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Abstract

We develop a model for the evolution of preferences guiding behavior in pairwise interactions in group-

structured populations. The model uses the conceptual platform of long-term evolution theory and covers

different interaction scenarios, including conditional preference expression upon recognition of interactant’s type.

We apply the model to the evolution of semi-Kantian preferences at the fitness level, which combine self-interest

and a Kantian interest evaluating own behavior in terms of consequences for own fitness if the interactant also

adopted this behavior. We look for the convergence stable and uninvadable value of the Kantian coefficient, i.e.,

the weight attached to the Kantian interest, a quantitative trait varying between zero and one. We consider

three scenarios: (a) incomplete information; (b) complete information and incomplete plasticity; and (c) complete

information and complete plasticity, where individuals can, not only recognize the type of their interaction partner

(complete information), but also conditionally express the Kantian coefficient upon it (complete plasticity). For

(a), the Kantian coefficient tends to evolve to equal the coefficient of neutral relatedness between interacting

individuals; for (b), it evolves to a value that depends on demographic and interaction assumptions, while for

(c) individuals become pure Kantians when interacting with individuals of the same type, while they apply the

Kantian coefficient that is uninvadable in a panmictic population under complete information when interacting

with individuals with a different type. Overall, our model connects several concepts for analysing the evolution of

behavior rules for strategic interactions that have been emphasized in different and sometimes isolated literatures.
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1 Introduction

This paper is about formalizing natural selection on rules guiding individual behavior in strategic interactions, a

central question in evolutionary game theory (Maynard Smith and Price, 1973; Dawkins, 1980; Maynard Smith,

1982). By behavior we mean a “strategy”, i.e., “a specification of what an individual will do in any situation in

which it may find itself” (Maynard Smith, 1982). In the original evolutionary game theory model, each individual

is programmed to play a certain strategy regardless of the strategies used by others in the population. One way to

think about this is that the strategy is innate, thus a genetically determined trait. This view led to a vast theoretical

literature analyzing the genetic evolution of strategies under all sorts of biological scenarios as is illustrated by the

vast literature on the evolution of fighting and cooperation in plants and animals (e.g., the books by Maynard Smith,

1982; Bulmer, 1994; Giraldeau and Caraco, 2000; Vincent and Brown, 2005; McNamara and Leimar, 2020). Here,

it is the population genetic process alone that determines the “evolutionary stable strategy” since strategies are

inherited from parent to offspring and selected among alternatives by way of differential survival and reproduction.

However, the view that strategies are innate is restrictive, as it rules out situations where individuals have capacities

to change their strategy when interacting with their environment. Such processes have been incorporated into

evolutionary game theory through several alternative notions, such as the concepts of the “culturally stable” and

the “developmentally stable” strategy (Dawkins, 1980; Maynard Smith, 1982). Here, the behavior of an individual

is the outcome of some updating rule(s), typically imitative or experiential, for strategy selection during its lifespan.

This in turn raises the question of what should be the evolutionarily stable rule for individual strategy selection

in strategic interactions? While this question was raised early in the history of evolutionary game theory (Harley,

1981; Maynard Smith, 1982), perhaps more controversy than conclusions where initially reached (e.g., Selten and

Hammerstein, 1984), and it is only more recently that this question has gained some renewed theoretical attention

in evolutionary biology (e.g., Arbilly et al., 2010; Dridi and Lehmann, 2015; Dridi and Akçay, 2018; McNamara

and Leimar, 2020). In the meantime, however, economists and mathematical game theorists also produced insights

about how various individual choice rules induce change in population behavior (e.g., the books by Sugden, 1986;

Weibull, 1997; Fudenberg and Levine, 1998; Hofbauer and Sigmund, 1998; Samuelson, 1998; Young, 1998; Sandholm,

2011). One obstinate result of this area is that updating rules of strategies–whether imitative or experiential–relying

on payoff tend to converge to Nash equilibria (Hofbauer and Sigmund, 1998; Fudenberg and Levine, 1998; Cressman

and Tao, 2004). Hence, in behavioral equilibrium, it is as if individuals strive to maximize the payoff function at

hand and thus as if they are rational decision makers, in the sense that among a set of options they choose the one

they prefer (Mas-Colell et al., 1995).

The next natural question from an evolutionary perspective is then: if the evolving trait is the payoff function to

be maximized, which payoff function is evolutionarily stable? This is the question that the literature on preference

evolution addresses (e.g., Guth, 1995; Ok and Vega-Redondo, 2001; Dekel et al., 2007; Heifetz et al., 2007b,a; Akçay

and Van Cleve, 2009; Alger and Weibull, 2010, 2012, 2013). Because information plays a central role in strategic

interactions (Fudenberg and Tirole, 1991), the formalizations of preference evolution have covered a variety of

informational scenarios (e.g., Ok and Vega-Redondo, 2001; Dekel et al., 2007; see Alger and Weibull, 2019; Alger,

2022 for surveys). Focusing on the evolution of preferences is useful, because payoff-based choice rules can otherwise
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come in endless mechanistic forms–some more biologically and cognitively inspired than others (Sutton and Barto,

1998; Russell and Norvig, 2016) and gives hope to yield some general predictions about equilibrium behavior.

The goal of this paper is to contribute to the literature on the evolution of rules guiding individual behavior in

two ways and is thus divided in two parts. In the first part, we connect a number of concepts and results to analyze

the long-term evolution (sensu Eshel, 1996; Eshel et al., 1998) of behavioral mechanisms for equilibrium action in

group structured population, whereby this part can be read as a methodological review. In the second part, we push

forward within this framework the evolutionary analysis of the class of preferences involving a mix between self-

interest and an interest in evaluating own behavior in the light of the consequences for own payoff if others adopted

this behavior. This is the class of semi-Kantian preferences, which, in the words of Binmore (1998, p. 191), can be

seen as hybrid preferences combining both the categorical imperative of Nash and that of Kant. Bergstrom (1995)

show that the evolutionarily stable strategy in interactions between siblings could be interpreted as if individuals

had such preferences, an interpretation that should hold more generally when interactions occur between related

individuals. Semi-Kantian preferences have then indeed been shown to be evolutionarily stable and uninvadable

under various transmission rules when population structure results from limited genetic or cultural mixing among

interacting individuals, when interacting individuals cannot observe each other’s preferences (Alger and Weibull,

2013, 2016; Alger et al., 2020). However, so far the evolutionary convergence towards semi-Kantian preferences

has not been ascertained and their evolution has not been analyzed under different informational assumptions.

We provide analyses of convergence stability and uninvadability of semi-Kantian preferences in three different

informational scenarios: (a) incomplete information; (b) complete information and incomplete plasticity (interacting

individuals can observe each other’s preferences, and an individual’s preferences to not depend on the other’s

preferences); and (c) complete information and complete plasticity (interacting individuals can observe each other’s

preferences, and an individual’s preferences can depend on the other’s preferences). As will be seen, the different

informational and plasticity assumptions lead to quite different evolutionary outcomes.

Our aim is not to obtain the most general conclusions about the open questions we address, but rather to illustrate

how demographic and informational features jointly contribute to the understanding of the long-term evolution of

preferences in structured populations. As such, we consider only pairwise interactions and restrict attention to

the parametric class of semi-Kantian preferences and the evolution of the Kantian coefficient, a quantitative trait

varying between zero and one, which represents the weight attached to the Kantian interest.

2 Evolutionary invasion analysis of behavioral mechanisms

2.1 Biological assumptions for pairwise interactions

We consider a population of asexually reproducing individuals that are demographically homogeneous (no effective

age, stage or sex structure). The population occupies a habitat with an infinite and constant number of groups (or

demes, or spatial subdivisions), each of which is occupied by exactly two individuals and so the population is of

constant size. Each individual is characterized by a type belonging to a type space Θ that affects its phenotype—

the collection of any relevant morphological, physiological or behavioral measurable feature of the individual. We
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consider a demographic process where the population is censused at discrete time steps, between which the following

events occur in cyclic order. (a) In each group, the pair of individuals engage in an interaction. Some process

(learning, exchange of information, etc) leads to a pair of equilibrium strategies being expressed. The equilibrium

strategy pair, which may depend on the individuals’ types as well as the types present in the population at large,

determines some outcome (for example, the material payoff of each individual). (b) Each individual in each group

produces a large number of juveniles according to the outcome of the pairwise interaction and eventually dies subject

to some death process,1 which may also depend on the outcome of the pairwise interaction. (c) Juveniles remain

in the natal group with some fixed probability. With complementary probability, assumed to be non-zero, they

migrate out of their natal group and survive dispersal with a certain probability that may depend on the outcome

of the interaction between the juvenile’s parent and its neighbor. (d) In each group, the open reproductive spots

vacated by deceased adults are randomly filled up by competing juveniles, who then become adults.

2.2 Invasion and individual fitness

We adopt a standard invasion analysis framework and consider a population that is monomorphic for some resident

type θ ∈ Θ in which a mutant type τ ∈ Θ arises (e.g., Fisher, 1930; Eshel and Feldman, 1984; Parker and

Maynard Smith, 1990; Metz et al., 1992; Charlesworth, 1994; Ferrière and Gatto, 1995; Eshel, 1996). It then follows

from applications of invasion analysis to our demographic process assumptions of section 2.1 (see Box 1) that any

mutation τ ∈ Θ, which is introduced in a single individual in a monomorphic population with the resident type

θ ∈ Θ, eventually goes extinct with probability one if and only if the invasion fitness (the geometric growth rate)

of the mutant type, denoted W (τ, θ), satisfies

W (τ, θ) ≤ 1. (1)

Here, the “1” can be interpreted as the growth rate of a resident type in a monomorphic resident population, which,

owing to the fact that the population is of constant size can, on average, only replace itself.

Invasion fitness can be represented as the individual fitness of a randomly sampled mutant τ descending from

the individual in which the mutation initially appeared, averaged over the cases where the mutant interacts with

another member of the same lineage and those where it interacts with an individual from a different lineage (who

is thus of the resident type θ):

W (τ, θ) = [1− r(τ, θ)] w̃1(τ, θ) + r(τ, θ) w̃2(τ, θ), (2)

where w̃i(τ, θ) is the individual fitness of a mutant when there are i ∈ {1, 2} mutants in its group and the population

is otherwise monomorphic for θ, and r(τ, θ) is the pairwise relatedness between a τ mutant and its group neighbor

(see Box 1 for a derivation of eq. (2)). Pairwise relatedness is the probability that, conditional on an individual

being of type τ , the group neighbor belongs to the same ancestral lineage and is thus also of type τ , whereby

both individuals are identical-by-descent (Malécot, 1969); note that since migration is assumed non-zero, we have

r(τ, θ) < 1. Whether relatedness r(τ, θ) depends on both the mutant and the resident type, only on the resident

type, or neither, depends on demographic and interaction assumptions. For instance, relatedness is independent of
1While we allow for individuals surviving from one demographic time point to the next, the survival probability is assumed indepen-

dent of age, so that there is no effective age structure in the population.
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the types for family-structured populations, in which case it is determined only by the pedigree relatedness, e.g.

r = 1/2 for full-siblings [as implied by the model of Michod, 1980, which also entails that eq. (2) applies to sexual

reproduction in family-structured populations in the absence of inbreeding].

