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Major evolutionary transitions have produced higher-level individuals consti-

tuting new levels of adaptation with extensive effects on the history of life. How

such transitions occur remains an outstanding question. We show that a ma-3

jor transition can happen from ancestral exploitation triggering specialization

that eventually dissolves conflict. Specifically, maternal manipulation of off-

spring help enables the mother to increase her fertility effort, thereby shifting6

a parent-offspring conflict over helping to parent-offspring agreement. This

process of conflict dissolution requires that helpers alleviate maternal life-

history trade-offs, and results in reproductive division of labor, high queen9

fertility, and honest queen signaling suppressing worker reproduction, thus

exceptionally recovering diverse features of eusociality. Our results explain

how a major evolutionary transition can happen from ancestral conflict.12

1



Major transitions in individuality from ancestral non-clonal groups (e.g., from prokaryotes

to eukaryotes, from solitary living to eusociality, and from multicellular organisms to inter-

specific mutualisms) require a substantial decrease in within-group conflict (1). Low conflict15

is currently sought with factors facilitating cooperation (notably, high relatedness), repressing

competition (e.g., through policing or punishment), or aligning group members’ interests (e.g.,

through concomitant reproduction of group members) (1). Yet, a key question is how the evo-18

lutionary switch from conflict to interest alignment can occur (2).

Here we report a process that dissolves conflict, that is, whereby conflict evolves to interest

alignment, and that yields a transition to eusociality. In this process, (i) the mother manipulates21

offspring to become helpers; (ii) while offspring evolve resistance to manipulation, the mother

uses available help to become more fertile; (iii) increased maternal fertility increases the benefit

of helping to the point of rendering helping voluntary (Fig. 1A,B). To show how this process24

can occur, we formulate a game theory model and an evolutionary model.

Consider a sequential game between a mother (M ) and a female offspring (O) (Fig. 1C).

First, M either manipulates O (e.g., behaviorally via differential food provisioning (3) or phys-27

iologically with hormones (4) or pheromones (5)) or not. Second, if M manipulates O, then

O either resists manipulation or not. If O does not resist, then O helps M produce an extra

number B of daughters, at a cost C to herself. If M is related to each daughter by rM , and30

if sisters are related by r, then M gets an “inclusive-fitness payoff” of rMB − rMC while O

gets rB − C. Otherwise, if M does not manipulate or if O resists, O does not pay any cost

and no extra daughters are produced, yielding payoffs of zero to both players. Under conflict33

(1 < B/C < 1/r), selection favors resistance and manipulation does not yield helping—the

game has two subgame perfect equilibria, one with resistance and the other without manipula-

tion.36

Consider now an extended game where, after O moves, M can choose (e.g., plastically (9))
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Figure 1: Conflict dissolution. (A,B) Helping is (i) disfavored by mother and offspring if the
benefit-cost ratio B/C satisfies B/C < 1/ρM (“no helping” zone); (ii) favored by mother and
offspring if B/C > 1/ρO (“voluntary helping” zone); or (iii) favored by mother and disfavored
by offspring if 1/ρM < B/C < 1/ρO (“conflict” zone). Conflict dissolution occurs when (A)
B/C starts in the conflict zone and (B) ends in the voluntary helping zone. Helping is favored
by actors A when ρAB − C > 0 (a Hamilton’s rule; (6)), where C is the cost to helpers, B is
the benefit to help recipients, and ρA is the “relative reproductive worth” of help recipients for
actors A relative to helpers, which generalizes life-for-life relatedness (7) to allow helpers and
recipients of both sexes (if all offspring are female, ρM = rM/rM = 1 and ρO = r/1 = r) (8).
(C,D) Sequential games modeling conflict and conflict dissolution via maternal reproductive
specialization. (C) Without specialization, conflict yields equilibria without helping (shaded);
(D) with specialization, conflict no longer occurs if B+/C > 1/ρO, yielding a unique equilib-
rium with voluntary helping (shaded).
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between specializing into reproduction or not (Fig. 1D). If O resists, M pays a cost K for

specializing due to a life-history trade-off. If O does not resist, M produces an extra number of39

daughtersB+ at no cost provided the helper alleviates the trade-off. If helping and specialization

are synergistic enough that B+/C > 1/r, there is no conflict with specialization although there

is without. Thus, manipulation and specialization yield helping: the extended game has a unique42

subgame perfect equilibrium with manipulation, specialization, and no resistance. This shows

that if mothers can use offspring help to increase the benefit sufficiently, the conflict can be

dissolved.45

We now show, using an evolutionary model, that such evolution of the benefit can occur. The

model is class-structured with explicit population and mutant-invasion dynamics, which allows

us to derive rather than assume inclusive-fitness payoffs (the model is fully described in (8)).48

We consider a large population with a fixed number of nesting sites and a monogamous life

cycle with two offspring broods. The genetic system is diploid or haplodiploid, and either both

sexes or only females help, which covers the spectrum of known eusocial taxa (10). A mated51

pair produces f1 first-brood offspring and with probability sM survives to old age to produce

f2 second-brood offspring. Each first-brood offspring of the helper sex becomes a helper with

probability p or disperses; hence, the number of helpers h of a mated pair is proportional to54

p. All second-brood offspring disperse. Dispersing first-brood offspring (resp. second-brood

offspring) survive dispersal with probability s1 (resp. s2). Surviving individuals mate randomly

once and start a nest if nesting sites are available. We assume that (i) f2 increases with maternal57

reproductive effort z (e.g., number of ovarioles), (ii) there is a trade-off between survival and

fertility, so that sM or s2 decreases with f2, and (iii) helpers increase mated-pair or second-brood

survival, so that sM or s2 increases with h. A mated pair’s expected number of reproductive60

first- or second-brood offspring is given by Π1 = (f1 − h)s1 and Π2 = sMf2s2, respectively.

We study the co-evolutionary dynamics of the offspring helping probability p and the maternal
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reproductive effort z. We let p be under maternal, offspring, or shared control. Under shared63

control, p is a joint phenotype (11) that increases with maternal influence x (e.g., pheromone

production) and decreases with offspring resistance y (e.g., receptor antagonist production).

Reproductive effort z is under maternal control.66

If maternal influence and offspring resistance co-evolve under conflict while reproductive

effort is constant, resistance may win the ensuing arms race and eliminate helping in the long

run (Fig. 2A-E). This matches the standard expectation (12). Alternatively, if reproductive ef-69

fort co-evolves with influence and resistance, the benefit-cost ratio can move out of the conflict

zone (Fig. 2F-J). In this case, the arms race vanishes as manipulated helping becomes voluntary.

The outcome is eusociality where (i) helpers are maternally induced to help and not favored to72

resist, and (ii) the mother has become highly fertile and reliant on helpers for her own or her

offspring’s survival. Moreover, ancestral manipulation becomes an honest signal (13): the re-

sulting maternal influence alters the recipient’s phenotype in recipient’s interest (i.e., helpers75

are induced to help, and they “want” to help); the signaler evolved to produce that effect (i.e.,

influence evolved to induce helping); and the recipient evolved to attend the signal (i.e., off-

spring evolved lack of resistance to influence). This process constitutes conflict dissolution via78

maternal reproductive specialization, which generates eusociality with reproductive division of

labor, high queen fertility, and queen suppression of worker reproduction via an honest signal.

We now show that this conflict dissolution process requires that helpers alleviate the trade-81

offs limiting maternal fertility. Each evolving trait ζ is favored by selection if and only if

its inclusive-fitness effect Hζ is positive (8). For helping, Hp ∝ ρAB − C, where C =

−∂Π1/∂h = s1, B = ∂Π2/∂h, and ρA depends on relatedness, sex-specific reproductive val-84

ues, and the stable sex distribution. For reproductive effort, Hz ∝ ∂Π2/∂f2. Conflict occurs

when the mother favors helping (i.e., Hp > 0 with p under maternal control) while offspring

disfavor helping (i.e., Hp < 0 with p under offspring control). Conflict dissolution occurs87

5



A B C

Helping probability, p Maternal influence, x Evolutionary time, 

Mat. infl., x
Offs. resist., y
Repr. effort, z

Help. prob., p
B-C ratio, B/C

Pair survival,
Late fertility, f2

Pair survival
without helpersD E

F G H I J

No helping Conflict Voluntary helping
HR threshold

B/C

La
te

 fe
rti

lit
y, 

f 2

O
ffs

pr
in

g 
re

si
st

an
ce

, y

z 
co

ns
ta

nt
z 

ca
n 

ev
ol

ve

f2*

Figure 2: Conflict dissolution via maternal reproductive specialization (evolutionary model).
(A-E) Co-evolution of maternal influence x and offspring resistance y with constant reproduc-
tive effort z (i.e., the genetic variance of z, Gz, is zero), where resistance wins the conflict. (A)
Starting from conflict, helping increases as maternal influence increases but resistance evolves
and helping is lost (circle). (B) Co-evolutionary trajectory of maternal influence and offspring
resistance (black). (C-E) Time series of: (C) the evolving traits, (D) the resulting helping proba-
bility and benefit-cost ratio, and (E) the vital rates. (F-J) Analogous plots but now reproductive
effort evolves as the mother chooses it optimally for the number of helpers she has (i.e., as if
Gz → ∞) and resistance disappears. (F) Starting from conflict, helping increases as maternal
influence increases, and reproductive effort increases yielding voluntary helping (circle). (G)
Trajectories starting at conflict can converge to voluntary helping. (H) Resistance reversal. (I)
The benefit-cost ratio evolves and the Hamilton’s rule threshold from the helpers perspective
is crossed. (J) The mother becomes highly fertile and reliant on helpers for her own survival.
Functional forms and parameter values used are given in (8).
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when there is conflict at the start of the evolutionary process but mother and offspring favor

helping at the end (i.e., Hp > 0 with p both under maternal and offspring control). Hence,

conflict dissolution requires that selection for helping under offspring control increases with90

evolutionary time τ , that is, dHp/dτ > 0 for p under offspring control, which is equiva-

lent to ∂Hp/∂pdp/dτ + ∂Hp/∂zdz/dτ > 0. Conflict dissolution via maternal reproductive

specialization occurs when ∂Hp/∂zdz/dτ > 0, and thus requires helping-fertility synergy93

(∂Hp/∂z > 0; (14)) as reproductive effort increases. Moreover, at an optimal fertility f ∗2 (im-

plicitly given by ∂Π2/∂f2|f2=f∗2 = 0), helping-fertility synergy is equivalent to helping and

fertility acting as strategic complements (i.e., ∂2Π2/∂f2∂h|f2=f∗2 > 0), which in turn can be96

written as (
∂εf2(sM)

∂h
+
∂εf2(s2)

∂h

) ∣∣∣∣∣
f2=f∗2

> 0, (1)

where εX(Y ) = (X/Y )∂Y/∂X = ∂ lnY/∂ lnX is the elasticity of Y with respect to X (i.e.,

the percent change in Y caused by a marginal percent increase in X (15)). From our assump-99

tions, εf2(sM) < 0 or εf2(s2) < 0, so inequality (1) states that helpers alleviate the trade-offs,

which is then required for conflict dissolution via maternal reproductive specialization (Fig. 3).

