill the “vacated breeding

spots” by randomly sampling offspring from the relative fecundity of all adult individuals before survival,

thus effectively implementing a Wright-Fisher process for reproduction (Mode and Gallop, 2008). Once

a newborn is chosen to fill the breeding spot, each of its traits mutate independently with probability

(µLH = 0.01 in our actual simulations). The effect size of a mutation follows a Normal distribution with

zero mean and a standard deviation (=0.1 in our simulations). Finally, we allow for deleterious muta-

tions to accumulate at the deleterious mutation locus according to a Poisson distribution with mean that

depends on the life-history locus (as specified by eq. (6)). To obtain the results shown in 2, we initialised

the simulation with a monomorphic population, with no deleterious mutations and life-history trait val-

ues given by the analytically predicted equilibrium. In Table C-4, we have depicted the time-averaged

standard deviations from the main trait for parameter values in Fig. 2. In Fig. 3 we demonstrate the

convergence stability of our simulations and we started the simulations away from the equilibrium for

four different initial values of the traits.

C.2 Joint evolution of age at maturity and germline maintenance

The simulation algorithm for this scenario (see section 2.3. of S.I for the Mathematica code) follows a

population whose size is endogenously determined according to a continuous-time stochastic updating

process using the so-called “thinning” algorithm described in Section 3.1 of Ferriere and Tran (2009),

which allows to exactly implement our life-cycle assumptions. A thinning algorithm is essentially an

algorithm to simulate the points in an inhomogeneous Poisson process (inhomogeneous Poisson processes

can be simulated by “thinning” the points from the homogeneous Poisson process), where the points

or events take place sequentially (see e.g. Chen, 2016 for a conceptual description). Hence, under

this algorithm, each individual is described by a vector specifying its age, allocation to repair, the age

at maturity, and the number of deleterious mutations the individual has. The events in the thinning

algorithm then follow a Poisson point process whose mean is determined by the vital rates (eq. (12)) and

where the occurrence of the events depends on the relative weights set by birth, death, and mutation rates

of an individual. We defined as a “generation” N(u∗) iterations of the thinning algorithm, where N(u∗)

is the analytical prediction of the carrying capacity of the model. This is so because during one iteration

of the thinning algorithm, a maximum of one event can occur (birth, death, or mutation of an individual)
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to one randomly chosen individual and so after having iterated the process N(u∗) times, on average the

total population has been sampled. Thus, in order to produce a single data point in Fig. 4, we ran the six

million(=N(u∗)×Ngenerations ≈ 2000× 3000) iterations of the thinning algorithm. The mutation rate in

the life-history locus is set to µLH = 0.1 and the effect size of the mutation follows a Normal distribution

with zero mean and a standard deviation (=0.07 in our simulations). Simulating the results shown in 4,

we initialised the simulation with a monomorphic population, where individual age is given by a = 1/db

(recall, that db is the baseline mortality, with no deleterious mutations and life-history trait values given

by the analytically predicted equilibrium. To obtain the results shown in 4, we initialised the simulation

with a monomorphic population, with no deleterious mutations and life-history trait values given by the

analytically predicted equilibrium. In Table C-5, we have depicted the time-averaged standard deviations

from the main trait for parameter values in Fig. 2. In Fig. 5 we demonstrate the convergence stability of

our simulations and we started the simulations away from equilibrium for four different initial values of

the traits.
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Figure 1: Key components of the life-history model with mutation accumulation. An individual’s geno-
type is characterised by a life-history locus Lu and a deleterious mutation locus (purple rectangle) Lnm

.
The mutation rate at the life-history locus µLH is considered to be fixed, while the mutation rate µ at
the deleterious mutation locus depends on the life-history trait u and is evolving. Individuals can be
characterised by the life-history allocation trajectory u = {u(a)}a∈T (life-history trait) and the number
nm = {nm(a)}a∈T of deleterious mutations accumulated in the germline throughout lifespan, where a
denotes the age of an individual. The resource allocation trait captures two different types of trade-
offs: (i) between immutability vs life-history and (ii) between different life-history functions themselves
(”classic” life history trade-offs, e.g. Stearns, 1992; Roff, 2008). Hence, the life-history locus affects the
vital rates and thus fitness directly via resource allocation to life-history functions and indirectly through
allocation to germline maintenance since vital rates depend on the number of deleterious mutations. For
the invasion analysis we use the basic reproductive number of the least-loaded class R̃0 as a fitness proxy
(eqs. 1 and 4 as detailed in section 2.3.2).
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Table 1: List of key symbols of the general model.