When W (τ, θ) is differentiable (which is not always the case), a resident type θ∗ is locally convergence stable if

and only if the first two following conditions hold, while it is locally uninvadable if the first and the third conditions

hold (Eshel, 1983; Taylor, 1989; Christiansen, 1991; Geritz et al., 1998):

S(θ∗) =
∂W (τ, θ)

∂τ

∣∣∣∣
τ=θ=θ∗

= 0 (3)

J(θ∗) =
dS(τ)

dτ

∣∣∣∣
τ=θ=θ∗

< 0 (4)

H(θ∗) =
∂2W (τ, θ)

∂τ2

∣∣∣∣
τ=θ=θ∗

< 0. (5)

Here, S(θ), J(θ) , and H(θ), stand respectively for the selection gradient, the selection Jacobian, and the selection

Hessian, evaluated at the resident type θ. A type satisfying S(θ∗) = 0 will be called a singular type (or a singularity).2

There is a non-trivial relationship between the static conditions (3)-(5) obtained from invasion fitness and dynamic

stability. Namely, for mutants with small effects on the phenotype, i.e. the difference |θ − τ | is small, a singular

type θ∗ satisfying conditions (4)-(5) is a (i) local attractor of the evolutionary dynamics under gradual evolution

and (ii) resistant to invasion by small deviations.3

2.3 Behavioral equilibrium

In applications of evolutionary game theory, an individual’s type is often simply taken to be its strategy to be applied

in the interaction at hand (e.g., Maynard Smith and Price, 1973; Bishop and Cannings, 1978). Yet many models

decouple types from strategies, and we do so as well. In order to obtain a full description of how individual fitness

depends on own type and neighbor’s type — a dependence that in eq. (2) was captured through the mappings

w̃1 : Θ2 → R+ and w̃2 : Θ2 → R+, without reference to the strategies used by the individuals — we begin by

defining individual fitness as a function of the strategies used, and then we introduce notation and assumptions for

how the equilibrium strategies depend on the types.

Letting X denote the set of strategies that each individual has access to when interacting with its neighbor, the
2When invasion fitness is differentiable, the quantities S(θ), H(θ), and J(θ) in fact allow for a complete classification of the singularities

of the evolutionary dynamics (Geritz et al., 1998). Thus, when H(θ∗) > 0 and J(θ∗) < 0, a singular type θ∗ is an evolutionary branching

point; namely, an attractor of the evolutionary dynamics that subsequently splits the population into distinct morphs leading to the

coexistence of different types in a protected polymorphism. When H(θ∗) < 0 and J(θ∗) > 0 we have a so-called garden of eden state of

the evolutionary dynamics, an uninvadable trait value that is unattainable by gradual evolution. Finally, if H(θ∗) > 0 and J(θ∗) > 0

then the singular type θ∗ is a an uninvadable repellor.
3This follows from the fact that under the full evolutionary dynamic process of quantitative traits (those whose state space is Θ ⊂ R

or more generally Θ ⊂ Rd), the selection gradient S(θ) describes the direction of selection on small trait deviations regardless of

population genetic states and demographic structures (Rousset and Billiard, 2000, Rousset, 2004, p. 206, Geritz, 2005, Priklopil and

Lehmann, 2021). This entails that any mutant invading the population when rare will eventually substitute the resident and recurrent

mutations will drive the trait towards the singularity within its neighborhood when condition (3) is satisfied. This result was first noted

in a special case by Hamilton (1964) and called “a gift from god” (Hamilton, 1988). See also Eshel et al. (1997) for a different line of

argument reaching the same conclusions.
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individual fitness function w : X 3 → R+ is defined such that w(xi, xj , y) gives the expected number of descendants

(including the surviving self) produced over one demographic time period by an adult individual i expressing

strategy xi when matched to a group neighbour j expressing strategy xj , when individuals in the population at

large all use strategy y. An example is provided in Box 2. Note that any individual fitness function is subject to

the demographic consistency relation w(y, y, y) = 1 for all y ∈ X .

Turning now to the equilibrium strategies, in a population with a resident type θ and a mutant type τ , each

group either has zero, one, or two mutants. For groups with two residents (resp. two mutants), we denote by y∗s (θ)

(resp. x∗
s (τ, θ)) an equilibrium strategy for each individual, where the index s refers to same type (note that we rule

out equilibria in which two identical individuals use different strategies). For mixed groups, with one resident and

one mutant, let x∗
d(τ, θ) denote the mutant’s equilibrium strategy and y∗d(θ, τ) the resident’s equilibrium strategy,

where the index d stands for different types. Importantly, throughout we assume that for any type pair (θ, τ) ∈ Θ2,

there exist unique equilibrium strategies y∗s (θ),x∗
s (τ, θ), and (x∗

d(τ, θ), y
∗
d(θ, τ)). This implies that the mappings w̃1

and w̃2 used in eq. (2) are well defined, as follows:

w̃1(τ, θ) =

 w(x∗
d(τ, θ), y

∗
d(θ, τ), y

∗
s (θ)) if τ ̸= θ

w(x∗
s (θ, θ), x

∗
s (θ, θ), y

∗
s (θ)) if τ = θ,

(6)

and

w̃2(τ, θ) = w(x∗
s (τ, θ), x

∗
s (τ, θ), y

∗
s (θ)). (7)

How do the equilibrium strategies arise? In the evolutionary game theory literature, a variety of processes,

or mechanisms, of interdependent strategy expression have been examined, including reactive strategies, behavior

response rules, learning rules, or developmental rules (e.g., Maynard Smith, 1982; McNamara et al., 1999; Akçay

and Van Cleve, 2009; Killingback and Doebeli, 2002; Taylor and Day, 2004; André and Day, 2007; Dridi and Akçay,

2018; McNamara and Leimar, 2020). In each case, a dynamic system drives strategy expression over time, and

these behavioral dynamics reach an equilibrium, which determines survival and reproduction. One way to formalize

these mechanisms is to posit that the equilibrium strategies solve a fixed-point problem. Thus, for mixed groups,

let there be two mappings, Md : Θ2 × X 2 → R for the mutant type and Rd : Θ × X 2 → R for the resident type,

which capture the process at hand, and which are such that an equilibrium pair of strategies satisfies the fixed-point

system of equations:  Rd(θ, y
∗
d, x

∗
d) = 0

Md(τ, θ, x
∗
d, y

∗
d) = 0.

(8)

The mechanism Md is parametrized by both the mutant and the resident type, while Rd is parametrized only by

the resident type. This is so because when individuals interact their strategy may depend on (i) their own type

and strategy, (ii) the strategy of their interaction partner, and (iii) on strategies in the population at large, which

depends only on the resident type when the mutant is rare (see also eq. 10 below). Solving for x∗
d and y∗d produces

the dependence of each strategy on both types, i.e., x∗
d = x∗

d(τ, θ) and y∗d = y∗d(θ, τ). For the equilibrium strategy

used in mutant-mutant interactions, let there be a mapping Ms : Θ
2 ×X → R which describes the process whereby

a mutant interacts with another mutant as a function of the opponent’s strategy. Restricting attention to settings
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in which both mutants then use the same strategy in equilibrium, this is assumed to satisfy the fixed-point equation

Ms(τ, θ, x
∗
s ) = 0. (9)

The behavioral mechanism Ms is parametrized by both the mutant and the resident type, because the strategy used

in the population at large (which depends on the resident type) may affect the strategy used in a mutant-mutant

pair. Hence, the solution of eq. (9) implicitly defines the equilibrium strategy as a function of both τ and θ, so

that we can write x∗
s (τ, θ). Finally, for the equilibrium strategy in resident-resident interactions, the equilibrium

strategy y∗s (θ) solves the fixed-point equation

Rs(θ, y
∗
s ) = Ms(θ, θ, y

∗
s ) = 0, (10)

where Rs : Θ×X → R is the behavioral mechanism characterizing the (same) equilibrium strategy of each individual

in a resident pair.4 By contrast to the equilibrium strategy between two mutants, which depends both on the mutant

and the resident type, the equilibrium strategy between two residents depends only on the resident type.

2.4 Nash equilibrium and utility function

Many formalizations of the behavioral fixed points (8)–(10) consist in assuming that strategies equilibrate by

being guided by some payoff function and adopting assumptions such that the dynamics lead to a Nash equilibrium

according to this payoff function. In such models, the mappings Rs, Rd, Ms, and Md can be thought of as describing

the best response functions according to the payoff function. In equilibrium, it is thus as if individuals maximize

this payoff function, given the strategy used by the opponent. One class of such models takes the payoff function

to be a utility function, which represents an individual’s preferences.5 In our setting, given some resident utility

function θ and some mutant utility function τ , the strategy y∗s (θ) (resp. x∗
s (τ, θ)) would be the strategy in X that

maximizes the utility of a resident (resp. that of a mutant), given that the resident (resp. mutant) with whom it

interacts also uses strategy y∗s (θ) (resp. x∗
s (τ, θ)). Likewise, the strategy y∗d(θ, τ) would be the strategy in X that

maximizes the utility of the resident, given that the mutant with whom it interacts uses strategy x∗
d(τ, θ), while the

strategy x∗
d(τ, θ) would be the strategy in X maximizing the mutant’s utility, given that the resident with whom it

interacts uses strategy y∗d(θ, τ).
4Invasion fitness eq. (2) must be defined for all τ ∈ Θ including τ = θ in which case it describes the growth ratio of the lineage

of a single individual with type τ = θ in an otherwise monomorphic population with type θ. Since owing to eq. (10) all individuals

use strategy y∗s (θ) in such a fully monomorphic populations even if interactions occur between same and different lineage members,

all individuals are demographically exchangeable, i.e., all their vital rates are the same, so that the demographic consistency relation

W (θ, θ) = 1 is verified.
5An individual’s utility function is indeed simply a representation of its preferences. For any pair of strategies x and y, an individual’s

preferences over available strategies tell whether the individual prefers x, y, or is indifferent between the two. Under certain conditions,

such a preference ordering can be fully described by a function that associates a real number to each strategy, namely the utility function