Conflict dissolution depends on the relative evolutionary speeds of the traits, as they de-102

termine the size of the basin of attraction toward voluntary helping (17). Conflict dissolution

is thus promoted by higher genetic variance in maternally-controlled traits and lower genetic

variance in offspring-controlled traits (Fig. S13A,B). The power mother and offspring have on105

determining the joint phenotype (18) also affects the evolutionary speed (but not the direc-

tion of selection) of influence and resistance (8). Hence, conflict dissolution is promoted by

relatively high maternal power (Fig. S13C). The evolutionary speed also depends on whether108

mother and offspring contest the joint phenotype simultaneously (e.g., behaviorally, through

aggression (19,20)) or sequentially (e.g., physiologically, where the mother alters offspring de-

velopment through nutrition or hormones transferred before eclosion or birth (3,4)) (8). Conflict111
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Figure 3: Helping-fertility synergy as trade-off alleviation. Mated pair survival decreases
with late fertility due to the assumed trade-off (blue lines; linear trade-off in log-log scale;
cf. Fig. S11). Mated pair survival at an optimal late fertility occurs when a blue line has the same
slope as a Π2 indifference curve (gray, where Π2 is constant), namely −1, since ∂Π2/∂f2 = 0
is equivalent to εf2(sM) + εf2(s2) = −1 (cf. (16)). In this example, mated pair survival at an
optimal late fertility increases as the number of helpers increases (i.e., the red line has posi-
tive slope), meaning that helpers alleviate the trade-off (i.e., (1) holds). Functional forms and
parameter values are as in Fig. 2.
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dissolution is promoted by simultaneous contests (Fig. S13D).

We have shown that maternal reproductive specialization can dissolve conflict and yield a

major transition. While conflict resolution refers to the conflict outcome even if conflict per-114

sists (21) (thus, it is an equilibrium concept), we have defined conflict dissolution as the switch

from conflict to no conflict (thus, it is an out-of-equilibrium concept). By transforming ma-

nipulated helping into voluntary helping, conflict dissolution unifies classic hypotheses for the117

origin of eusociality from voluntary (6) or manipulated (22) helping. On the one hand, disso-

lution makes evidence that queen pheromones are honest signals in extant taxa (5, 12, 23, 24)

consistent with manipulation at the origin of eusociality. On the other hand, dissolution re-120

quires that Hamilton’s rule is eventually met from the offspring perspective, which is facilitated

by high relatedness. Thus, dissolution also makes evidence that eusociality originated exclu-

sively under lifetime monogamy (25) consistent with manipulation at the origin of eusociality.123

The fact that dissolution has additional conditions (e.g., (1)) and occurs under restricted param-

eter combinations (Fig. S11) is in principle consistent with the patchy taxonomic distribution of

eusociality, including the absence of eusociality in vast numbers of species with high related-126

ness (26). Moreover, dissolution helps explain the widespread occurrence of maternal influence

on workers across the diverse eusocial taxa, which seems more difficult to explain from ances-

tral voluntary helping.129

Crucially, the process of conflict dissolution we identify requires that helpers alleviate trade-

offs limiting maternal fertility. Such trade-off alleviation is feasible across eusocial taxa—

indeed, it is thought to be key to explain queens’ extraordinary fertility and longevity (27). This132

contrasts with previously reported conflict dissolution processes (17, 28), which did not yield

high maternal fertility and had more restrictive requirements, namely costly helping inefficiency

(17) or better help use by maternally neglected offspring (28).135

Empirical inference of conflict dissolution may use its dependence on evolutionary his-
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tory. In particular, conflict relics may be indicative of conflict dissolution (28). For instance,

the complex chemical composition of honeybee queen mandibular pheromone (QMP; which138

inhibits worker reproduction) suggests that it resulted from an arms race (29) that seemingly

halted since (i) worker reproduction follows the workers’ inclusive-fitness interests (23, 30),

(ii) QMP behaves as an honest signal (24, 31), and (iii) QMP composition is seemingly similar141

among related species (23, 32). By seemingly stemming from a halted arms race, QMP may be

a conflict relic suggesting conflict dissolution.

To conclude, our results offer a unified hypothesis for the origin of eusociality and diverse144

features thereof, and suggest a reinterpretation of available evidence. More generally, con-

flict dissolution via analogous processes occurring during evolutionary, cultural, or behavioral

timescales may help understand how agreement arises.147
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Outline

This Supplementary Information contains the details of our evolutionary model and is organized as follows.

First, in Evolutionary model set-up (section 1), we introduce assumptions, notions, and notation that will be54

used when building the model. Second, in Selection gradients (section 2), we build the population dynamics

model that allows us to identify invasion fitness (i.e., the growth rate of a rare mutant subpopulation in a res-

ident population at equilibrium); this enables us to calculate the selection gradients which provide the direc-57

tion of selection. We obtain a generic expression of the selection gradient from a general formula of eigenvalue

(here, invasion fitness) perturbation that writes the selection gradient in terms of reproductive value, stable

mutant distribution, and the local sensitivity of mutant vital rates to marginal changes in trait values. Using60

the reproductive value and stable mutant distribution for our model, we obtain a generic yet simplified expres-

sion of the selection gradient for our model. We use this simplified expression to derive the selection gradient

of the evolving traits we study (helping probability and reproductive effort). Third, in Inclusive-fitness effects63

(section 3), we show that the selection gradients of all traits can be written in terms of inclusive-fitness effects

for all the model cases we consider. Fourth, in Conflict dissolution and benefit-cost ratio zones (section 4), we

define conflict dissolution and show that a necessary condition for conflict dissolution via maternal reproduc-66

tive specialization is that there is evolutionary synergy of reproductive effort on helping. Fifth, in Evolutionary

synergy and trade-off alleviation (section 5), we show that such synergy is equivalent to trade-off alleviation

by helpers if reproductive effort is optimal. Sixth, in Evolutionary dynamics (section 6), we postulate that the69

evolutionary dynamics satisfy a form of the “canonical equation” of adaptive dynamics. This enables us to use

the derived selection gradients to write equations describing the evolutionary dynamics of the evolving traits.

Seventh, in Specific functional forms (section 7), we specify functions for the vital rates and the joint helping72

probability which enables us to obtain numerical solutions for the evolutionary dynamics. Finally, in Specifi-

cation of Fig. 2, and additional figures (section 8), we give the specification of functional forms and parameter

values used to create the figures in the main text, and provide additional figures with results. Table S1 presents75

a summary of our notation.
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Table S1: Summary of notation.

Notation Meaning

p Helping probability: probability that a first-brood offspring stays in the maternal nest and helps

x Maternal influence: maternal effort to induce first-brood offspring to become a helper

y Offspring resistance: offspring effort to resist the maternal influence

z Reproductive effort: maternal effort to produce second-brood offspring

sa Offspring survival: probability that an offspring from brood a ∈ {1,2} survives dispersal

sM Mated pair survival: probability that a young mated pair becomes an old mated pair

fa Fertility: number of offspring produced a mated pair of age a ∈ {1,2}

σa,` Brood sex proportion: fraction of sex-` offspring produced in brood a ∈ {1,2}

q`,i ,k Transmission probability: probability that an offspring is of type i ∈ {r,m} (resident or mutant)

given it is of sex-` and its parents are of type k ∈ {rm,mr} (resident mother and mutant father

or mutant mother and resident father)

h Expected number of helpers: expected number of helpers that an old mated pair has

Fa,`,i ,k Effective fertility: expected number of surviving reproductive, sex-` offspring of type i produced by

an age-a mated pair of type k

Πa,`,i ,k Productivity: probability that a young mated pair survives to age a times its effective fertility at that age

N`,i Density of unmated individuals: number of unmated individuals of genotype i and sex `

Na,k Density of mated pairs: number of mated pairs of age a and type k

Nk Density of matings: number of matings of type k before density dependence

N Fixed number of nesting sites in the population

α Nest availability: density dependent probability that a newly mated pair finds a nesting site

λ Invasion fitness: asymptotic growth rate of a rare mutant subpopulation in a resident

population at demographic equilibrium

Sζ Selection gradient of trait ζ

u Stable mutant distribution: asymptotic distribution of neutral mutants

v Reproductive values: long-term contribution by neutral mutants to the population

G Genetic covariance matrix

t Ecological time

τ Evolutionary time

B Marginal benefit of helping: marginal effect of helpers on late productivity

C Marginal cost of helping: marginal effect of helpers on early productivity

D Marginal productivity of late fertility: marginal effect of late fertility on late productivity
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1 Evolutionary model set-up