Key symbols of the model

a Individual age; age a can take either discrete (a ∈ {0, 1, 2, ...}) or continuous
(a ∈ [0,∞]) values over all possible age classes T (e.g. T = [0,∞] in many con-
tinuous age life-history models, as maximum age is often not a fixed number).

u(a) Individual life-history trait expressed at age a (e.g. proportional allocation
fecundity, survival, germline maintenance); formally, u : T → Rn

u = {u(a)}a∈T Full life-history schedule over all age classes (e.g. proportional allocation of
resources to fecundity from birth to death); formally, u ∈ U[T], where U[T]
is a set of all admissible life-history schedules; namely, a set of discrete or
continuous real-valued functions over domain T.

nm(a) Number of deleterious mutations at age a in the locus where deleterious mu-
tations can accumulate; formally, nm : T → N. Since we assume asexual
reproduction, the genetic details of the locus for trait nm(a) is irrelevant (i.e.
it may consist of many underlying loci).

nm = {nm(a)}a∈T. Profile of deleterious mutations across all age classes; formally, nm ∈ N[T] is
an element of the space N[T] of all possible discrete functions of range N over
domain T.

p(v) Equilibrium probability distribution for the number of deleterious mutations in
the resident population carried by individuals across the different age-classes,
formally p(v) ∈ ∆(N × T), where ∆(A) is the set of probability measure over
set A.

ρ0(u,v) Invasion fitness (per-capita growth rate)of zero-class individuals with mutant
allele u in the population resident to trait v; if the least-loaded class dominates
the population.

R̃0(u,v) Basic reproductive number of the least-loaded class, i.e. the expected number
of offspring with zero deleterious mutations produced by an individual with
zero deleterious mutations

b̃0(a,u,v) Effective number of newborns with zero mutations produced by zero-class mu-
tant individuals age a in a resident population (discrete time model); effective
birth rate of newborns with zero mutations of zero class mutant individual of
age a in a resident population (continuous time model).

d0(a,u,v) Death rate of zero-class mutant individual at age a in the resident population

l̃0(a,u,v) Probability of survival of a mutant zero-class individual to age a in a resident
population.

µf(a,u,v) Rate at which germline mutations appear in an offspring when giving birth at
age a.

µs(a,u,v) Rate at which germline mutations appear in an individual at age a.
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Table 2: List of key symbols of “Coevolution of reproductive effort and the mutation rate model” .

Symbols for “Coevolution of reproductive effort and the mutation rate”.

ug, vg Proportional allocation of resources to germline maintenance of mutant and
resident individual, respectively.

us, vs Proportional allocation of resources to survival of mutant and resident individ-
ual, respectively.

N Total population size; exogeneously fixed (N = 7500 in simulations).

fb, sb Baseline (maximal) fecundity and probability of survival, respectively (fb = 5,
sb = 0.5 ).

µ(u) = µs(u) =
µf(u)

Rate at which germline mutations appear in an offspring when giving birth and
when surviving from generation to the next.

µb Baseline mutation rate at which germline mutations appear; mutation rate,
when no resources are allocated into germline maintenance.

αf, αs Efficiency parameters (or scaling factors) of investing resources into fecundity
and survival, respectively; lower values of αf, αs corresponds to a higher effi-
ciency of investment; analytical results obtained for αf = αs = α (α = 0.02,
α = 0.1, α = 0.2 in simulations).

αµ Efficiency parameter (or scaling factor) of investing resources into germline
maintenance; higher value of αµ corresponds to a higher efficiency of invest-
ment; (αµ = 2).
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(c) Uninvadable mutation rate µ(u∗).
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(d) The mean number of novel mutations λ(u∗).
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Figure 2: Predictions from the analytical model (solid lines) and from individual-based simulations of
a finite population (circles) for the uninvadable life-history strategies u∗ = (u∗

g, u
∗
s ) (panel a and b)

and the mean number of novel mutations λ(u∗) (panel c) as functions of baseline mutation rate µb.
The solution for the individual-based simulations is a time-averaged mean values, measured over 7500
generations while starting the simulation at the analytically predicted equilibrium (see Appendix C for
details about the simulations and Table C-4 for the time-average standard deviations from the mean;
see S.I. for the simulation code). The different colours represent different values of the efficiency α of
reproduction and survival (smaller values of α correspond to more efficient returns from investment into
vital rates). Parameter values: fb = 5, αµ = 2, sb = 0.5, σ = σf = σs = 0.2; for simulations: N = 7500,
fb = 5, sb = 0.5, the mutations in the life-history locus follow a Normal distribution with zero mean and
a standard deviation of 0.1.
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Figure 3: Evolutionary convergence towards the uninvadable life-history strategy u∗ = (u∗
g, u