(see, e.g., Mas-Colell et al., 1995; Binmore, 2011). An individual is assumed to choose a strategy with the highest possible value of the

function, since this is the strategy it prefers. Utility maximization is not to be taken literally: it is simply a mathematical tool used

to describe behavior that amounts to choosing the preferred item from the strategy set. A pair of strategies then constitutes a Nash

equilibrium if each individual uses a strategy which, given the other individual’s strategy, is the one it prefers.
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In the remainder of this paper, we endorse this approach and rely on results showing that among the set of all

continuous utility functions, a utility function representing semi-Kantian preferences emerges as being particularly

viable from an evolutionary perspective (Alger and Weibull, 2013; Alger et al., 2020). For some individual i who

uses strategy xi when it neighbour uses strategy xj , and given that strategy y∗ is played at large in the population,

this utility function is defined as

uκi
(xi, xj | y∗) = (1− κi)w(xi, xj , y

∗) + κi w(xi, xi, y
∗), (11)

where w is the individual fitness function defined above. In the first term we see i’s realized fitness, given the

strategies used. In the second term we see the fitness that i would have realized if — hypothetically — the

opponent used i’s strategy (xi) instead of strategy xj . Since the latter implies that the individual evaluates what

would happen if others were to follow the same course of action as itself, it can be interpreted as capturing a Kantian

moral concern (Kant, 1785). These preferences were therefore dubbed Homo moralis (Alger and Weibull, 2013),

yet they apply regardless of the organism under consideration in our life-cycle assumptions of section 2.1. We will

call the parameter κi the Kantian coefficient and restrict it to the interval [0, 1]. In the remainder of this paper,

we treat the Kantian coefficient as being determined by an individual’s type and investigate its evolution under

three different scenarios: (a) incomplete information, (b) complete information with incomplete plasticity, and (c)

complete information with complete plasticity. Each of these scenarios, together with the utility function (11),

defines a specific set of behavioral mechanisms (8)–(10), detailed in the next section.

3 Evolution of the Kantian coefficient

For simplicity, we throughout restrict attention to settings where w is twice continuously differentiable and strictly

concave. We further take the strategy space X to be an open and convex subset of R. These assumptions together

imply that any equilibrium strategy must satisfy first-order conditions, and this facilitates the analysis. To rule

out trivial settings in which an individual’s strategy has no impact on the opponent’s fitness, we also assume that

∂w(x, y, z)/∂y ̸= 0 for all (x, y) ∈ X2. By convention, we let ∂w(x, y, z)/∂y > 0 for all (x, y) ∈ X2, meaning

that an increase in the strategy of an individual’s opponent enhances the individual’s fitness.6 Finally, we assume

that ∂2w(x, y, z)/∂y∂x has the same sign for all (x, y) ∈ X2, and we will say that the strategies are strategic

complements if ∂2w(x, y, z)/∂y∂x > 0, strategic substitutes if ∂2w(x, y, z)/∂y∂x < 0, and strategically neutral if

∂2w(x, y, z)/∂y∂x = 0.

3.1 Incomplete information

3.1.1 Behavioral equilibrium

Under incomplete information, an individual cannot observe the type of its interaction partner. It can still have

information about the matching distribution in the pairwise interaction, i.e., the probability that the partner belongs
6This entails no loss of generality, and simply depends on how one defines the strategy set. For example, if the interaction at hand

is a public goods game, then let y denote the opponent’s contribution to the public good. If the interaction at hand is a common pool

resource game, then let y denote the inverse of the size of the opponent’s extraction.
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to the same lineage. One-shot interactions between perfect strangers are examples of this kind of interaction, as

are interactions between family members when the only available information is the degree of kinship between

interaction partners. We assume that individuals hold the belief that the probability of being matched with an

individual from the same lineage is given by r(τ, θ).7 In this setting, an individual’s type is some value of the

Kantian coefficient, and the type space is the interval [0, 1]. Given these assumptions, an individual can condition

its strategy only on the strategy that it expects its neighbor to use, given the belief on the matching distribution.

Since any individual uses the same strategy whether the neighbor has the same or a different type, we simplify the

notation by setting x∗
s = x∗

d = x∗ and y∗s = y∗d = y∗, where x∗ is the equilibrium strategy of mutants and y∗ that of

residents. A strategy pair (x∗, y∗) is a (Bayesian) Nash equilibrium if (a) y∗ is a preferred strategy for a resident,

given that other residents use strategy y∗; and (b) x∗ is a preferred strategy for a mutant, given that residents use

y∗ and the other mutants use x∗, and given that the mutant applies the belief that the probability of being matched

with another mutant is

r(τ, θ) = r̃(x∗(τ, θ), y∗(θ)), (12)

where on the right-hand side relatedness is expressed in terms of the equilibrium strategies of mutant and resident

individuals. Formally r̃ : X 2 → [0, 1] so that r̃(x, y) is the relatedness of a mutant towards a random group member

when mutants play strategy x and residents play strategy y [a concrete example thereof is by setting x∗
s = x∗

d = x∗

and y∗s = y∗d = y∗ into the right-hand side of eq. (B-k) of Box 2]. Thus, (x∗, y∗) solves the fixed point system y∗ ∈ argmaxy∈X uθ (y, y
∗ | y∗)

x∗ ∈ argmaxx∈X [1− r̃(x∗, y∗)]uτ (x, y
∗ | y∗) + r̃(x∗, y∗)uτ (x, x

∗ | y∗) ,
(13)

which is fully in line with the model in Alger et al. (2020, eq. 1 and eq. 5) and where the utility functions uθ and uτ

are defined in eq. (11). The first line ensures that the strategy y∗ maximizes the expected utility of a resident, given

that any individual it will be matched with is a resident, who uses strategy y∗.8 The second line ensures that the

strategy x∗ maximizes the expected utility of a mutant, given that any resident it will be matched with uses strategy

y∗ and any mutant it will be matched with uses strategy x∗. The behavioral fixed point (13) defines the behavioral

mechanisms (8)–(10), which here satisfy Md(τ, θ, x
∗, y∗) = Ms(τ, θ, x

∗) = 0 and Rd(θ, y
∗, x∗) = Rs(θ, y

∗) = 0, since

an individual’s strategy choice cannot be conditioned on the interactant’s type.

Under our mathematical assumptions, the (assumed unique) equilibrium pair of strategies satisfies the necessary

first-order conditions for the maximization problems in eq. (13):
∂uθ(y,y

∗|y∗)
∂y

∣∣∣
y=y∗

= 0

[1− r̃(x∗, y∗)]∂uτ (x,y
∗|y∗)

∂x

∣∣∣
x=x∗

+ r̃(x∗, y∗) ∂uτ (x,x
∗|y∗)

∂x

∣∣∣
x=x∗

= 0.
(14)

7This belief is correct in the sense that a randomly drawn mutant in the lineage started by the initial mutant, faces the probability

r(τ, θ) of being matched with another mutant. However, in any given time period this probability in fact depends on the exact population

composition in the preceding period.
8This is different from the model in Alger and Weibull (2013), where a resident faces a positive probability of being matched with a

mutant. In the model we use, the mutant trait appears initially in one single individual, and uninvadability amounts to requiring that

the lineage that this initial mutant creates goes extinct in finite time. During the time the mutant lineage is around there is a finite

number of mutants, and hence residents face a zero probability of being matched with a mutant in this infinitely large population. See

Alger et al. (2020) for a formal explanation.
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Using eq. (11), these equations become
[
(1− θ)∂w(y,y∗,y∗)

∂y + θ ∂w(y,y,y∗)
∂y

]
y=y∗

= 0[
(1− τ)

(
[1− r̃(x∗, y∗)]∂w(x,y∗,y∗)

∂x + r̃(x∗, y∗)∂w(x,x∗,y∗)
∂x

)
+ τ ∂w(x,x,y∗)

∂x

]
x=x∗

= 0.
(15)

Turning now to the necessary second-order conditions (for (x∗(τ, θ), y∗(θ)) defined by (15) to be maxima rather

than minima), these are:
∂2uθ(y,y

∗|y∗)2

∂y2

∣∣∣
y=y∗

≤ 0

[1− r̃(x∗, y∗)]∂
2uτ (x,y

∗|y∗)
∂x2

∣∣∣
x=x∗

+ r̃(x∗, y∗) ∂2uτ (x,x
∗|y∗)

∂x2

∣∣∣
x=x∗

≤ 0.
(16)

Our analysis is restricted to settings in which these inequalities hold, since we assume equilibrium existence.

Because of strict concavity of w, the following inequality holds:

K(θ) =
∂2uθ (y, y

∗ | y∗)
∂y2

∣∣∣∣
y=y∗

= (1− θ)
∂2w(y, y∗, y∗)

∂y2
+ θ

∂2w(y, y, y∗)

∂y2

∣∣∣∣
y=y∗

< 0. (17)

This inequality will be used to evaluate how the mutant’s equilibrium strategy would change if the mutant trait

value changed. To see this, by applying the implicit function theorem, one obtains by totally differentiating the

second line of eq. (15) with respect to τ and solving the resulting linear equation for ∂x∗(τ, θ)/∂τ :

∂x∗(τ, θ)

∂τ

∣∣∣∣
τ=θ

= −
∂w(x∗,y,y∗)

∂y

K(θ) + r(θ, θ)(1− θ)∂
2w(x,y,y∗)

∂x∂y

∣∣∣∣∣
x=y=y∗

x∗=y∗

. (18)

This (local) mutant behavioral perturbation will be seen to play a central role in the evolutionary analysis. Defining

C(θ) =
∂2w(x, y, y∗)

∂x∂y

∣∣∣∣
x=y=y∗=y∗(θ)

(19)

and recalling our assumptions on w (see the first paragraph of this Section), we conclude from this expression that:

(i) ∂x∗(τ,θ)
∂τ

∣∣∣
τ=θ

> 0 if r(θ, θ)(1 − θ)C(θ) < |K(θ)|, which is true if w is such that the strategies are strategic

substitutes, strategically neutral, or moderately complementary;

(ii) ∂x∗(τ,θ)
∂τ

∣∣∣
τ=θ

< 0 if r(θ, θ)(1 − θ)C(θ) > |K(θ)|, which is true if w is such that the strategies are strongly

complementary.