1.1 Basic assumptions and variables78

Adaptive dynamics assumptions. We study the co-evolutionary dynamics of the helping probability p of

first-brood offspring and the reproductive effort z devoted to the production of second-brood offspring by a

mother. We do this by considering repeated invasion-fixation events of rare mutant alleles in a large popu-81

lation of resident alleles [40, 44, 54, 58]. We make the standard assumptions that each trait is controlled by a

single locus, and that the effects of a mutation on trait values are marginally small and unbiased (i.e., a muta-

tion is equally likely to increase or decrease the trait value). Given the small phenotypic effect of mutations and84

the large population size, a newly arisen mutation that is not neutral either becomes fixed or is eliminated. We

also assume a standard separation of timescales. Specifically, we assume that mutation events are rare enough

that natural selection either fixes or eliminates a non-neutral mutation before another mutation arises. The87

repetition of this mutant invasion sequence leads to evolutionary change in the resident phenotype. Thus,

population dynamics occur in a fast “ecological” time scale t (that we measure in discrete time) whereas evo-

lutionary change occurs in a slow “evolutionary” timescale τ (that we measure in continuous time).90

Model cases. We consider model cases that differ in three aspects. First, the genetic system (P, for “ploidy”)

can be either (i) diploid (P = D, in which case both sexes are diploid) or haplodiploid (P = HD, in which case fe-

males are diploid and males are haploid). Second, the individuals genetically controlling the helping behavior93

(C, for “control”) can be either (i) offspring (C = O, for “offspring control”), (ii) the mother (C = M, for “mater-

nal control”), or (iii) both mother and offspring (C = S, for “shared control”). Third, the sex of helpers (G, for

“gender”) can be either (i) female and male (G = B, for “both sexes help”), or (ii) exclusively female (G = F, for96

“only females help”). This yields twelve model cases (Fig. S1). For instance, in one model case the genetic sys-

tem is diploid, helping is under offspring control, and both sexes help (D-O-B), which is relevant to termites if

helping is under offspring control; in another model case, the genetic system is haplodiploid, helping is under99

shared control, and only females help (HD-S-F), which is relevant to eusocial hymenoptera if helping is under

shared control. Although our focus is on model cases of shared control that allow us to study the evolution-

ary dynamics of parent-offspring conflict over helping, model cases of offspring control and maternal control102

serve as stepping stones in the building and analysis of model cases of shared control.

Evolving traits. For the model cases where helping is under either offspring or maternal control, we con-

sider the coevolution of two traits: (i) the probability p ∈ [0,1] that a first-brood offspring stays at the nest and105

becomes a helper, and (ii) the maternal reproductive effort z ∈ R∗+1. For all model cases, we assume that re-

productive effort z is exclusively under maternal control. Thus, when helping is under offspring or maternal

control, we follow the evolution of the phenotypic vector z = (p, z)ᵀ. For model cases where helping is under108

shared control, we consider the coevolution of three traits: maternal influence x ∈ R+, offspring resistance

y ∈ R+, and maternal reproductive effort z ∈ R+. When considering helping under shared control, we assume

1Throughout, R+ refers to the set of non-negative reals, that is, R+ = {x ∈R|x ≥ 0}. R∗+ refers to the set of positive reals, that is, R∗+ =
{x ∈R|x > 0}.
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Figure S1: Model cases we consider. Case relevance is based on Ross et al. [61] and Davies et al. [43].

that the helping probability p(x, y) is a function of maternal influence x and offspring resistance y (i.e., p(x, y)111

is a “joint phenotype” between mother and offspring; 59). Thus, when helping is under shared control, we fol-

low the evolution of the phenotypic vector z = (x, y, z)ᵀ. For a given trait ζ (where ζ ∈ {
p, z

}
for model cases of

offspring and maternal control, and ζ ∈ {
x, y, z

}
for model cases of shared control), we denote by ζr the resident114

trait value and by ζm the mutant trait value; similarly, we denote by zr = (ζr)ᵀ the resident phenotypic vector

and by zm = (ζm)ᵀ the mutant phenotypic vector. By some abuse of notation, we also denote the resident trait

value by ζ and the resident phenotypic vector by z. It is then understood that ζ≡ ζr and z ≡ zr.117

Life cycle. We consider a finite but large population of individuals with a fixed number N of nesting sites.

Generations are overlapping, and the life cycle is lifetime monogamous with two offspring broods, as fol-

lows (Fig. S2). (i) In each nesting site, there is one singly mated female characterized by her genotype and120

the genotype of the male she mated or is mating with: we refer to a mated female and her mate as a “mated

pair”. We let a index the age of a mated pair, so that a = 1 for a young mated pair and a = 2 for an old mated

pair. We let ` denote the sex of an individual, so ` = ♀ for a female and ` = ♂ for a male. (ii) The female of123

a young mated pair produces and provides care for a fixed number f1 of first-brood offspring, a proportion

σ1,` of which are of sex `. A first-brood offspring of sex ` either remains at the nest with probability p` to

become a non-reproductive helper, or disperses with probability 1−p`. Each dispersed first-brood offspring126

survives dispersal with probability s1 to become an unmated reproductive. Thus, a young mated pair produces

F1,` = f1σ1,`(1−p`)s1 unmated reproductive offspring. (iii) A young mated pair either survives with probability

sM to become an old mated pair or dies with probability 1− sM . (iv) The female of an old mated pair produces129

a number f2 of second-brood offspring, a proportion σ2,` of which are of sex `. A second-brood offspring al-

ways disperses, and survives dispersal with probability s2 to become an unmated reproductive. Thus, an old

mated pair produces F2,` = f2σ2,`s2 unmated reproductive offspring. We call Fa,` the age-specific sex-specific132

effective fertility of a mated pair. Consequently, the expected number of sex-` unmated reproductives pro-

duced by a mated pair through first-brood offspring isΠ1,` = F1,`, and the expected number of sex-` unmated

reproductives produced by a mated pair through second-brood offspring isΠ2,` = sM F2,`. We callΠa,` the age-135

specific sex-specific productivity of a mated pair. (v) Old mated pairs die. (vi) Unmated reproductives mate

singly at random and establish nests subject to the availability of nesting sites, which is measured by α. Mated
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Figure S2: Resident life cycle. Unmated females and males mate once to become young mated pairs that may

survive to become old mated pairs. Each mated pair occupies a single nesting site, the number of which is

constant. The female of a young mated pair produces first-brood offspring and when the mating pair is old the

female produces second-brood offspring. Each ellipse corresponds to a “demographic class” of individuals

or of pairs of individuals. Here N j is the number of individuals of demographic class j , Fa,` is the effective

fertility of a mated pair of age a through sex-` offspring, and α measures the density dependent probability

that a newly mated pair finds a nesting site.

reproductives that fail to establish a nest die.138

Genotypes. Consideration of mutant genotypes leads to a complete life cycle comprising ten classes of indi-

viduals or of pairs of individuals (Fig. S3). We let i index the genotype of unmated individuals. The genotype

i of an unmated individual can be either r for a resident or m for a mutant, where due to the assumption that141

the mutant allele is rare, a mutant is heterozygous in diploids and in female haplodiploids, and hemizygous

in male haplodiploids. Similarly, we let k index the “type” of a mated pair, which comprises the genotype of

the female and the genotype of the male of the pair in that order. That is, the type k of a mated pair can be (i)144

rr when the female and male are both residents, (ii) rm when the female is resident and the male is mutant,

or (iii) mr when the female is mutant and the male is resident. We do not need to consider the mated pair

type mm comprising a mutant female and a mutant male, as the frequency of such type is negligible when the147

mutant allele is rare. For a mated pair of type k, we denote by ♀(k) the genotype of the female and by ♂(k) the

genotype of the male in the pair, that is,

♀(k) =


m if k = mr

r if k = rr or k = rm,
(S1.1.1a)

and150

♂(k) =


m if k = rm

r if k = rr or k = mr.
(S1.1.1b)
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Figure S3: Resident-mutant life cycle. There are ten demographic classes, of which four exclusively involve

resident genotypes and six involve mutant genotypes.

Dependence of vital rates on the evolving traits. We assume that early fertility f1 and first-brood survival s1

are constants. In contrast, we assume that the mated pair’s survival sM , the late fertility f2, and the second-

brood survival s2 depend on the individuals’ genotypes. Thus, the vital rates sM , f2, and s2 are functions of153

the evolving phenotype z. More specifically, we assume that the vital rates sM , f2, and s2 are functions of the

expected number of helpers hk and the reproductive effort zk that an old mated pair of type k has. We express

hk in terms of genotypes in section 1.3 below. Regarding zk , since reproductive effort is always under maternal156

control, the reproductive effort of an old mated pair of type k is

zk = z♀(k), (S1.1.2a)

which, via equation (S1.1.1a), equals zr (≡ z) if the female in the pair is resident or zm if she is mutant. With

our notational conventions, this implies that159

zrr = zr ≡ z (S1.1.2b)

always holds.