∗
s ) ≈

(0.50, 0.40) (grey circle). The arrows give the analytic direction of selection at any population state
(eqs. 8 and 9) and the colourful jagged lines represent the evolution of population average trait values
over evolutionary time in simulations (from initial time, up to 3000 generations). Simulation were started
from four different initial conditions: (i) vg = 0.1, vs = 0.1, (ii) vg = 0.1, vs = 0.7, (iii) vg = 0.7, vs = 0.1,
and (iv) vg = 0.7, vs = 0.7. The colour of jagged lines indicates the number of generations since the
start of the simulation (the color bar on the right-hand-side indicates the the number of generations).
The simulations indicate that the population converges close to the uninvadable strategy within 3000
generations. Parameter values: fb = 5, αµ = 2, sb = 0.5, σ = σf = σs = 0.2; for simulations: N = 6000,
fb = 5, sb = 0.5, the mutations in the life-history locus follow a Normal distribution with zero mean and
a standard deviation of 0.05.

41



Table 3: List of key symbols of “Coevolution of age at maturity and germline maintenance model”.

Symbols for “Coevolution of age at maturity and germline maintenance model”.

ug, vg Proportional allocation of resources to germline maintenance of mutant and
resident individual, respectively.

um, vm Proportional allocation of resources to germline maintenance of mutant and
resident individual, respectively.

N(v) Total population size; endogeneously determined and thus depends on the res-
ident trait v.

x(t) Body size of a mutant individual at age t.

xm(u) Body size of a mutant individual at maturity.

B(xm(u)) Surplus energy rate, i.e., rate of energy available to be allocated to life-history
functions; we assume that the surplus energy scales as the power with size, i.e.
energy available to mature individuals is B(xm(u)) = axm(u)

c.

µf Rate at which germline mutations appear in an offspring when giving birth
(fixed parameter, µf = 0 in simulations).

µs(ug) Rate at which germline mutations appear in a mutant individual over time
(independent of age).

µb Baseline mutation rate at which germline mutations appear; mutation rate,
when no resources are allocated into germline maintenance.

db Baseline death rate.
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(a) Uninvadable investment into maintenance u∗
g.
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(b) Uninvadable switching time u∗
m.
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(c) Population size N(u∗).

0.0 0.1 0.2 0.3 0.4 0.5
1600

1800

2000

2200

2400

2600

2800

Baseline mutation rate, μb

P
o
p
u
la
ti
o
n
si
ze
,
N
(u

*
)

(d) Uninvadable mutation rate µs(u
∗
g).
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Figure 4: Predictions from the analytical model (solid lines) and from individual-based simulations (circles
obtained as averages) for uninvadable life-history strategies u∗ = (u∗

m, u
∗
g) (panel a and b), population size

N(u∗) (panel c) and mutation rate µs(u
∗
g) as functions of baseline mutation rate µb for different values

of baseline mortality db (db = 0.1250 - black, db = 0.1625 - red, db = 0.2 - orange). The dashed lines
represent the “classical life-history” prediction (i.e. when µ(u∗

g) → 0 and u∗
g → 0), where the colours of the

dashed represent the different values for baseline death rate db parameter and match the values of solid
lines (db = 0.1250 - black, db = 0.1625 - red, db = 0.2 - orange). The solution for the individual-based
simulations are obtained as time-averaged mean values measured over 3000 ”generations” while starting
the simulation at analytically predicted equilibrium for the trait values and population size (Table C-5
for the time-average standard deviations from the mean; see S.I. section 2.3 for the code and for more
details). The different colours represent different values of baseline mortality rate db. Parameter values:
σ = σb = σd = 0.2, x0 = 1, a = 0.9, c = 0.75, γ = 0.00035, β = 1, µf = 0, the mutations in the
life-history locus follows a Normal distribution with zero mean and a standard deviation of 0.07.
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Figure 5: Evolutionary convergence to the uninvadable life-history strategy u∗ = (u∗
g, u

∗
m) ≈ (0.41, 11.6)