3.1.2 Evolutionary equilibrium

Turning now to the analysis of selection on the Kantian coefficient, we obtain that invasion fitness under the present

scenario (where recall that x∗
s = x∗

d = x∗ and y∗s = y∗d = y∗) writes

W (τ, θ) = [1− r(τ, θ)]w(x∗(τ, θ), y∗(θ), y∗(θ)) + r(τ, θ)w(x∗(τ, θ), x∗(τ, θ), y∗(θ)), (20)

which is differentiable. Then, substituting eq. (20) into S(θ) = ∂W (τ, θ)/∂τ |τ=θ, the selection gradient is

S(θ) =
∂x∗(τ, θ)

∂τ

[
∂w(x, y∗, y∗)

∂x
+ r(θ, θ)

∂w(x∗, x, y∗)

∂x

]∣∣∣∣ τ=θ
x=x∗=y∗=y∗(θ)

, (21)
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because the term multiplying ∂r(τ, θ)/∂τ is w(x∗(τ, θ), x∗(τ, θ), y∗(θ))|τ=θ − w(x∗(τ, θ), y∗(θ), y∗(θ))|τ=θ = 0.

The expression in eq. (21) can further be simplified by noting that the second equation of eq. (15) reduces to

∂w(x, y∗, y∗)/∂x = −θ∂w(y∗, x, y∗)/∂x when τ = θ (and thus x∗ = y∗). Hence:

S(θ) = [r(θ, θ)− θ]
∂x∗(τ, θ)

∂τ

∂w(x∗, x, y∗)

∂x

∣∣∣∣ τ=θ
x=x∗=y∗=y∗(θ)

. (22)

Since (by assumption) ∂w(x, y, y∗)/∂y ̸= 0 for all (x, y, y∗) ∈ X3, which also implies that ∂x∗(τ, θ)/∂τ ̸= 0 (see

eq. (18)), this equation shows that the unique singular trait value is

θ∗ = r(θ∗, θ∗). (23)

But is θ∗ convergence stable and uninvadable?

Let us first consider convergence stability, by determining whether the Jacobian

J(θ∗) =
dS(θ)

dθ

∣∣∣∣
θ=r

= −
(
1− dr(θ, θ)

dθ

)[
∂x∗(τ, θ)

∂τ

∂w(x∗, y, y∗)

∂y

]
τ=θ=θ∗

x∗=y=y∗=y∗(θ)

(24)

is strictly negative. Since ∂w(x∗, y, y∗)/∂y > 0, we immediately obtain that θ∗ = r(θ∗, θ∗) is convergence stable if

and only if (
1− dr(θ, θ)

dθ

)
∂x∗(τ, θ)

∂τ

∣∣∣∣ τ=θ=θ∗

x∗=y=y∗=y∗(θ)

> 0. (25)

Using results derived above, we further conclude that θ∗ = r(θ∗) is convergence stable if and only if either

dr(θ, θ)/ dθ < 1 and r(θ, θ)[1− r(θ, θ)]C(θ) < |K(θ)|, or dr(θ, θ)/ dθ > 1 and r(θ, θ)[1− r(θ, θ)]C(θ) > |K(θ)|.

What about local uninvadability? To ascertain this, we examine whether the Hessian is strictly negative. Given

that ∂w(x, y∗, y∗)/∂x = −θ∂w(y∗, x, y∗)/∂x when τ = θ (as noted already above), we obtain:

H(θ∗) =
∂2W (τ, θ)

∂τ2

∣∣∣∣
τ=θ

=

[(
∂x∗(τ, θ)

∂τ

)2

K (r(θ∗)) + 2
∂r(τ, θ)

∂τ

∂x∗(τ, θ)

∂τ

∂w(x∗, y, y∗)

∂y

]
τ=θ=θ∗

x∗=y=y∗=y∗(θ)

. (26)

Since K (r(θ∗)) < 0, the first term is strictly negative. Hence, a sufficient condition for θ∗ = r(θ∗, θ∗) to be (locally)

uninvadable is that the local perturbation of relatedness, ∂r(τ, θ)/∂τ , be nil. The relatedness perturbation can be

different from zero, however (for example, see eq. (B-j) for the expression of r(θ, τ) for a Moran process), and its sign

typically depends on demographic and interaction assumptions in non-trivial ways. Moreover, it does not involve

second-order derivatives of individual fitness (Mullon et al., 2016), and thus does not vary systematically according

to the strategic substitutability or complementarity of the strategies. Hence, in settings where behavior affects

relatedness ∂r(τ, θ)/∂τ ̸= 0, it is challenging to identify general conditions that would guarantee that J(θ∗) < 0

and H(θ∗) < 0. Yet, it is known that in certain settings (summarized below) both dr(θ, θ)/ dθ and ∂r(τ, θ)/∂τ are

negligible. We refer to this as weak trait effects on relatedness. We can then summarize sufficient conditions for

θ = r(θ, θ) to be evolutionarily stable as follows.

Result 1. When interactions take place under incompete information, the Kantian coefficient equal to the neutral

relatedness, θ∗ = r(θ∗, θ∗), is the unique singular trait value. It is both an evolutionary attractor (convergence

stable) and locally uninvadable if:
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(i) either the strategies in the interaction are strategic substitutes, strategically neutral, or moderately comple-

mentary, i.e., r(θ, θ)[1 − r(θ, θ)]C(θ) < |K(θ)|, and the trait effects on relatedness are sufficiently weak, i.e.,

dr(θ, θ)/dθ < 1 and ∂r(τ, θ)/∂τ ≈ 0;

(ii) or the strategies in the interaction are strongly complementary, i.e., r(θ, θ)[1− r(θ, θ)C(θ) > |K(θ)|, and the

effect of the resident equilibrium strategy on relatedness is strong, i.e., dr(θ, θ)/ dθ > 1, but the relatedness

perturbation is weak, i.e., ∂r(τ, θ)/∂τ ≈ 0.

While the conditions for uninvadability are consistent with the results of Alger et al. (2020),9 our analysis

reinforces those results by identifying sufficient conditions for the partly Kantian preference θ = r(θ, θ) to be also

convergence stable.

Interestingly, many biological scenarios do exhibit weak, or even nil, trait effects on relatedness.10 First, in family-

structured populations, which cover a large class of interactions (e.g., parent-offspring interactions, interactions

beween sibling or cousins, etc...), relatedness is independent of the types (dr(θ, θ)/dθ = ∂r(τ, θ)/∂τ = 0). Second,

relatedness is also independent of the types in spatially-structured populations when selection is weak in the sense

that the strategies in the interaction affect fitness only marginally (see, e.g., Alger et al., 2020). Such independence

can extend to cases where effects are not so marginal because when the migration probability is exogenous, both

dr(θ, θ)/dθ and ∂r(τ, θ)/∂τ tend to be negligible for several games (Wakano and Lehmann, 2014; Mullon et al.,

2016). Finally, for certain demographic processes, like the Moran process when behavior affects only reproduction,

one has dr(θ, θ)/ dθ = 0 and ∂r(τ, θ)/∂τ = 0 (Mullon et al., 2016), but, as implied by eq. (B-k) of Box 2, the

relatedness perturbation is non-zero in the Moran process when behavior affects survival.

3.2 Complete information with incomplete plasticity

3.2.1 Behavioral equilibrium

Under complete information individuals have information about the type of their interaction partner, but an in-

dividual’s preferences cannot be conditioned on that information: this is what we mean by incomplete plasticity.

An individual’s type is thus again some value of the Kantian coefficient, and the type space is the interval [0, 1].

Because individuals can observe the type composition of their group, whenever the mutant type differs from the

resident type, the distinction between a mutant’s equilibrium strategies x∗
d and x∗

s , as well as between a resident’s
9This may not be immediately apparent, for the results in Alger et al. (2020) (see Propositions 1 and 2) state as a necessary

and sufficient condition for a utility function to be uninvadable, that the equilibrium strategy in a population where all individuals

have this utility function be an uninvadable strategy (i.e., uninvadable in a setting where the set of traits is the set of strategies, a

setting that Alger et al. (2020) call strategy evolution). One can check that the condition for θ∗ = r(θ∗, θ∗) to be uninvadable in our

setting, i.e., H(θ∗) < 0 (see eq. (26)), coincides with the condition for the equilibrium strategy y∗(θ∗) to be an uninvadable strategy

under strategy evolution. This is so because owing to eq. (12), ∂r(τ, θ)/∂τ = (∂r̃(x, y∗)/∂x)(∂x∗(τ, θ)/∂τ), whereby eq. (26) becomes

H(θ∗) = (∂x∗(τ, θ)/∂τ)2 [K (r(θ∗)) + 2(∂r̃(x, y∗)/∂x)(∂w(x∗, y, y∗)/∂y)] at τ = θ; and under strategy evolution the invasion fitness of

mutant type x in a monomorphic resident population y is W (x, y) = [1− r̃(x, y)]w(x, y, y) + r̃(x, y)w(x, x, y) and ∂2W (x, y)/∂x2
∣∣
x=y

corresponds to the term in square brackets in H(θ∗).
10Such independence was originally assumed in evolutionary game theory models with assortative interactions (Hines and May-

nard Smith, 1978; Maynard Smith, 1982) and later used in preference evolution models (Bergstrom, 1995; Alger and Weibull, 2013).
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equilibrium strategies y∗d and y∗s , is relevant, as per the behavioral mechanisms (8)–(10). Hence, the equilibrium

strategy y∗s used by each resident in an interaction with another resident satisfies

y∗s ∈ argmax
y∈X

uθ (y, y
∗
s | y∗s ) , (27)

the equilibrium strategy x∗
s used by each mutant in an interaction with another mutant satisfies

x∗
s ∈ argmax

x∈X
uτ (x, x

∗
s | y∗s ) , (28)

and the equilibrium pair of strategies (x∗
d, y

∗
d) used by a mutant and a resident, respectively, in a mutant-resident

interaction solves the fixed point system y∗d ∈ argmaxy∈X uθ (y, x
∗
d | y∗s )

x∗
d ∈ argmaxx∈X uτ (x, y

∗
d | y∗s ) .