Brood sex proportions. As previously stated, we denote byσa,` the proportion of offspring of sex ` produced

by a mated pair of age a. The brood sex proportions satisfy162 ∑
`∈

{
♀,♂

}σa,` = 1 ∀a ∈ {1,2} (S1.1.3)

because each offspring is either a female or a male. In the following, we will also use the shorthand notation

σa ≡σa,♀, and refer to it as the sex proportion of brood a. Additionally, we will also write

σᵀ
a =

(
σa,♀,σa,♂

)
(S1.1.4)

for the vector collecting the sex proportions of brood a.165
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Maximum number of helpers. We denote the maximum number helpers by h̄. For model cases where both

sexes help (G = B),

h̄ = f1. (S1.1.5a)

For model cases where only females help (G = F),168

h̄ = f1σ1. (S1.1.5b)

1.2 Transmission and helping probabilities

Transmission probability. We denote by q`,i ,k the probability that an offspring is of genotype i given that

it is of sex ` and that its parents are of type k. We refer to this conditional probability as the transmission171

probability, and list its values in Fig. S4. Although the transmission probability depends on the genetic system

(diploid or haplodiploid), it invariably satisfies the following set of identities:

q`,r,rr = 1 ∀` ∈ {♀,♂}, (S1.2.1a)

q`,m,rr = 0 ∀` ∈ {♀,♂}, (S1.2.1b)∑
i∈{r,m}

q`,i ,k = 1 ∀` ∈ {♀,♂} and ∀k ∈ {rr, rm,mr}, (S1.2.1c)

∑
`∈

{
♀,♂

} q`,i ,k = 1 ∀i ∈ {r,m} and ∀k ∈ {rm,mr}. (S1.2.1d)

Equations (S1.2.1a) and (S1.2.1b) state that all offspring of a resident mated pair (rr) are resident (r) regardless174

of their sex. Equation (S1.2.1c) holds because an offspring is either resident or mutant, regardless of its sex and

the genotypes of its parents. Finally, (S1.2.1d) states that when parents have different genotypes (one being

resident, the other mutant), and for each possible genotype of the offspring, the transmission probability is a177

probability distribution over the sexes of the offspring.

The ratio

q♀,m,rm

q♂,m,mr

(S1.2.2a)

will naturally arise in our analysis. This ratio can be interpreted as a measure of transmission asymmetry180

across sexes inherent to the genetic system, that is, a measure of how likely a mutant father is to transmit his

mutant allele to a daughter (the numerator of (S1.2.2a), q♀,m,rm) compared to how likely a mutant mother is to

transmit her allele to a son (the denominator of (S1.2.2a), q♂,m,mr). It can be checked that the ratio (S1.2.2a)183

simplifies to

q♀,m,rm

q♂,m,mr

=


1 for diploids (G = D)

2 for haplodiploids (G = HD)
. (S1.2.2b)

Equation (S1.2.2b) states that there is no transmission asymmetry across sexes in diploids, but that in hap-

lodiploids mutant fathers are twice as likely to transmit their mutant alleles to their daughters as mutant moth-186

ers are to transmit their mutant alleles to their sons. We will see that such transmission asymmetry means that,

for diploids, a neutral mutation is asymptotically equally likely to occur in the female or the male of a mated

pair; in contrast, for haplodiploids, a neutral mutation is asymptotically twice as likely to occur in the female189

rather than the male of a mated pair.
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(Eq. S1.2.1d)
(Eq. S1.2.1d)

Figure S4: Transmission probability. List of values for the conditional probability qi ,`,k that an offspring is

of genotype i given that it is of sex ` and that its parents are of type k. Identities (S1.2.1c) and (S1.2.1d) are

highlighted in color.

Helping probability. We denote by p`,i ,k the probability that an offspring of sex ` and genotype i produced

by a mated pair of type k does not disperse and instead stays at the nest to become a helper. We refer to this192

conditional probability as the helping probability and list its values in Fig. S5. The helping probability depends

on (i) whether both sexes or only females help and (ii) whether helping is under offspring, maternal, or shared

control. For model cases of shared control, we define the helping probability function195

p :R+×R+ → [0,1]

(x, y) 7→ p(x, y),

such that p(x, y) is the helping probability of an offspring when the mother exerts influence x and the offspring

exerts resistance y . We assume that p is smooth, increasing in x, and decreasing in y , so that

∂p

∂x
> 0, (S1.2.3a)

∂p

∂y
< 0 (S1.2.3b)

hold for all the domain of p(x, y). That is, an increase in maternal influence (resp. an increase in offspring198

resistance) increases (resp. decreases) the probability that a first-brood offspring becomes a helper.

1.3 Expected number of helpers

Expected number of helpers of a mated pair of type k. As previously stated, the evolving phenotype z mod-201

ulates the vital rates sM , f2, and s2 because these vital rates are functions of the expected number of helpers

hk and of the reproductive effort zk that each old mated pair of type k has. We now derive an expression for hk

in terms of individuals’ genotypes. We start by using the definitions of the transmission probability q`,i ,k and204

the helping probability p`,i ,k (section 1.2) to write an expression for the expected proportion of helpers of sex

` among the first-brood offspring of a mated pair of type k, p`,k , as

p`,k = ∑
i∈{r,m}

q`,i ,k p`,i ,k . (S1.3.1)
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Figure S5: Helping probability. List of values for the helping probability p`,i ,k for the model cases considered.

The proportion of helpers of either sex among the first-brood offspring of a mated pair of type k can then be207

written as

pk = ∑
`∈

{
♀,♂

}σ1,`p`,k = ∑
`∈

{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,k p`,i ,k , (S1.3.2)

from which the expected number of helpers hk is derived as

hk = f1pk (S1.3.3a)

= f1
∑

`∈
{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,k p`,i ,k . (S1.3.3b)

Expected number of helpers of a resident mated pair. The expected number of helpers of a mated pair of210

type rr (i.e., the expected number of helpers per nest in a resident population) will be important in our analysis.

We adopt a notational convention similar to the one we have adopted for the helping probability p, namely to

use h as (i) a generic variable referring to the expected number of helpers, (ii) as the value of such variable for213

the specific case of a mated pair of type rr (i.e., h ≡ hrr), and (iii) as a function of evolving traits whose output

is the expected number of helpers, to be specified below. With these conventions, the expected number of

helpers available to a mated pair of type rr can be written as216

hrr ≡ h (S1.3.4a)

= f1
∑

`∈
{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,rrp`,i ,rr

= f1
∑

`∈
{
♀,♂

}σ1,`p`,r,rr, (S1.3.4b)
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where the first equality follows from expression (S1.3.3b) with k = rr, and the last one from identities (S1.2.1a)

and (S1.2.1b). By inspection of the values of the helping probability given in Fig. S5, and since σ1,♀+σ1,♂ = 1

(S1.1.3) holds, expression (S1.3.4b) reduces to219

hrr ≡ h = h(p) = h̄p (S1.3.5a)

for model cases of offspring or maternal control, and to

hrr ≡ h = h(x, y) = h̄p(x, y) (S1.3.5b)

for model cases of shared control. Here, h̄ = f1 for model cases where both sexes help (S1.1.5a) and h̄ = f1σ1

for model cases where only females help (S1.1.5b). In expression (S1.3.5a) we have used the expected number222

of helpers function

h : [0,1] → [0, h̄]

p 7→ h̄p,

such that h(p) = h̄p, while h(x, y) in expression (S1.3.5b) refers to the function

h :R+×R+ → [0, h̄]

(x, y) 7→ h̄p(x, y),

such that h(x, y) = h̄p(x, y).225

1.4 Assumptions on vital rates

The process of conflict dissolution that we identify rests on three critical assumptions. First, we assume that

the late fertility of a mother can evolve (genetically or plastically). Second, we assume that mothers face life-228

history trade-offs (i) between fertility and survival to old age; (ii) between fertility and survival of second-brood

offspring; or (iii) between fertility and both survival rates. Finally, we assume that such life-history trade-offs

can be alleviated by helpers. We now formalize each of these assumptions.231

Late fertility of a mated pair of type k, f2,k . We assume that the number of second-brood offspring produced

by a mated pair of type k, f2,k , depends on the mother’s reproductive effort, zk = z♀(k) (S1.1.2a), via

f2,k = f2(zk ), (S1.4.1)

where234

f2 :R∗
+ →R∗

+

z 7→ f2(z),
(S1.4.2)

is a smooth function. Furthermore, we assume f2 is strictly increasing; that is,

d f2

dz
> 0 (S1.4.3)

holds for all z ∈R∗+. Equations (S1.4.1) and (S1.4.3) respectively encapsulate the assumptions that mother’s late

fertility depends on the evolving mother’s reproductive effort zk , and that a larger reproductive effort implies237

a larger late fertility f2,k .
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Survival probabilities sM ,k and s2,k . We assume that the survival probabilities sM ,k and s2,k can be written as

functions of both the late fertility, f2,k , and the expected number of helpers, hk , of a mated pair of type k. More240

explicitly, we let the survival probabilities be given by

sM ,k = sM ( f2,k ,hk ) = sM ( f2(zk ),hk ), (S1.4.4a)

s2,k = s2( f2,k ,hk ) = s2( f2(zk ),hk ), (S1.4.4b)

where the rightmost equalities follow from (S1.4.1), and where

sM : SM × [0, h̄] → (0,1)

( f2,h) 7→ sM ( f2,h),
(S1.4.5a)

s2 : S2 × [0, h̄] → (0,1]

( f2,h) 7→ s2( f2,h),
(S1.4.5b)

are smooth functions decreasing in f2
2. In (S1.4.5), SM and S2 are subsets of R∗+.243

We assume that either sM or s2 is decreasing in f2, that is,

∂sM

∂ f2
< 0 or (S1.4.6a)

∂s2

∂ f2
< 0 (S1.4.6b)

holds for all f2 and all h in the domains of these functions and where neither of the two derivatives is positive.

Inequalities (S1.4.6) encapsulate the idea that mothers face a life-history trade-off between fertility and sur-246

vival: all else being equal, a greater investment in late fertility f2 from the part of the mother negatively affects

at least one vital rate among sM and s2.

Finally, we assume that either sM or s2 is increasing in h, that is,249

∂sM

∂h
> 0 or (S1.4.7a)

∂s2

∂h
> 0, (S1.4.7b)

holds for all f2 and all h in the domains of these functions and where neither of the two derivatives is negative.