(grey circle). The arrows give the direction of selection at any resident population state (eqs. 16 and
17) and the colourful jagged lines represent the evolution of the population average trait values over
evolutionary time in simulations (from initial time, up to 3500 generations). Simulation were started
from four different initial conditions: (i) vg = 0.1, vm = 9, (ii) vg = 0.1, vm = 14, (iii) vg = 0.8, vm = 9,
and (iv) vg = 0.8, vs = 14. The colour of jagged lines indicates the number of generations since the
start of the simulation (the color bar on the right-hand-side indicates the the number of generations).
The simulations indicate that the population converges close to the uninvadable strategy within 3500
generations. Parameter values: σ = σb = σd = 0.2, x0 = 1, a = 0.9, c = 0.75, γ = 0.00035, β = 1, µf = 0,
db = 0.1250, the mutations in the life-history locus follow a Normal distribution with zero mean and a
standard deviation of 0.07.
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(a) Body size at maturity xm(u∗).
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(b) Effective birth rate b0(u
∗,u∗).
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Figure 6: Predictions from the analytical model for the body size at maturity xm(u
∗) and the effective

birth rate b0(u
∗,u∗) at the uninvadable population state as a function of baseline mutation rate for

different values of mortality rate db (db = 0.1250 - black, db = 0.1625 - red, db = 0.2 - black). The
dashed lines represent the “classical life-history” prediction (i.e. when µ(u∗

g) → 0 and u∗
g → 0), where

the colours of the dashed represent the different values for db parameter and match the values of solid
lines (db = 0.1250 - black, db = 0.1625 - red, db = 0.2 - black). Parameter values: σ = σb = σd = 0.2,
x0 = 1, a = 0.9, c = 0.75, γ = 0.00035, β = 1, µf = 0.

Table C-4: List of standard deviations from the mean (measured over 7500 generations), for the same
parameter values as in Figure 2.

Standard deviations from the mean

α = 0.02, black dots in Figure 2

u∗
g 0.000777063, 0.000249208, 0.0000854773, 0.0000947966, 0.000101641,

0.0000581778, 0.0000428978, 0.0000407067, 0.0000428447, 0.000030804,
0.0000336098

u∗
s 0.000391751, 0.0005146, 0.000661941, 0.000727254, 0.000479774, 0.000537005,

0.000484383, 0.000848656, 0.00056459, 0.000804211, 0.000868807

α = 0.1, black dots in Figure 2

u∗
g 0.0000302984, 0.0000981018, 0.000179639, 0.0000996037, 0.000115564,

0.0000812885, 0.000067068, 0.000065316, 0.0000504356, 0.0000463299,
0.0000454094

u∗
s 0.000179931, 0.000183683, 0.000207313, 0.000220466, 0.000222421,

0.000228642, 0.000146617, 0.000105734, 0.000203143, 0.000130473,
0.000201466

α = 0.2, black dots in Figure 2

u∗
g 0.0000054602, 0.0000182402, 0.0000575673, 0.000186935, 0.000116924,

0.000142281, 0.0000772622, 0.0000947318, 0.0000501496, 0.0000505749,
0.0000701535

u∗
s 0.000127794, 0.000136637, 0.000128277, 0.000117642, 0.000154658,

0.0000981669, 0.0000895615, 0.000126695, 0.000160533, 0.000109858,
0.0000800033
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Table C-5: List of standard deviations from the mean (measured over 1500 generations), for the same
parameter values as in Figure 4.

Standard deviations from the mean

db = 0.1250 (black dots in Figure 4 panels (a) and (b))

u∗
g 0.000125415, 0.000103887, 0.0000660474, 0.000065451, 0.0000702922,

0.0000786035, 0.000147816, 0.0000738585, 0.0000553008, 0.0001155,
0.0000481214

u∗
m 0.00256546, 0.000744261, 0.0135737, 0.00215342, 0.0011091, 0.00201475,

0.000621817, 0.00197732, 0.0116396, 0.0176991, 0.0105113

db = 0.1625 (red dots in Figure 4 panels (a) and (b))

u∗
g 0.000103311, 0.0000832005, 0.000120597, 0.0000964527, 0.00010082,

0.0000995489, 0.0000850969, 0.0000694514, 0.0000542216, 0.000100299,
0.0000734388

u∗
m 0.000491412, 0.0050249, 0.00440557, 0.00522081, 0.0133449, 0.000882752,

0.00231452, 0.00266059, 0.00252432, 0.0030314, 0.00192048

db = 0.2000 (orange dots in Figure 4 panels (a) and (b))

u∗
g 0.000153254, 0.000118768, 0.0000812339, 0.00022346, 0.0000685336,

0.000188124, 0.0000844065, 0.0000943718, 0.000145967, 0.000132834,
0.0000880514

u∗
m 0.00237881, 0.000748884, 0.00358715, 0.00309034, 0.00149716, 0.00786109,

0.00192429, 0.0187296, 0.0126454, 0.0081957, 0.00739136
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