(29)

The fixed point equations (27)–(29) define the behavioral mechanisms (8)–(10) under complete information with

incomplete plasticity. Note that if τ = θ in eq. (29), then x∗
d(θ, θ) = y∗d(θ, θ) owing to the strict concavity of w,

which implies that to each strategy played by the opponent there exists a unique best response. Hence, if τ = θ,

x∗
d(θ, θ) = y∗d(θ, θ) = x∗

s (θ) = y∗s (θ). (30)

As in the incomplete information scenario, in the evolutionary analysis we use the expressions that capture

how the equilibrium strategies are modified by marginal changes in the mutant trait and the resident trait. To

obtain these behavioral perturbations, we first write the necessary first-order conditions for (x∗
d, y

∗
d) to be a Nash

equilibrium: 
∂uτ (x,y

∗
d|y

∗
s )

∂x

∣∣∣
x=x∗

d

=
[
(1− τ)

∂w(x,y∗
d,y

∗
s )

∂x + τ
∂w(x,x,y∗

s )
∂x

]
x=x∗

d

= 0

∂uθ(y,x
∗
d|y

∗
s )

∂y

∣∣∣
y=y∗

d

=
[
(1− θ)

∂w(y,x∗
d,y

∗
s )

∂y + θ
∂w(y,y,y∗

s )
∂y

]
y=y∗

d

= 0.
(31)

Therein, the monomorphic resident behavioral equilibrium y∗s solves

∂uθ (y, y
∗
s | y∗s )

∂y

∣∣∣∣
y=y∗

s

=

[
(1− θ)

∂w(y, y∗s , y
∗
s )

∂y
+ θ

∂w(y, y, y∗s )

∂y

]
y=y∗

s

= 0. (32)

Since uθ is strictly concave, the second-order partial derivative of uθ, evaluated at y∗s (θ) = y∗d(θ, θ), is strictly

negative:

K̃(θ) =
∂2uθ (y, y

∗
s | y∗s )

∂y2

∣∣∣∣
y=y∗

s

=

[
(1− θ)

∂2w(y, y∗s , y
∗
s )

∂y2
+ θ

∂2w(y, y, y∗s )

∂y2

]
y=y∗

s =y∗
d(θ,θ)

< 0. (33)

The system of equations in eq. (31) together implicitly define x∗
d and y∗d as functions of τ and θ. Applying the

implicit function theorem, we obtain the following expressions for the behavioral perturbation of the equilibrium

strategy of a mutant and of a resident with respect to the mutant trait value, evaluated locally at τ = θ:

∂x∗
d(τ, θ)

∂τ

∣∣∣∣
τ=θ

= −
∂w(y∗

d,y,y
∗
d)

∂y K̃(θ)(
K̃(θ) + (1− θ)

∂2w(x,y,y∗
d)

∂x∂y

)(
K̃(θ)− (1− θ)

∂2w(x,y,y∗
d)

∂x∂y

)
∣∣∣∣∣∣
x=y=y∗

d=y∗
d(θ,θ)

(34)

∂y∗d(θ, τ)

∂τ

∣∣∣∣
τ=θ

=
(1− θ)

∂w(y∗
d,y,y

∗
d)

∂y
∂2w(x,y,y∗

d)
∂x∂y(

K̃(θ) + (1− θ)
∂2w(x,y,y∗

d)

∂x∂y

)(
K̃(θ)− (1− θ)

∂2w(x,y,y∗
d)

∂x∂y

)
∣∣∣∣∣∣
x=y=y∗

d=y∗
d(θ,θ)

. (35)
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In the evolutionary analysis, it is the ratio of the resident’s to the mutant’s behavioral perturbation that will matter:

ρ(θ) =
∂y∗

d(θ,τ)
∂τ

∂x∗
d(τ,θ)

∂τ

∣∣∣∣∣
τ=θ

. (36)

This is well defined, since the assumption ∂w(y∗d, y, y
∗
d)/∂y ̸= 0 implies ∂x∗

d(τ, θ)/∂τ ̸= 0, which means that a mutant

always alters its equilibrium strategy if the mutant trait value were to change. Because ρ(θ) measures the extent to

which an individual’s neighbour’s strategy varies with own strategy variation, we follow previous terminology and

refer to ρ(θ) as the response coefficient (Akçay and Van Cleve, 2012). Inserting eq. (34) and eq. (35) into eq. (36),

we obtain

ρ(θ) = −
(1− θ)

∂2w(x,y,y∗
d)

∂x∂y

K̃(θ)

∣∣∣∣∣∣
x=y=y∗

d(θ,θ)

, (37)

implying that the response coefficient has the same sign as ∂2w(x, y, y∗d)/∂x∂y, and this will play a role in the

analysis of selection on the Kantian coefficient, to which we now turn.

3.2.2 Evolutionary equilibrium

To begin, note that eq. (30) implies that we can write invasion fitness (2) as follows:

W (τ, θ) = [1− r(τ, θ)]w(x∗
d(τ, θ), y

∗
d(θ, τ), y

∗
d(θ, θ)) + r(τ, θ)w(x∗

d(τ, τ), x
∗
d(τ, τ), y

∗
d(θ, θ)), (38)

which is differentiable. Substituting this into the selection gradient S(θ) = ∂W (τ, θ)/∂τ |τ=θ, and simplifying yields

(since the term multiplying ∂r(τ, θ)/∂τ is w(x∗
d(τ, τ), x

∗
d(τ, τ), y

∗
d(θ, θ))|τ=θ− w(x∗

d(τ, θ), y
∗
d(θ, τ), y

∗
d(θ, θ))|τ=θ = 0):

S(θ) =

[(
∂x∗

d(τ, θ)

∂τ
+ r(θ, θ)

∂y∗d(θ, τ)

∂τ

)
∂w(x, y∗d, y

∗
d)

∂x
+

(
r(θ, θ)

∂x∗
d(τ, θ)

∂τ
+

∂y∗d(θ, τ)

∂τ

)
∂w(x∗

d, y, y
∗
d)

∂y

]
τ=θ

x=y=x∗
d=y∗

d

y∗
d=y∗

d(θ,θ)

.

(39)

Using eq. (32), we can replace ∂w(x, y∗d, y
∗
d)/∂x by −θ∂w(x∗

d, y, y
∗
d)/∂y, to obtain

S(θ) =
∂x∗

d(τ, θ)

∂τ

∂w(y∗d, y, y
∗
d)

∂y

(
[r(θ, θ)− θ] + [1− θr(θ, θ)] ρ(θ)

)∣∣∣∣∣ τ=θ
y=y∗

d=y∗
d(θ,θ)

. (40)

Comparing eq. (40) to the selection gradient under incomplete information (see eq. (22)), we see that if the response

coefficient is nil, i.e., if ρ(θ) = 0, the two selection gradients are identical, and θ = r(θ, θ) is then the unique

singularity. This is not surprising since under incomplete information changes in the mutant trait value has no

effect on the resident’s equilibrium strategy. We further observe that when θ = 1, ρ(θ) = 0 and using eq. (34) in

eq. (40), the selection gradient at θ = 1 is

S(1) =
(1− r(1, 1))

K̃(1)

(
∂2w(y∗d, y, y

∗
d)

∂y2

)2
∣∣∣∣∣
y=y∗

d=y∗
d(θ,θ)

< 0. (41)

Since K̃(1) < 0 and r(θ, θ) < 1 for all θ ∈ [0, 1], we obtain S(1) < 0, which implies that θ = 1 is always counter-

selected, and can neither be convergence stable nor uninvadable. By contrast, nothing allows to rule out that
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θ = 0 could be convergence stable and/or uninvadable. More generally, since ∂w(x∗
d, y, y

∗
d)/∂y ̸= 0 (by assumption),

eq. (40) implies that S(θ) = 0 if and only if

θ = r(θ, θ) + [1− θr(θ, θ)]ρ(θ). (42)

Let θ̃ denote a solution to this equation. Since r(θ, θ) < 1 for all θ ∈ [0, 1], so that 1− θr(θ, θ) > 0 for any θ ∈ [0, 1],

it follows immediately from eq. (42) that θ̃ = r(θ̃) if ρ(θ̃) = 0, θ̃ > r(θ̃) if ρ(θ̃) > 0, and θ̃ < r(θ̃) if ρ(θ̃) < 0.

Recalling that the sign of ρ(θ) depends on the sign of ∂2w(x, y, y∗d)/∂x∂y (see eq. (37)), and that we restrict the

Kantian coefficient to take values between 0 and 1, the following result obtains.

Result 2. Let θ∗ denote a singularity under complete information and incomplete plasticity. Then:

(i) θ∗ = 0 if θ̃ ≤ 0, which requires w to be such that strategies are strategic substitutes or strategically neutral;

(ii) θ∗ = θ̃ if θ̃ ∈ (0, 1) and if this is the case, then θ∗ = [r(θ∗, θ∗) + ρ(θ∗)]/[1 + ρ(θ∗)r(θ∗, θ∗)]. In particular,

θ∗ = r(θ∗, θ∗) if w is such that strategies are strategically neutral, while θ∗ < r(θ∗, θ∗) (resp. θ∗ > r(θ∗, θ∗))

if w is such that strategies are strategic substitutes (resp. complements), and θ∗ = ρ(θ∗) if r(θ∗, θ∗) = 0.

By contrast to the incomplete information setting where the Kantian coefficient must coincide with the coefficient

of relatedness, here it can be either larger or smaller. Moreover, a singular Kantian coefficient can in principle take

any value in the range [0, 1) depending on demographic and behavioral parameters. Interestingly, eq. (42) along

with eq. (36) is identical to the corresponding equation in the model of Alger and Weibull (2012) (see their eq. (29)),

wherein they examine the class of other-regarding utility functions whereby an individual may attach some evolving

weight α ∈ (−1, 1) to the interactant’s individual fitness.11 In spite of this difference, Theorem 1 of this previous

work also establishes that whether the exact value of the evolving weight α exceeds or falls short of relatedness

depends on whether the fitness function exhibits strategic substitutability, complementarity, or neutrality.

We now examine whether type θ∗ of Result 2 is convergence stable and uninvadable. Due to the complexity

of the expressions for the Jacobian J(θ∗) and the Hessian H(θ∗) at θ∗ solving S(θ∗) = 0, presented in Appendix

A, we were unable to reach generic answers to these questions, and further assumptions may be needed to reach

more definite results. However, we verify that convergence stability and uninvadability can obtain, by resorting to

an illustrating example. Consider a Moran demographic process (i.e. individual fitness takes the form of eq. (B-i))

with constant death rate µ and juvenile survival probability s, and that individual face an a pairwise interaction

such that their expected fecundity (number of offspring produced at stage (b) of the life cycle of section 2.1) is

linear-quadratic in the two players’ actions:

f(x, y) = 1 + ax− bxy − cx2 (43)

for parameters a, b, c ∈ R. Then, substituting eq. (43) into individual fitness (B-i), we can evaluate the selection

gradient (40), the Jacobian (A-3) and the Hessian (A-5) coefficients. Even for this simple example, eq. (42) is a

quadratic function that cannot be solved explicitly and so we analyse the selection gradient numerically. Fig. (1)

displays how for fixed but different values of the backward migration rate mb (eq. B-l), θ∗ varies when b is varied.