Inequalities (S1.4.7) encapsulate the idea that helpers can increase the vital rates negatively affected by an

increase in the mother’s reproductive effort, thus potentially alleviating the trade-offs involved.252

1.5 Effective fertility

The early effective fertility F1,`,i ,k gives the expected number of offspring of sex ` and genotype i that success-

fully disperse and that are produced by a mated pair of age 1 and type k. The early effective fertility is given255

by

F1,`,i ,k = f1σ1,`q`,i ,k (1−p`,i ,k )s1. (S1.5.1)

2The upper bound of the codomain of sM is open so that sM ,rr < 1 and the resident equilibrium of the resident system is stable, as we

will show below. The lower bounds of the codomains of sM and s2 are open so that, respectively, there are old mated pairs and second-

brood offspring can become reproductive.
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Indeed, a young mated pair produces a fixed number f1 of first-brood offspring, a proportionσ1,` of which are

of sex `. Of these, a proportion q`,i ,k is of genotype i , of which a proportion (1−p`,i ,k )s1 both disperses and258

survives dispersal. In particular, letting i = r, k = rr, and using identity (S1.2.1a), we find

F1,`,r,rr = f1σ1,`(1−p`,r,rr)s1 (S1.5.2)

as an expression for the early effective fertility F1,`,r,rr of a resident mated pair of type rr through offspring of

genotype r and sex ` (i.e., the early rate of production of offspring of sex ` by a resident mated pair in a resident261

population).

An old mated pair of type k produces a number of offspring f2,k , a proportion σ2,` of which are of sex `.

With probability q`,i ,k one of such offspring of sex ` is of genotype i , with probability one it disperses (as we264

assume that all second-brood offspring disperse from their parental nest), and with probability s2,k it survives

dispersal. It follows that the late effective fertility F2,`,i ,k (giving the expected number of individuals of sex `

and genotype i that successfully disperse and that are produced by a mated pair of age 2 and type k) is given267

by

F2,`,i ,k = f2,kσ2,`q`,i ,k s2,k . (S1.5.3)

Similarly to early effective fertility, the late effective fertility of a resident mated pair in a resident population

evaluates to270

F2,`,r,rr = f2,rrσ2,`s2,rr. (S1.5.4)

1.6 Productivity

We will show that the selection gradient in our model can be conveniently written in terms of what we term

the age-specific and sex-specific productivity of a mated pair. The productivity Π`,i ,k of a k-type mated pair273

through offspring of sex ` and genotype i is the expected lifetime number of unmated reproductive offspring

of sex ` and genotype i produced by a mated pair of type k. The productivity of a k-type mated pair through

offspring of sex ` and genotype i is given by the sum of a young mated pair’s effective fertility and the old276

mated pair’s effective fertility, the latter discounted by the probability sM ,k that a young mated pair survives to

old age. From this, we have

Π`,i ,k = F1,`,i ,k + sM ,k F2,`,i ,k . (S1.6.1)

It will prove useful for our subsequent analysis to highlight the two summands of the previous expression with279

more dedicated notation. We will then alternatively write the productivity of a k-type mated pair through

offspring of sex ` and genotype i as

Π`,i ,k =Π1,`,i ,k +Π2,`,i ,k , (S1.6.2)

where the first and second summands are respectively the early and late productivity of a mated pair of type k282

through offspring of sex ` and genotype i . These are given by

Π1,`,i ,k = F1,`,i ,k = q`,i ,kσ1,` f1(1−p`,i ,k )s1, (S1.6.3a)

Π2,`,i ,k = sM ,k F2,`,i ,k = q`,i ,kσ2,`sM ,k f2,k s2,k , (S1.6.3b)
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where the second equalities follow from substituting the expressions for early and late effective fertility (equa-

tions (S1.5.1) and (S1.5.3)) into (S1.6.1) and rearranging.285

We define the (total) early and late productivity of a type-k mated pair as the sum of the productivities of

each age over both sexes (female and male) and both genotypes (resident and mutant) of offspring. We can

use previously established relationships between our variables to write down relatively simple expressions for288

these two quantities. The early productivity of a type-k mated pair can be then written as:

Π1,k = ∑
`∈{♀,♂}

∑
i∈{r,m}

Π1,`,i ,k (S1.6.4)

= ∑
`∈{♀,♂}

∑
i∈{r,m}

q`,i ,kσ1,` f1(1−p`,i ,k )s1 (S1.6.5)

= f1s1
∑

`∈{♀,♂}

σ1,`

∑
i∈{r,m}

q`,i ,k (1−p`,i ,k )

= f1s1
∑

`∈{♀,♂}

σ1,`

( ∑
i∈{r,m}

q`,i ,k −
∑

i∈{r,m}
q`,i ,k p`,i ,k

)

= f1s1
∑

`∈{♀,♂}

σ1,`
(
1−p`,k

)
(S1.6.6)

= f1s1

 ∑
`∈{♀,♂}

σ1,`−
∑

`∈{♀,♂}

σ1,`p`,k


= f1s1(1−pk ) (S1.6.7)

= (
f1 −hk

)
s1, (S1.6.8)

where line (S1.6.5) follows from substituting (S1.6.3a) into (S1.6.4); line (S1.6.6) follows from identities (S1.2.1c)

and (S1.3.1); line (S1.6.7) follows from identities (S1.1.3) and (S1.3.2); and line (S1.6.8) uses (S1.3.3a) and rear-291

ranges. Expression (S1.6.8) makes it explicit that the early productivity of a k-type mated pair is equal to the

expected number of first-brood offspring that do not become helpers and instead disperse ( f1 −hk ) times the

probability that they survive dispersal (s1). To capture this in a general way, we define the early productivity294

function

Π1 : [0, f1] →R+

h 7→ (
f1 −h

)
s1,

(S1.6.9)

such thatΠ1(h) = (
f1 −h

)
s1.

Similarly, the late productivity of a type-k mated pair can be written as:297

Π2,k = ∑
`∈{♀,♂}

∑
i∈{r,m}

Π2,`,i ,k (S1.6.10)

= ∑
`∈{♀,♂}

∑
i∈{r,m}

q`,i ,kσ2,`sM ,k f2,k s2,k (S1.6.11)

= sM ,k f2,k s2,k

∑
`∈{♀,♂}

σ2,`

∑
i∈{r,m}

q`,i ,k

= sM ,k f2,k s2,k

∑
`∈{♀,♂}

σ2,` (S1.6.12)

= sM ,k f2,k s2,k , (S1.6.13)
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where line (S1.6.11) follows from substituting (S1.6.3b) into (S1.6.10); line (S1.6.12) follows from identity (S1.2.1c);

and line (S1.6.13) follows from identity (S1.1.3).

The (total) productivity of a mated pair of type k is the sum of its early and late productivities, that is300

Πk =Π1,k +Π2,k . (S1.6.14)

Two further identities concerning productivities are worth pointing out. First, note that, by substituting

(S1.4.1) and (S1.4.4) into (S1.6.13), the late productivity of a mated pair of type k is given by

Π2,k = sM ( f2(zk ),hk ) f2(zk )s2( f2(zk ),hk ).

This motivates our introduction of the late productivity function303

Π2 :R∗
+× [0, f1] →R∗

+

( f2,h) 7→ sM ( f2,h) f2s2( f2,h),
(S1.6.15)

such thatΠ2( f2,h) = sM ( f2,h) f2s2( f2,h). The late productivity of a mated pair of type k can then be written as

Π2,k =Π2( f2,k ,hk ). (S1.6.16)

Second, substituting equation (S1.6.1) into (S1.6.2) and by identity (S1.6.13) we find that the productivity

of a k-type mother through offspring of sex ` and genotype i (S1.6.2) can be also written as306

Π`,i ,k = q`,i ,k
[
σ1,` f1(1−p`,i ,k )s1 +σ2,`Π2,k

]
. (S1.6.17)

In particular, and by setting i = r and k = rr in the previous expression, the productivity of a rr-type mother

through offspring of sex ` and type r (i.e., the productivity of a mother through offspring of sex ` in a resident

population) is given by309

Π`,r,rr = q`,r,rr
[
σ1,` f1(1−p`,r,rr)s1 +σ2,`Π2,rr

]
=σ1,` f1(1−p`,r,rr)s1 +σ2,`Π2,rr, (S1.6.18)

where the second equality follows from identity (S1.2.1a).
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2 Selection gradients

We now derive the selection gradients for our model. To do this, we proceed in nine steps. First, we build312

a population dynamics model of a resident population and a rare mutant subpopulation (Resident-mutant

population dynamics; section 2.1). Second, we find the unique stable resident equilibrium where the mutant

is absent (Resident population dynamics and resident equilibrium; section 2.2). Third, we identify invasion315

fitness, which is the growth rate of a rare mutant population around such resident equilibrium (Invasion fit-

ness; section 2.3). Fourth, we write a general expression for the selection gradient, which gives the direction

of selection in phenotypic space, by applying a general result on the sensitivity of the leading eigenvalue of318

irreducible and nonnegative matrices [38, 39, 50, 54]. This expression gives the selection gradient in terms

of marginal effects of the mutant on vital rates weighted by reproductive values and the components of the

stable mutant distribution (Selection gradient (generic form); section 2.4). Fifth, we calculate the neutral mu-321

tant submatrix required to obtain such reproductive values and stable mutant distribution (Neutral mutant

submatrix, J◦mut; section 2.5). Sixth, we find the reproductive values and stable mutant distribution for our

model (Reproductive values and stable distribution; section 2.6). Seventh, using the particular form of the re-324

productive values and the stable mutant distribution for our model, we obtain a simplified expression of the

selection gradient in terms of a mated pair’s productivity weighted by reproductive values and stable mutant

proportions of different classes (Selection gradient (generic, simplified form); section 2.7). Eighth, using such327

simplified selection gradient, we obtain the selection gradient of traits affecting helping (Selection gradient of

traits affecting helping; section 2.8). Finally, we obtain the selection gradient of reproductive effort (Selection

gradient of reproductive effort; section 2.9).330

2.1 Resident-mutant population dynamics

Having set up some of our general notation, we are ready to write the equations describing the population

dynamics of our model, which we let occur in discrete time.333

Let N`,i (t ) denote the number of (dispersed) unmated reproductives of sex ` ∈ {♀,♂} and genotype i ∈ {r,m}

at “ecological” time t , so that N♀,r(t ), N♀,m(t ), N♂,r(t ), and N♂,m(t ) represent, respectively, the number of

unmated resident females, mutant females, resident males, and mutant males at time t . Likewise, let Na,k (t )336

denote the number of mated pairs of age a ∈ {1,2} and type k ∈ {rr, rm,mr} at time t . The variables N`,i and

Na,k for ` ∈ {♀,♂}, i ∈ {r,m}, a ∈ {1,2}, and k ∈ {rr,rm,mr} constitute the dynamic variables (ten in total) of the

population dynamics part of our model (Fig. S3). We collect these variables in the 10-dimensional vector339

N(t ) =
 Nr(t )

Nm(t )

 , (S2.1.1)

concatenating the resident and the mutant population vectors, respectively given by

Nr(t ) = (N♀,r(t ), N♂,r(t ), N1,rr(t ), N2,rr(t ))ᵀ, (S2.1.2)

and

Nm(t ) = (N♀,m(t ), N♂,m(t ), N1,rm(t ), N1,mr(t ), N2,rm(t ), N2,mr(t ))ᵀ. (S2.1.3)
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We now write down the equations that allow us to project such variables from time t to time t + 1, and,342

recursively, to any future time step.