Fig. (1) shows that by depending on b, the Kantian coefficient takes a value above or below that of relatedness.
11Because the behavioral perturbations of other-regarding utility functions typically differ from the ones with the partially Kantian

utility function, a singular α will typically differ from the singular Kantian coefficient, however.
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Figure 1: Each curve shows, for the Moran process analyzed in Box 2 with individual fitness (B-i), the singular Kantian

coefficient θ∗ under complete information and incomplete plasticity, for the linear quadratric fecundity function (43), as a

function of parameter b in that function for a = 0.1 and c = 1. Each of the four lines corresponds to a different value

of the “backward migration probability”, which depends on the exogenously given migration probability m (see eq. (B-l)

and the description following it). Starting from the top, the first line, where the Kantian coefficient remains essentially

constant at θ∗ = 0.98 is for mb = 0.01 whereby r = (1 − mb)/(1 + mb) ≈ 0.98; the second line is for mb = 0.2 whereby

r = (1−mb)/(1 +mb) ≈ 0.66; the third line for mb = 0.4 whereby r = (1−mb)/(1 +mb) ≈ 0.42; and the last line, where

the Kantian coefficient varies over the range [0, 0.6], is for mb = 0.6 whereby r = (1−mb)/(1 +mb) = 0.25. By computing

the Jacobian (A-3) and the Hessian (A-5) coefficients at these values we checked that all these singular Kantian coefficients

are indeed both convergence stable and uninvadable.

3.3 Complete information and plasticity

3.3.1 Behavioral equilibrium

The defining assumption of our complete information with complete plasticity scenario is that individuals are

assumed to be able to both express different strategies conditionally on interacting with individuals having different

types and to also use different preferences. Hence, the preferences applied in the interaction become state-specific on

the interaction. Specifically, we assume that the type θ = (θd, θs) of an individual is a two-dimensional quantitative

trait (θ ∈ [0, 1]2) such that θs parametrizes an individual’s preference (still given by eq. (11)) when individuals in

a pair have the same type and θd parametrizes an individual’s preference when individuals in a pair have different

types.

In terms of the equilibrium strategies, consider some resident type θ = (θd, θs) and some mutant type τ = (τd, τs)

that is different from θ (either because θd ̸= τd, or because θs ̸= τs, or because both θd ̸= τd and θs ̸= τs). Then, a

resident applies the Kantian coefficient θs when interacting with another resident, in which case they both play the

equilibrium strategy y∗s , satisfying

y∗s ∈ argmax
y∈X

uθs (y, y
∗
s | y∗s ) . (44)

In mutant-mutant interactions both individuals apply the Kantian coefficient τs and they both use the equilibrium

strategy x∗
s , satisfying

x∗
s ∈ argmax

x∈X
uτs (x, x

∗
s | y∗s ) . (45)

Finally, in mutant-resident pairs, the mutant applies the Kantian coefficient τd while the resident applies the Kantian
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coefficient θd, and the Nash equilibrium strategies x∗
d and y∗d are best responses to each other according to these

preferences:  x∗
d ∈ argmaxx∈X uτd(x, y

∗
d | y∗s )

y∗d ∈ argmaxy∈X uθd(y, x
∗
d | y∗s ) .

(46)

These fixed point eqs (44)–(46) define the behavioral mechanisms (8)–(10) under complete information with complete

plasticity.

3.3.2 Evolutionary equilibrium

We begin by noticing that in the complete information complete plasticity scenario, invasion fitness can be written

W (τ, θ) = [1− r(τ, θ)]w(x∗
d(τd, θd, θs), y

∗
d(θd, τd, θs), y

∗
s (θs)) + r(τ, θ)w(x∗

s (τs, θs), x
∗
s (τs, θs), y

∗
s (θs)), (47)

where the inclusion of θs among the arguments of the equilibrium strategies emphasizes their dependence on the

preference type that residents apply in resident-resident interactions (the utility functions in eqs (45)–(46) depend

on y∗s (θs)). This invasion fitness is not necessarily differentiable in τ because there may be a discrete jump in the

equilibrium strategies at τ = θ, from (x∗
d, y

∗
d) to (x∗

s , y
∗
s ) = (y∗s , y

∗
s ). This precludes an application of eqs. (3)-(5) to

each component of type τ = (τd, τs). In spite of this challenge, we can show the existence of an uninvadable type,

as stated in the following result, but we were unable to conclude on convergence stability.

Result 3. The type (θs, θd) = (1,max{θ∗, 0}), where θ∗ solves the equation θ∗ = ρ(θ∗), is uninvadable.

Proof: Consider some resident type θ = (θd, θs) ∈ [0, 1]2. A necessary and sufficient condition for it to be

uninvadable is that invasion fitness evaluated at the mutant type τ = (τd, τs) that maximizes its value, is smaller

than 1. Define the following separate terms, which both appear in the invasion fitness expression in eq. (47):

Wd(τd, θd, θs) = w(x∗
d(τd, θd, θs), y

∗
d(θd, τd, θs), y

∗
s (θs)) (48)

and

Ws(τs, θs) = w(x∗
s (τs, θs), x

∗
s (τs, θs), y

∗
s (θs)). (49)

Starting with the latter, consider the mutant type τ with τs = 1. Then x∗
s (τs|θs) solves (see eq. (45))

max
x∈X

w(x, x, y∗s ). (50)

Recall the necessary first-order condition for the equilibrium strategy in resident-resident interactions (see eq. (44)):

[
(1− θs)

∂w(y, y∗s , y
∗
s )

∂y
+ θs

∂w(y, y, y∗s )

∂y

]
y=y∗

s

= 0. (51)

By strict concavity of w, eq. (51) implies that Ws(τs, θs) > w(y∗s , y
∗
s , y

∗
s ) for any θs ∈ [0, 1), while Ws(τs, θs) =

w(y∗s , y
∗
s , y

∗
s ) for θs = 1.

Turning now to the term in eq. (48), it is identical to invasion fitness in the complete information incomplete

plasticity scenario with relatedness equal to 0 (see eq. (38)), except that here y∗s does not depend on θd. Inserting
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r(τ, θ) = 0 into eq. (42), and following the same reasoning as for Result 2, we immediately obtain that θd =

max{θ∗, 0}, where θ∗ solves the equation θ∗ = ρ(θ∗), is the value of θd for which there exists no τd such that the

individual fitness of a mutant in a mutant-resident interaction, w(x∗
d(τd, θd, θs), y

∗
d(θd, τd, θs), y

∗
s (θs)), exceeds the

individual fitness of a resident in a mutant-resident interaction, w(y∗d(θd, τd, θs), x
∗
d(τd, θd, θs), y

∗
s (θs)). In fact, given

θd = max{θ∗, 0}, strict concavity of w implies that the mutant obtains a strictly smaller fitness than the resident

in a mutant-resident interaction unless τd = θd. In sum:

(i) if θs = 1, then Ws(τs, θs) ≤ Ws(θs, θs) = 1 for any τs ∈ [0, 1], and the inequality is strict if and only if τs ̸= 1;

(ii) if (θs, θd) = (1,max{θ∗, 0}), where θ∗ solves the equation θ∗ = ρ(θ∗), then Wd(τd, θd, θs) is strictly smaller than

w(y∗d(θd, τd, θs), x
∗
d(τd, θd, θs), y

∗
s (θs)) for any τd ̸= θd; strict concavity of w further implies that w(y∗s , y∗s , y∗s ) =

1 is strictly larger than w(y∗d(θd, τd, θs), x
∗
d(τd, θd, θs), y

∗
s (θs)).

Together with the fact that invasion fitness is a convex combination of Wd(τd, θd, θs) and Ws(τs, θs), these conclusions

imply that whatever is the value of r(τ, θ), if the resident type is (θs, θd) = (1,max{θ∗, 0}), then W (τ, θ) < 1 for

any τ ̸= θ. Q.E.D.

4 Discussion

By investigating the evolution of semi-Kantian preferences under different informational and behavioral plasticity

assumptions, we have extended the evolutionary viability analysis of this class of preferences. While we restricted

attention to pairwise interactions in group-structured populations, and preferences being characterized by a single

evolving quantitative trait, the Kantian coefficient, our model weaves together different threads of the literature and

shows how long-term evolution concepts can be used to analyze preferences under gradual evolution. We obtained

three main results on the convergence stability and uninvadability of the value of the Kantian coefficient.

First, when interacting individuals have no information about each other’s Kantian coefficient and mutants

hold beliefs about the probability of being matched with another mutant that are consistent with the average

such probability for the lineage created by the initial mutant, we confirm that an uninvadable Kantian coefficient

must equal the coefficient of relatedness (Alger and Weibull, 2013; Alger et al., 2020). But instead of considering

the set of possible utility functions to be the set of all continuous functions as done in this previous work, we

focus on the more restricted setting where utility functions are parametrized by a single quantitative trait. This

allows us to cover not only uninvadability in a complementary and less abstract way to that in the previous work

but also to cover convergence stability. In Result 1 we show that the Kantian coefficient equal to the coefficient of

relatedness is both convergence stable and uninvadable when trait effects on relatedness are sufficiently weak. Thus,

we characterize conditions where gradual evolution drives preferences to induce individuals to behave according to

Hamilton’s (marginal) rule at the strategy level. A relevant avenue for future research for preference evolution under

incomplete information is to consider more realistic demographic scenarios of class structured population (e.g., by

sex, age, or stage).

Second, when interacting individuals can observe each other’s type, but each individual has the same preferences

regardless of the other’s type, we showed that an uninvadable value of the Kantian coefficient can exceed, fall short of,
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or equal the coefficient of relatedness. Moreover, we showed that the sign of the discrepancy is determined by whether

an individual’s equilibrium strategy is correlated positively, negatively, or not at all with the opponent’s equilibrium

strategy. This response coefficient in turn depends on an easily distinguishable property of the individual fitness

function. Thus, gradual evolution now drives preferences to induce individuals to behave according to a context-

specific Kantian coefficient, which combines both the relatedness and the response coefficients. This result is fully

in line with previous models under complete information and incomplete plasticity, which have all considered other

parametric classes of preferences than the one we examine (e.g. Bester and Güth, 1998; Bolle, 2000; Possajennikov,

2000; Heifetz et al., 2007b,a; Akçay and Van Cleve, 2009 for models without relatedness, and Alger, 2010; Alger and

Weibull, 2010, 2012; Akçay and Van Cleve, 2012 for models with relatedness. The dependence of an uninvadable

value of the Kantian coefficient on the response coefficient stems from the commitment to a particular behavioral

response that an individual’s preferences induces (when its preferences cannot be conditioned on the opponent’s

preference type, like in the complete plasticity scenario). By being observable, a mutant’s preference type can thus

induce a change in the resident’s strategy, compared to when the resident interacts with another resident, an effect

that is absent under incomplete information. Since the magnitude of this effect depends on the specifics of the

fitness function, an uninvadable Kantian coefficient thus depends on this as well. Although we established clear

necessary conditions for a Kantian coefficient value to be uninvadable, we did not succeed in identifying simple

general sufficient conditions, neither for uninvadability nor for convergence stability. In particular, we cannot rule

out evolutionary branching points (which obtain when a singular Kantian coefficient value is convergence stable but

not uninvadable; recall footnote 3, and see Geritz et al., 1998 for a general discussion and McNamara and Leimar,

2020 for typical evolutionary game theory applications). An avenue for future research on preference evolution

under complete information is thus to analyze conditions leading to polymorphism in preferences.12

Finally, we considered the case of complete information with complete plasticity where individuals both can

observe the opponent’s type and also condition its preferences on it. This is akin to a green-beard or secret

handshake mechanism (Dawkins, 1976; Grafen, 1990; Robson, 1990), but at the preference level rather than the

strategy level as in most previous work. Since an individual’s Kantian coefficient may depend on the type of the

interaction partner, a type is now a two-dimensional quantitative trait. Compared to the complete information

incomplete plasticity scenario, residents are thus no longer committed to respond according to one and the same

Kantian coefficient, and are therefore less exploitable by mutants. As we showed, this implies that residents can be

pure Kantians when interacting with each other, and still be uninvadable: they prevent entry by mutants by using

the Kantian coefficient equal to the response coefficient when interacting with individuals with a different type than

theirs. In such a population, when interacting with each other residents use the strategy which yields the highest
12As an example, consider Proposition 1 of Heifetz et al. (2007a), which establishes conditions for the evolutionary viability of

pessimism or optimism for a particular individual fitness function. Using our notation, these preferences entail the utility function

uθi (xi, x−i | y∗) = w(xi, x−i, y
∗) + θixi, where θi is the evolving quantitative trait that can be taken to describe optimism when

θi > 0 and pessiminism when θi < 0. It is straightforward to check that the singularity in Proposition 1 of Heifetz et al. (2007a) is

both convergence stable and uninvadable, as it should under the measure dynamics they consider (e.g.,Cressman and Hofbauer, 2005).

However, it is also straightforward to find parameter values of the fitness function they use Heifetz et al., 2007a, eq. 8 such that the

singularity is convergence stable and invadable, and thus conducive to an adaptive polymorphism in dispositions, e.g., the coexistence

of optimists and pessimists.
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possible individual fitness. In other words, they use the strategy that yields an efficient outcome. This is reminiscent

of a result by Dekel et al. (2007), who showed that a class of “coordination” preference, which results in efficient

strategy profiles, are stable. We did, however, not characterize convergence stability under complete information

with complete plasticity, because invasion fitness is not differentiable in this case, and hence a different toolkit

than the usual multidimensional convergence stability criterion would be required (Leimar, 2009). Ascertaining

convergence stability in this setting is thus left for future work.

Our three results show within the same model how different information and behavioral flexibility assumptions

lead to different values of the Kantian coefficient, and thus to different equilibrium strategies. At the qualitative level,

this range of outcomes under preference evolution are similar to those observed previously under strategy evolution

models. Models of preference evolution, however, remain distinctively useful as their aim is to examine how ultimate

imperatives translate into proximate ones and provide behavioral predictions that can be tested across different

games in different lab experiments. Lab experiments, however, typically focus on behavior being incentivized at

the payoff level and this can be distinct from incentives at the fitness level. Indeed, the qualitative nature of

evolved preferences at the material payoff can differ from that at the fitness level and this difference depends on

demographic properties under genetic evolution and transmission rules under cultural evolution (Alger et al., 2020).

Payoff and fitness incentives tend to agree in panmictic and family structured population but tend to disagree in

spatially structured populations owing to the presence of local competition between individuals (a feature occurring

in the example of Box 2). In some experiments under incomplete information, humans do appear to conform to

behave according to Hamilton’s (marginal) rule at the action level (Levy and Lo, 2022) and to be driven by semi-

Kantian concerns combined with other-regard (Van Leeuwen and Alger, 2022), as predicted by Alger et al. (2020)

for preference evolution at the level of material payoffs. Understanding whether such results vindicate individuals

being endowed with such preferences, how behavior in the laboratory varies with informational assumptions, and

analysing more completely the evolutionary dynamics of behavioral mechanisms remain open research questions.

We hope that our formalization has illustrated some of the nuances, intricacies, and richness of such research

endeavours.

Appendix A Jacobian and Hessian under complete information with

incomplete plasticity

Differentiating eq. (40) with respect to θ and evaluating at θ∗ satisfying S(θ∗) = 0 yields

J(θ∗) =
∂w(y∗d, y, y

∗
d)

∂y

[
(r(θ∗)− θ∗)

∂2x∗
d(τ, θ)

∂τ2
+ (1− θ∗)(1 + r(θ∗))

∂x∗
d(τ, θ)

∂τ∂θ
+ (1− θ∗r(θ∗))

∂2x∗
d(τ, θ)

∂θ2

+

[
1− r(θ∗)2 − (1− θ∗2)dr(θ)dθ

]
r(θ∗)− θ∗

∂x∗
d(τ, θ)

∂θ


τ=θ=θ∗

. (A-1)

Using eq. (40) at S(θ∗) = 0 and using eq. (36) we can express the singular trait value implicitly as

θ∗ =
r(θ∗) + ρ(θ∗)

1 + r(θ∗)ρ(θ)∗
, (A-2)
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which, on substituting into eq. (A-1), using ρ(θ) = (∂x∗
d(τ, θ)/∂θ) / (∂x

∗
d(τ, θ)/∂τ) and simplifying produces

J(θ∗) = −∂w(x∗
d, y, y

∗
d)

∂y

[ (
1− r(θ∗)2

)
1 + r(θ∗)ρ(θ∗)

(
ρ(θ∗)

∂2x∗
d(τ, θ)

∂τ2
− (1− ρ(θ∗))

∂2x∗
d(τ, θ)

∂τ∂θ
− ∂2x∗

d(τ, θ)

∂θ2

)

+

(
(1 + r(θ∗)ρ(θ∗))2 − dr(θ)

dθ (1− ρ(θ∗)2)
)

1 + r(θ∗)ρ(θ∗)

∂x∗
d(τ, θ)

∂τ


τ=θ=θ∗

. (A-3)

The second order behavioral perturbations ∂2x∗
d(τ, θ)/∂τ

2, ∂2x∗
d(τ, θ)/(∂τ∂θ), ∂

2x∗
d(τ, θ)/∂θ

2 appearing in this Ja-

cobian can be computed by using implicit differentiation in eq. (31). The resulting expressions are complicated and

lengthy and we were unable to infer some general information from these expressions, although they can be han-

dled easily with a symbolic manipulation system such as Mathematica (Wolfram Research, 2016). A Mathematica

notebook with all algebraic computations of the paper is available on request.

Now using invasion fitness (38) to evaluate H(θ) = ∂2W (τ, θ)/∂τ2
∣∣
τ=θ

, we find that

H(θ) =
∂2x∗

d(τ, θ)

∂τ2

(
∂w(y, y∗d, y

∗
d)

∂y
+ r(θ)

∂w(y∗d, y, y
∗
d)

∂y

)
+ 2r(θ)

∂2x∗
d(τ, θ)

∂τ∂θ

(
∂w(y, y∗d, y

∗
d)

∂y
+

∂w(y∗d, y, y
∗
d)

∂y

)
+

∂2x∗
d(τ, θ)

∂θ2

(
r(θ)

∂w(y, y∗d, y
∗
d)

∂y
+

∂w(y∗d, y, y
∗
d)

∂y

)
+

∂2w(x, y∗d, y
∗
d)

∂x2

[
r(θ)

(
∂x∗

d(τ, θ)

∂τ

)2

+ 2r(θ)
∂x∗

d(τ, θ)

∂θ

∂x∗
d(τ, θ)

∂τ

+

(
∂x∗

d(τ, θ)

∂θ

)2
]
+ 2

∂2w(x, y, y∗d)

∂x∂y

[
r(θ)

(
∂x∗

d(τ, θ)

∂τ

)2

+ [1 + r(θ)]
∂x∗

d(τ, θ)

∂θ

∂x∗
d(τ, θ)

∂τ
+ r(θ)

(
∂x∗

d(τ, θ)

∂θ

)2
]

+
∂2w(x∗

d, y, y
∗
d)

∂y2

[(
∂x∗

d(τ, θ)

∂τ

)2

+ 2r(θ)
∂x∗

d(τ, θ)

∂θ

∂x∗
d(τ, θ)

∂τ
+ r(θ)

(
∂x∗

d(τ, θ)

∂θ

)2
]

+ 2
∂r(τ, θ)

∂τ

(
∂x∗

d(τ, θ)

∂τ

∂w(y∗d, y, y
∗
d)

∂y
+

∂x∗
d(τ, θ)

∂θ

∂w(x, y∗d, y
∗
d)

∂x

)
. (A-4)

Substituting into this expression ∂w(x, y∗s , y
∗
s )/∂x = −θ∂w(x, y, y∗s )/∂y and eq. (A-2) yields

H(θ∗) = −∂w(x∗
d, y, y

∗
d)

∂y

 (1− r(θ∗)) (1 + r(θ∗))
(
ρ(θ∗)

∂2x∗
d(τ,θ)
∂τ2 − r(θ∗)(1−ρ(θ∗))

1+r(θ∗)
∂2x∗

d(τ,θ)
∂τ∂θ − ∂2x∗

d(τ,θ)
∂θ2

)
1 + r(θ∗)ρ(θ∗)

−
2∂r(τ,θ)

∂τ (1− ρ(θ∗)2)
∂x∗

d(τ,θ)
∂τ

1 + r(θ∗)ρ

]
τ=θ=θ∗

+

(
∂2w(x, y∗d, y

∗
d)

∂x2
[1 + ρ(θ∗)r(θ∗)(ρ(θ∗) + 2)]

2
∂2w(x, y, y∗d)

∂x∂y

[
ρ+ r(θ∗)

(
1 + ρ(θ∗) + ρ(θ∗)2

)]
+

∂2w(x∗
d, y, y

∗
d)

∂y2
[
ρ(θ∗)2 + 2r(θ∗)(1 + ρ(θ∗))

])(∂x∗
d(τ, θ)

∂τ

)2

.