Let

Nk (t ) = N♀,♀(k)(t )N♂,♂(k)(t ) (S2.1.4)

denote the product of unmated females of genotype ♀(k) and unmated males of genotype ♂(k) (see definitions345

(S1.1.1a) and (S1.1.1b)), which evaluates to

Nrr(t ) = N♀,r(t )N♂,r(t ), (S2.1.5a)

Nrm(t ) = N♀,r(t )N♂,m(t ), (S2.1.5b)

Nmr(t ) = N♀,m(t )N♂,r(t ). (S2.1.5c)

Assuming random mating, the number of matings at time t giving rise to young mated pairs of type k is pro-

portional to Nk (t ). Hence,348

N1,k (t +1) =α(N(t ))Nk (t ), (S2.1.6)

where α(N(t )) (an expression for which we derive in equation (S2.1.9) below) measures nesting site availabil-

ity and enforces the density-dependence condition that the total number of mated pairs (i.e., nests) in the

population is equal to the total number of nesting sites, N , that is,351

∑
k∈{rr,rm,mr}

∑
a∈{1,2}

Na,k (t +1) = N . (S2.1.7)

Each young mated pair of type k becomes an old mated pair at the next time step with probability sM ,k . Hence,

N2,k (t +1) = sM ,k N1,k (t ). (S2.1.8)

Substituting (S2.1.6) and (S2.1.8) into (S2.1.7), α(N(t )) in (S2.1.6) can be written in terms of our variables as

α(N(t )) = N −∑
k∈{rr,rm,mr} sM ,k N1,k (t )∑
k∈{rr,rm,mr}Nk (t )

. (S2.1.9)

In turn, the number of dispersed unmated individuals of sex ` and genotype i at time t +1 is given by354

N`,i (t +1) = ∑
k∈{rr,rm,mr}

∑
a∈{1,2}

Na,k (t )Fa,`,i ,k , (S2.1.10)

where Fa,`,i ,k is the expected number of individuals of sex ` and genotype i that successfully disperse and that

are produced by a mated pair of age a and type k. The quantity Fa,`,i ,k is the effective fertility defined in section

1.5 (see expressions (S1.5.1) and (S1.5.3)).357

Recursions (S2.1.6), (S2.1.8), and (S2.1.10) describe the population dynamics of our model: recursion (S2.1.6)

describes mating, recursion (S2.1.8) describes mated pair survival, and recursion (S2.1.10) describes reproduc-

tion. It is convenient to write this set of equations in matrix notation as360

N(t +1) = A(N(t ))N(t ), (S2.1.11)

where the projection matrix

A(N(t )) =
 Arr(N(t )) Arm

Amr(N(t )) Amm(N(t ))

 , (S2.1.12)
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comprises the submatrices

Arr(N(t )) =



0 0 F1,♀,r,rr F2,♀,r,rr

0 0 F1,♂,r,rr F2,♂,r,rr

α(N(t ))N♂,r(t ) α(N(t ))N♀,r(t ) 0 0

0 0 sM ,rr 0

 , (S2.1.13a)

Arm =



0 0 F1,♀,r,rm F1,♀,r,mr F2,♀,r,rm F2,♀,r,mr

0 0 F1,♂,r,rm F1,♂,r,mr F2,♂,r,rm F2,♂,r,mr

0 0 0 0 0 0

0 0 0 0 0 0

 , (S2.1.13b)

Amr(N(t )) =



0 0 0 0

0 0 0 0

α(N(t ))N♂,m(t ) 0 0 0

0 α(N(t ))N♀,m(t ) 0 0

0 0 0 0

0 0 0 0


, (S2.1.13c)

Amm(N(t )) =



0 0 F1,♀,m,rm F1,♀,m,mr F2,♀,m,rm F2,♀,m,mr

0 0 F1,♂,m,rm F1,♂,m,mr F2,♂,m,rm F2,♂,m,mr

0 α(N(t ))N♀,r(t ) 0 0 0 0

α(N(t ))N♂,r(t ) 0 0 0 0 0

0 0 sM ,rm 0 0 0

0 0 0 sM ,mr 0 0


. (S2.1.13d)

2.2 Resident population dynamics and resident equilibrium363

In the absence of the mutant allele, Nm(t ) = (0, . . . ,0)ᵀ holds, and the population dynamics (S2.1.11) reduces to

the resident system

Nr(t +1) = Arr(Nr(t ))Nr(t ), (S2.2.1)

with366

α(Nr(t )) = N − sM ,rrN1,rr(t )

Nrr(t )
. (S2.2.2)

Substituting (S2.2.2) into the projection matrix Arr(Nr(t )) (S2.1.13a), performing the matrix multiplication in

(S2.2.1), and simplifying, yields

N♀,r(t +1) = F1,♀,r,rrN1,rr(t )+F2,♀,r,rrN2,rr(t ), (S2.2.3a)

N♂,r(t +1) = F1,♂,r,rrN1,rr(t )+F2,♂,r,rrN2,rr(t ), (S2.2.3b)

N1,rr(t +1) = N − sM ,rrN1,rr(t ), (S2.2.3c)

N2,rr(t +1) = sM ,rrN1,rr(t ). (S2.2.3d)
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At an equilibrium N∗
r = (N∗

♀,r, N∗
♂,r

, N∗
1,rr, N∗

2,rr)ᵀ, the system satisfies369

N♀,r(t +1) = N♀,r(t ) = N∗
♀,r, (S2.2.4a)

N♂,r(t +1) = N♂,r(t ) = N∗
♂,r

, (S2.2.4b)

N1,rr(t +1) = N1,rr(t ) = N∗
1,rr, (S2.2.4c)

N2,rr(t +1) = N2,rr(t ) = N∗
2,rr. (S2.2.4d)

Substituting (S2.2.4) into (S2.2.3) and solving the resulting linear system of equations, we find that the system

admits a unique equilibrium given by

N∗
♀,r =

N

1+ sM ,rr

(
F1,♀,r,rr + sM ,rrF2,♀,r,rr

)= N

1+ sM ,rr
Π♀,r,rr, (S2.2.5a)

N∗
♂,r

= N

1+ sM ,rr

(
F1,♂,r,rr + sM ,rrF2,♂,r,rr

)
= N

1+ sM ,rr
Π♂,r,rr, (S2.2.5b)

N∗
1,rr =

N

1+ sM ,rr
, (S2.2.5c)

N∗
2,rr =

N

1+ sM ,rr
sM ,rr, (S2.2.5d)

where the second equality in expressions (S2.2.5a) and (S2.2.5b) follows from identity (S1.6.1), which links372

effective fertilities and productivities.

This equilibrium is locally stable. To show this, we perform a local stability analysis [54] of the resident

system (S2.2.1) at the resident equilibrium (S2.2.5). Evaluating the Jacobian matrix of (S2.2.1) at (S2.2.5) we375

obtain the local stability matrix

Jres =
(
∂Nr(t +1)

∂N♀,r(t )
,
∂Nr(t +1)

∂N♂,r(t )
,
∂Nr(t +1)

∂N1,rr(t )
,
∂Nr(t +1)

∂N2,rr(t )

)∣∣∣∣∣
Nr=N∗

r

(S2.2.6a)

=



0 0 F1,♀,r,rr F2,♀,r,rr

0 0 F1,♂,r,rr F2,♂,r,rr

0 0 −sM ,rr 0

0 0 sM ,rr 0

 . (S2.2.6b)

This matrix has a block-triangular form composed of four 2×2 submatrices; because of this block-triangular

form, the eigenvalues of Jres correspond to the eigenvalues of the submatrices along the diagonal. As these378

submatrices are both triangular, their eigenvalues are the values along their main diagonals. It follows that the

eigenvalues of Jres are zero (with multiplicity three) and −sM ,rr. Since we assume that sM ,rr < 1, the absolute

value of the leading eigenvalue of Jres is less than one, proving the local stability of N∗
r . We conclude that the381

resident equilibrium is locally stable in the absence of the mutant allele.