(A-5)

A key distinction between the Jacobian J(θ∗) and the Hessian H(θ∗) is that the sign of the Jacobian does not

depend directly on fitness derivatives, while the Hessian does. Both expressions remain complicated and we did not

manage to obtain general information from them. Hence, they need to be evaluated on a case by case basis.
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Box 1. Invasion fitness as eigenvalue. The invasion fitness of a type is its geometric growth ratio when rare in a resident population

(Fisher, 1930; Eshel and Feldman, 1984; Metz et al., 1992; Ferrière and Gatto, 1995). When the resident population is monomorphic

for θ, the invasion fitness W (τ, θ) of mutant τ under our demographic assumptions (section (2.1)) is obtained as the leading eigenvalue

of the matrix

A(τ, θ) =

a11(τ, θ) a12(τ, θ)

a21(τ, θ) a22(τ, θ)

 , (B-a)

where aij stands for the expected number of groups with i ∈ {1, 2} mutants that over one demographic time period descend (either

through local change or through migration) from a focal group with i ∈ {1, 2} mutants, when the population is otherwise monomorphic

for θ. Matrix A(τ, θ) is assumed to be regular (irreducible and aperiodic, Iosifescu, 2007, p. 123) and it then follows from standard results

on multi-type branching processes that the lineage of a single τ mutant goes extinct with probability one if, and only if, W (τ, θ) ≤ 1,

while otherwise it spreads into the population when rare (Harris, 1963; Karlin and Taylor, 1975). By definition of invasion fitness,

W (τ, θ)u(τ, θ) = A(τ, θ)u(τ, θ), where u(τ, θ) = (u1(τ, θ), u2(τ, θ)) is the only non-negative right eigenvector of A(τ, θ), where, by

normalization, u1(τ, θ) + u2(τ, θ) = 1. The eigenvector u(τ, θ) can be interpreted as the quasi-stationary distribution of mutant group

types as it is invariant to multiplication by A(τ, θ), whereby ui(τ, θ) is the frequency of groups with i ∈ {1, 2} mutants among groups

with at least one mutant. Following previous developments (Mullon et al., 2016), we can left multiply W (τ, θ)u(τ, θ) = A(τ, θ)u(τ, θ)

by the vector (1, 2). Rearranging terms, this produces

W (τ, θ) = [1− r(τ, θ)] w̃1(τ, θ) + r(τ, θ)w̃2(τ, θ), (B-b)

where

w̃1(τ, θ) = a11(τ, θ) + 2a21(τ, θ) (B-c)

w̃2(τ, θ) = a12(τ, θ)/2 + a22(τ, θ) (B-d)

r(τ, θ) =
2u2(τ, θ)

u1(τ, θ) + 2u2(τ, θ)
. (B-e)

Here, w̃i(τ, θ) is the expected total number of individuals produced (including the surviving self) by a single τ individual over one

demographic time step when there are j ∈ {1, 2} τ individuals in its group and the population is otherwise monomorphic for θ; and

r(τ, θ) is the probability that, for any given descendant of the initial mutant, the neighbor of that mutant is also a mutant. An explicit

example of these invasion fitness components is given in Box 2.

Eq (B-b) is a recipient-centered representation of the mutant’s geometric growth ratio since it is expressed as the average of the expected

fitness of a type τ individual, who is necessarily the recipient of the traits of others. An actor-centered representation of the growth

ratio, which focuses on the consequence on others of an individual expressing the mutant instead of the resident trait value can also be

obtained (Hamilton, 1970; Rousset, 2015). Such an actor-centered representation of invasion fitness can be reached by rearranging the

components of eq. (B-b) (Lehmann and Rousset, 2020). Indeed, owing to the fact that w̃2(θ, θ) = 1, we have the equality

W (τ, θ) = 1− c(τ, θ) + r(τ, θ)b(τ, θ), (B-f)

where

−c(τ, θ) =
1

1 + r(τ, θ)
(w̃1(τ, θ)− w̃2(θ, θ)) +

r(τ, θ)

1 + r(τ, θ)
(w̃2(τ, θ)− w̃1(θ, τ))

b(τ, θ) =
1

1 + r(τ, θ)
(w̃1(θ, τ)− w̃2(θ, θ)) +

r(τ, θ)

1 + r(τ, θ)
(w̃2(τ, θ)− w̃1(τ, θ)) .

Here, −c(τ, θ) is the average effect (sensu Fisher, 1941) on the number of mutant gene copies produced by a single individual when

expressing a copy of the mutant instead of the resident allele. The average thus being over the two possible contexts in which an

individual expressing τ instead of θ can be: interacting with a neighbor that carries or not the mutant. The actor-centered perspective

of eq. (B-f) is then born out from the fact that b(τ, θ) is the average effect on the expected number of offspring produced by an individual’s

neighbour, which stemming from the actor switching to expressing a copy of the mutant instead of the resident allele.
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Box 2. Moran process example. We illustrate the invasion fitness components described in Box 1 by considering a process where

exactly one individual dies in each group during a demographic time step (i.e., an instance of a Moran process, Moran, 1962). For this

case, the entries of matrix (B-a) are

a11 = 1− b1 − d1 + e1, a21 = b1, a12 = d2 + e2, a22 = 1− b2 − d2, (B-g)

with bi and di standing, respectively, for the probability that there is a mutant descendant and mutant death, and ei is the expected

number of succesful emigrant mutants, in a group with i mutants. These variables are given by

bk(τ, θ) =
(2− k)µk(θ)

kµk(τ) + (2− k)µk(θ)

[
(1−m)kfk(τ)

(1−m) [kfk(τ) + (2− k)fk(θ)] +m2f0(θ)s0(θ)

]
(B-h)

dk(τ, θ) =

[
1−

(2− k)µk(θ)

kµk(τ) + (2− k)µk(θ)

] [
1−

(1−m)kfk(τ)

(1−m) [kfk(τ) + (2− k)fk(θ)] +m2f0(θ)s0(θ)

]
ek(τ, θ) =

1

2

mkfk(τ)sk(τ)

(1−m)f0(θ) +mf0(θ)s0(θ)

where fk(θ
′), µk(θ

′), sk(θ′) are, respectively, the fecundity, death-factor, juveniles’ survival probability during migration, of a single type

θ′ ∈ {τ, θ} adult individual when there are exactly k mutants in its group (see Lehmann et al., 2015; Mullon et al., 2016 for more details

on the derivation and the case where there are more than 2 individuals per group). On setting f1(τ) = f(x∗
d, y

∗
d), f2(τ) = f(x∗

s , x
∗
s ),

f0(θ) = f(y∗s , y
∗
s ), f1(θ) = f(y∗d, x

∗
d), µ1(τ) = µ(x∗

d, y
∗
d), µ2(τ) = µ(x∗

s , x
∗
s ), µ0(θ) = µ(y∗s , y

∗
s ), µ1(θ) = µ(y∗d, x

∗
d), s1(τ) = s(x∗

d, y
∗
d),

s2(τ) = s(x∗
s , x

∗
s ), and s0(θ) = s(y∗s , y

∗
s ), where x refers to mutant and y to resident strategies [recall eqs. (6)–(7)] and f : X 2 → R+,

µ : X 2 → R+, and µ : X 2 → R+, then algebraic rearrangements show that the fitness function w : X 3 → R+ in eqs. (6)–(7) for the

Moran process is defined as

w(xi, x−i, y) = 1−
µ(xi, x−i)

µ(xi, x−i) + µ(x−i, xi)

+
1

2

[
(1−m)f(xi, x−i)

(1−m) [f(xi, x−i, y) + f(x−i, xi)] +mf(y, y)s(y, y)
+

mf(xi, x−i)s(xi, x−i)

(1−m)f(y, y) +mf(y, y)s(y, y)

]
(B-i)

(see Box 1 of Lehmann et al., 2015 for a biological interpretation of each term).

Even for this Moran process, the expression for relatedness eq. (B-e) is complicated, but its computation can be alleviated by using

an invasion fitness proxy. An invasion fitness proxy is by definition any fitness measure P (τ, θ) that is sign equivalent to W (τ, θ) such

that the evolutionary invasion analysis can be carried out from this measure (i.e. P (τ, θ) ≤ 1 ⇐⇒ W (τ, θ) ≤ 1). An invasion fitness

proxy for W (τ, θ) can be obtained by keeping the functional form eq. (B-b) but relatedness, instead of being given by the complicated

expression eq. (B-e), is given by

r(τ, θ) =
2b1(τ, θ)

2b1(τ, θ) + d2(τ, θ)
, (B-j)

which can be readily evaluated using eq. (B-h). Conceptually, this simplification obtains by substituting ui → ti in eq. (B-e), where ti

is the sojourn time with i ∈ {1, 2} mutants of the mutant lineage in a single group where t1 = 1/d1 and t2 = b1/(d1d2) (see Lehmann

et al., 2015; Mullon et al., 2016 for more details). Substituting eq. (B-h) into eq. (B-j) and using the expression for the vital rates in

terms of strategies and assuming, for simplicity that fecundity f is independent of the types, one can then check that relatedness can

be written as

r(τ, θ) =
(1−m)µ(y∗d(θ, τ), x

∗
d(τ, θ))

(1−m)µ(y∗d(θ, τ), x
∗
d(τ, θ)) +m

[
µ(x∗

d(τ, θ), y
∗
d(θ, τ)) + µ(y∗d(θ, τ), x

∗
d(τ, θ))

]
s(y∗s (θ), y

∗
s (θ))

, (B-k)

where we made explicit all functional dependencies. Further, in a monomorphic population relatedness boils down to

r(θ, θ) =
1−mb(θ)

1 +mb(θ)
=

1−m

1−m [1− 2s(y∗s (θ), y
∗
s (θ))]

, (B-l)

where mb(θ) = (1 − m)/[1 − m + ms(y∗s (θ), y
∗
s (θ)] is the backward migration probability, i.e., the probability that an individual

randomly sampled in a patch is of philopatric origin. Eq. (B-l) displays two generic features about relatedness. First, it is a monotonic

decreasing function of dispersal and of juvenile survival. Second, relatedness can depend endogeneously on the interactions, because

the spatial structure is an outcome of survival and reproduction which are themselves functions of interactions between individuals.

If survival s(y∗s (θ), y
∗
s (θ)) were independent of strategies, then neutral relatedness would be independent of the types and reduce to

r = (1−m)/(1−m(1− 2s), as it should (Mullon et al., 2016), for parameters m ∈ (0, 1] and s ∈ [0, 1].
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