From (S2.2.5a) and (S2.2.5b), we have that the sex ratio among unmated reproductives at the resident equi-

librium is given by the ratio of sex-specific productivities, that is,384

N∗
♂,r

N∗
♀,r

=
Π♂,r,rr

Π♀,r,rr
. (S2.2.7)
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2.3 Invasion fitness

We now identify invasion fitness, that is, the asymptotic growth rate of a rare mutant population introduced at

the resident equilibrium387

N∗ = (N∗
r ,0), (S2.3.1)

where N∗
r corresponds to (S2.2.5). To a first-order approximation, the population dynamics around the resi-

dent equilibrium are governed by the local stability matrix

J =
(
∂N(t +1)

∂N♀,r(t )
,
∂N(t +1)

∂N♂,r(t )
, . . . ,

∂N(t +1)

∂N2,rm(t )
,
∂N(t +1)

∂N2,mr(t )

)∣∣∣∣∣
N=N∗

, (S2.3.2)

that is, the Jacobian matrix of (S2.1.11) evaluated at the resident equilibrium (S2.3.1). Taking the partial deriva-390

tives, it can be checked that this Jacobian has the block-triangular form [54]:

J =
Jres V

0 Jmut

 , (S2.3.3)

featuring submatrices 0 (a 6×4 matrix of zeros), Jres (the 4×4 matrix given by equation (S2.2.6b)), V (a 4×6

matrix), and393

Jmut =



0 0 F1,♀,m,rm F1,♀,m,mr F2,♀,m,rm F2,♀,m,mr

0 0 F1,♂,m,rm F1,♂,m,mr F2,♂,m,rm F2,♂,m,mr

0
1

Π♂,r,rr

0 0 0 0

1

Π♀,r,rr
0 0 0 0 0

0 0 sM ,rm 0 0 0

0 0 0 sM ,mr 0 0


(S2.3.4)

(a 6×6 matrix). Given the block-triangular form of J (S2.3.3), the mutant submatrix Jmut governs the mutant

population dynamics around the resident equilibrium.

Invasion fitness is given by the leading eigenvalue λ of Jmut. Since raising Jmut to a sufficiently high power396

yields matrices with all entries being positive, Jmut is nonnegative, irreducible, and primitive. It follows from

the Perron-Frobenius theorem that λ is real and positive [39], and that invasion fitness is well defined. Then, a

rare mutant allele invades if and only if the absolute value of the invasion fitness is larger than one.399

2.4 Selection gradient (generic form)

We now use our identification of invasion fitness to obtain a general expression of the selection gradient, which

gives the direction of selection. Invasion fitness can be written as λ = λ(zm,z) to highlight the fact that it is402

a function of both mutant and resident phenotypes because so are the entries of Jmut. Here, zm = (ζm)ᵀ =
(pm, zm)ᵀ and z = (ζ)ᵀ = (p, z)ᵀ for model cases of offspring or maternal control, or zm = (ζm)ᵀ = (xm, ym, zm)ᵀ

and z = (ζ)ᵀ = (x, y, z)ᵀ for model cases of shared control.405

We assume that mutations have small phenotypic effects (i.e., we assume that selection is δ-weak; 65).

Then, invasion fitness can be approximated by a first-order Taylor expansion of λ(zm,z) with respect to zm
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around z to obtain408

λ(zm,z) ≈ 1+ (zm −z)ᵀS(z),

where we have used the fact that λ(z,z) = 1 (since mutant alleles coding for the same trait as the resident are

neutral), and where the selection gradient of z is given by

S(z) =
Sp (z)

Sz (z)

=


∂λ

∂pm

∣∣∣∣
zm=z

∂λ

∂zm

∣∣∣∣
zm=z

 , (S2.4.1)

for model cases of offspring and maternal control, or by411

S(z) =


Sx (z)

Sy (z)

Sz (z)

=



∂λ

∂xm

∣∣∣∣
zm=z

∂λ

∂ym

∣∣∣∣
zm=z

∂λ

∂zm

∣∣∣∣
zm=z


(S2.4.2)

for model cases of shared control.

To calculate the selection gradient of ζ, Sζ(z), (where ζ ∈ {
p, z

}
for offspring and maternal control; ζ ∈{

x, y, z
}

for shared control), that is,414

Sζ(z) = ∂λ

∂ζm

∣∣∣∣
zm=z

, (S2.4.3)

we use a classic result on perturbations of the leading eigenvalue of irreducible and nonnegative matrices. This

result implies that the selection gradient of ζ (S2.4.3) can be written as [39, 54]

Sζ(z) =
vᵀ

∂Jmut

∂ζm

∣∣∣∣
zm=z

u

vᵀu
, (S2.4.4)

where v and u are, respectively, the left and right eigenvectors associated to the leading eigenvalue of the417

neutral mutant submatrix J◦mut, which equals one. Henceforth, we will denote by X ◦ a variable X considered

under neutrality, that is

X ◦ ≡ X |zm=z , (S2.4.5)

for any variable X . With this convention,420

J◦mut ≡ Jmut|zm=z (S2.4.6)

=



0 0 F ◦
1,♀,m,rm F ◦

1,♀,m,mr F ◦
2,♀,m,rm F ◦

2,♀,m,mr

0 0 F ◦
1,♂,m,rm

F ◦
1,♂,m,mr

F ◦
2,♂,m,rm

F ◦
2,♂,m,mr

0
1

Π◦
♂,r,rr

0 0 0 0

1

Π◦
♀,r,rr

0 0 0 0 0

0 0 s◦M ,rm 0 0 0

0 0 0 s◦M ,mr 0 0


. (S2.4.7)
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2.5 Neutral mutant submatrix, J◦mut

To calculate the dominant left and right eigenvectors v and u of the neutral mutant submatrix J◦mut, we now

calculate the entries of J◦mut, together with other variables and rates considered under neutrality. All of these423

neutral variables and rates can be written in terms of variables and rates of resident individuals in a resident

population.

Neutral reproductive effort, z◦
k . We start by calculating z◦

k , that is, the neutral reproductive effort exerted by426

the female of an old mated pair of type k. For all k ∈ {rr, rm,mr}, this is given by

z◦
k ≡ zk |zm=z = z♀(k)

∣∣
zm=z

= z = zrr, (S2.5.1)

where the first equality follows from the definitions of zk (S1.1.2a) and neutrality (S2.4.5); the second equality

follows from the definition of ♀(k) (S1.1.1a) and our notational convention (S1.1.2b); and the last equality429

follows again from our convention (S1.1.2b).

Neutral expected number of helpers, h◦
k . We proceed now to calculate h◦

k , that is, the expected number of

helpers for an old mated pair of type k evaluated at neutrality. Let us first note that, by inspection of the values432

of the helping probabilities given in Figure S5, the following identity holds:

p◦
`,i ,k ≡ p`,i ,k

∣∣
zm=z = p`,r,rr. (S2.5.2)

Taking this into account, we can then write, for all k ∈ {rr, rm,mr},

h◦
k =

 f1
∑

`∈
{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,k p`,i ,k


∣∣∣∣∣∣∣

zm=z

(S2.5.3a)

= f1
∑

`∈
{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,k
(
p`,i ,k

)∣∣
zm=z (S2.5.3b)

= f1
∑

`∈
{
♀,♂

}σ1,`

∑
i∈{r,m}

q`,i ,k p`,r,rr (S2.5.3c)

= f1
∑

`∈
{
♀,♂

}σ1,`p`,r,rr

∑
i∈{r,m}

q`,i ,k (S2.5.3d)

= f1
∑

`∈
{
♀,♂

}σ1,`p`,r,rr (S2.5.3e)

= hrr = h (S2.5.3f)

where the first line (S2.5.3b) follows from substituting (S1.3.3b) and the definition of neutrality (S2.4.5); the435

second line (S2.5.3b) follows from the fact that only the probabilities p`,i ,k are functions of the evolving traits

z; the third line (S2.5.3c) applies identity (S2.5.2); the fifth line (S2.5.3e) applies identity (S1.2.1c); and the final

line (S2.5.3f) follows from (S1.3.4b).438

Neutral vital rates ( f ◦
2,k , s◦M ,k , and s◦2,k ). The entries of J◦mut as given in equation (S2.4.6) depend on the values

of the different vital rates under neutrality, that is, on f ◦
2,k , s◦M ,k , and s◦2,k . We calculate these values now.

23



The late fertility of the female of a mated pair of type k under neutrality is given by441

f ◦
2,k = f2(zk )

∣∣
zm=z = f2

(
zk |zm=z

)= f2(zrr) = f2,rr, (S2.5.4)

where the first equality follows from substituting equation (S1.4.1) and from the definition of neutrality (S2.4.5);

the second equality holds because the function f2 (S1.4.2) is the same for all k; the third equality follows from

equation (S2.5.1); and the last equality follows from (S1.4.1) with k = rr.444

The survival of a mated pair of type k under neutrality is given by

s◦M ,k = sM ( f2,k ,hk )
∣∣

zm=z = sM

(
f ◦

2,k ,h◦
k

)
= sM

(
f2,rr,hrr

)= sM ,rr, (S2.5.5)

where the first equality follows from substituting equation (S1.4.4a) and from the definition of neutrality (S2.4.5);

the second equality holds because the function sM (S1.4.5a) is the same for all k; the third equality follows from447

equation (S2.5.4) and (S2.5.3f); and the last equality follows from (S1.4.4a) with k = rr. Thus, the probabilities

s◦M ,rm and s◦M ,mr featuring in J◦mut (S2.4.6) simplify to

s◦M ,rm = s◦M ,mr = sM ,rr. (S2.5.6)

Analogous reasoning leads to the following expression for the survival of the second-brood offspring of a450

mated pair of type k under neutrality:

s◦2,k = s2( f2,k ,hk )
∣∣

zm=z = s2

(
f ◦

2,k ,h◦
k

)
= s2

(
f2,rr,hrr

)= s2,rr. (S2.5.7)

Neutral effective fertility, F ◦
a,`,i ,k . The nonzero entries in the first two rows of J◦mut (S2.4.6) are effective fertil-

ities (defined in section 1.5) under neutrality. We find explicit expressions for these effective fertilities below.453

First, for all `, all i , and all k, the early effective fertility under neutrality, F ◦
1,`,i ,k , simplifies to

F ◦
1,`,i ,k = (

f1σ1,`q`,i ,k (1−p`,i ,k )s1
)∣∣

zm=z

= q`,i ,k f1σ1,`(1−p`,r,rr)s1

= q`,i ,k F1,`,r,rr (S2.5.8)

where the first equality follows from substituting the expression for F1,`,i ,k (S1.5.1) and the definition of neu-

trality (S2.4.5); the second equality follows from (S2.5.2); and the final equality follows from (S1.5.2).456

Likewise, for all `, all i , and all k, the late effective fertility under neutrality, F ◦
2,`,i ,k , simplifies to

F ◦
2,`,i ,k = (

f2,kσ2,`q`,i ,k s2,k
)∣∣

zm=z

= q`,i ,kσ2,` f ◦
2,k s◦2,k

= q`,i ,kσ2,` f2,rrs2,rr

= q`,i ,k F2,`,r,rr (S2.5.9)

where we have substituted the expressions for f ◦
2,k and s◦2,k given by equations (S2.5.4) and (S2.5.7), and the

expression for F2,`,r,rr given by (S1.5.4).459

Equations (S2.5.8) and (S2.5.9) state that the effective fertility of a young or old mated pair that has a neutral

mutation equals the corresponding effective fertility of a resident mated pair multiplied by the probability that

the mutant mated pair produces an offspring of the relevant genotype and relevant sex.462
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Neutral productivity, Π◦
`,i ,k . When simplifying the expression for the selection gradient, it will be useful to

have the expression for the neutral productivity Π◦
`,i ,k of a k-type mated pair through offspring of sex ` and

genotype i . To calculate it, we start from the expression forΠ`,i ,k (equation (S1.6.1)), evaluate at neutrality, and465

simplify using the expressions for the neutral effective fertilities (equations (S2.5.8) and (S2.5.9)) and mated

pair survival (equation (S2.5.5)) to obtain

Π◦
`,i ,k = (

F1,`,i ,k + sM ,k F2,`,i ,k
)∣∣

zm=z

= F ◦
1,`,i ,k + s◦M ,k F ◦

2,`,i ,k

= q`,i ,k
(
F1,`,r,rr + sM ,rrF2,`,r,rr

)
= q`,i ,kΠ`,r,rr (S2.5.10)

where the last line follows from identifying the expression for the productivity of a mated pair of type rr through468

resident offspring,Π`,r,rr given by equation (S1.6.18). In particular, and because of identity (S1.2.1a) we recover

Π◦
`,r,rr =Π`,r,rr. (S2.5.11)

Neutral mutant submatrix, J◦mut. Putting together our previous results in this subsection 2.5, we write the

neutral mutant submatrix, J◦mut (S2.4.6) as471

J◦mut ≡ Jmut|zm=z

=



0 0 q♀,m,rmF1,♀,r,rr q♀,m,mrF1,♀,r,rr q♀,m,rmF2,♀,r,rr q♀,m,mrF2,♀,r,rr

0 0 q♂,m,rmF1,♂,r,rr q♂,m,mrF1,♂,r,rr q♂,m,rmF2,♂,r,rr q♂,m,mrF2,♂,r,rr

0 1
Π♂,r,rr

0 0 0 0

1
Π♀,r,rr

0 0 0 0 0

0 0 sM ,rr 0 0 0

0 0 0 sM ,rr 0 0


. (S2.5.12)

2.6 Reproductive values and stable distribution

Having calculated the neutral mutant submatrix, J◦mut, we are ready to calculate its (dominant) left and right

eigenvectors. These are the vectors v (S2.6.1) and u (S2.6.14) appearing in our expression for the selection474

gradient Sζ(z) of a generic trait ζ given by equation (S2.4.4). The biological meaning of these vectors is the

following [54]. The left eigenvector v lists the reproductive values of neutral mutants, with reproductive values

measuring the relative long-term contribution of individuals in a mutant class to the future mutant population.477

The right eigenvector u is the stable class distribution of neutral mutants, which measures the relative asymp-

totic distribution of neutral mutants among classes. By the Perron-Frobenius theorem, the vectors u and v

are positive [39]. We will show that the selection gradient (S2.4.4) can be simplified so that it only depends on480

two entries of u (namely, u1,rm and u1,mr) and two entries of v (namely, v♀,m and v♂,m). Thus, without loss of

generality, we choose u and v so that u1,rm+u1,mr = 1 (i.e., u1,k is the stable proportion of mutant young mated

pairs of type k) and v♂,m = 1 (i.e., the reproductive value of mutant males is arbitrarily set to one). Doing so483

we slightly depart from common use in demographic models, where u is often chosen so that the whole vector
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u is a probability distribution, that is, so that 1ᵀu = 1 (where 1 is a vector of ones), and where v is sometimes

chosen so that the whole vector vᵀu is a probability distribution, that is, so that vᵀu = 1. Regardless, we will486

continue referring to the vector u as the stable distribution.

Reproductive values, v. We start by calculating the left eigenvector

vᵀ =
(
v♀,m, v♂,m, v1,rm, v1,mr, v2,rm, v2,mr

)
, (S2.6.1)

giving the neutral reproductive values of mutants in each class. From the definition of a left eigenvector, and489

since the leading eigenvalue of J◦mut is one, v is defined by

vᵀJ◦mut = vᵀ. (S2.6.2)

Performing the matrix multiplication stated in (S2.6.2) with J◦mut given by equation (S2.4.6), we obtain the

system of equations492

v♀,m = v1,mr

Π◦
♀,r,rr

, (S2.6.3a)

v♂,m = v1,rm

Π◦
♂,r,rr

, (S2.6.3b)

v1,rm = F ◦
1,♀,m,rmv♀,m +F ◦

1,♂,m,rm
v♂,m + s◦M ,rmv2,rm, (S2.6.3c)

v1,mr = F ◦
1,♀,m,mrv♀,m +F ◦

1,♂,m,mr
v♂,m + s◦M ,mrv2,mr, (S2.6.3d)

v2,rm = F ◦
2,♀,m,rmv♀,m +F ◦

2,♂,m,rm
v♂,m, (S2.6.3e)

v2,mr = F ◦
2,♀,m,mrv♀,m +F ◦

2,♂,m,mr
v♂,m. (S2.6.3f)

From these equations we can write down two equivalent expressions for the reproductive values of young

mutant mated pairs (v1,mr and v1,rm) in terms of the reproductive values of mutant unmated reproductives

(v♀,m and v♂,m). First, isolating v1,mr and v1,rm from, respectively, equations (S2.6.3a) and (S2.6.3b), and using495

(S2.5.11), we obtain

v1,mr =Π♀,r,rrv♀,m, (S2.6.4a)

v1,rm =Π♂,r,rrv♂,m. (S2.6.4b)

Second, substituting the expressions for the reproductive value of old mated pairs of type rm, v2,rm (S2.6.3e),

and the reproductive value of old mated pairs of type mr, v2,mr (S2.6.3f), into the equations for the reproductive498

value of young mutant mated pairs (equations (S2.6.3c) and (S2.6.3d)), rearranging, and using the definition

of productivitiesΠ`,i ,k (S1.6.1), we get

v1,mr =Π◦
♀,m,mrv♀,m +Π◦

♂,m,mr
v♂,m, (S2.6.5a)

v1,rm =Π◦
♀,m,rmv♀,m +Π◦

♂,m,rm
v♂,m. (S2.6.5b)

We can now use expressions (S2.6.4) and (S2.6.5) in order to derive two identities linking the reproductive501

values of various classes. We start by equating the right hand sides of the two expressions for v1,mr above
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(equations (S2.6.4a) and (S2.6.5a)), and simplify to obtain(
Π♀,r,rr −Π◦

♀,m,mr

)
v♀,m =Π◦

♂,m,mr
v♂,m(

1−q♀,m,mr
)
Π♀,r,rrv♀,m = q♂,m,mrΠ♂,r,rrv♂,m

Π♀,r,rrv♀,m =Π♂,r,rrv♂,m (S2.6.6)

v1,mr = v1,rm, (S2.6.7)

where the second line follows from substituting the expressions for neutral productivities (S2.5.10); the third504

line follows because identity (S1.2.1d) implies 1− q♀,m,mr = q♂,m,mr; and the last line follows from equation

(S2.6.4). Equation (S2.6.6) links the reproductive values of female and male reproductives, and can be inter-

preted as stating that the reproductive value of a mutant reproductive of a given sex is proportional to the507

number of resident reproductives of the opposite sex and inversely proportional to the number of resident

reproductives of the same sex (S2.2.7). In turn, equation (S2.6.7) states that a consequence of this is that the

reproductive values of a mutant young mated pair is the same, whether the female in the pair is mutant (i.e.,510

the female is mutant and the male is resident) or the male in the pair is mutant (i.e., the female is resident

and the male is mutant). Although we derived identities (S2.6.6) and (S2.6.7) by equating the expressions for

v1,mr above (equations (S2.6.4a) and (S2.6.5a)) we could have alternatively derived them by equating the two513

expressions for v1,rm (equations (S2.6.4b) and (S2.6.5b)) and simplifying in a similar way.

We can now proceed to obtain expressions for the reproductive values in terms of our variables and pa-

rameters. First, because of our choice of letting v♂,m = 1, isolating v♀,m from equation (S2.6.6) leads to516

v♂,m = 1, (S2.6.8a)

v♀,m =
Π♂,r,rr

Π♀,r,rr
, (S2.6.8b)

for the reproductive values of unmated mutants. Thus, the reproductive value of unmated mutant females

equals the resident sex ratio (S2.2.7). Second, substituting (S2.6.8) into (S2.6.4) and simplifying, we obtain

v1,rm = v1,mr =Π♂,r,rr, (S2.6.9)

for the reproductive value of young mated pairs. Finally, substituting (S2.6.8) into equations (S2.6.3e) and519

(S2.6.3f), using the expressions for neutral reproductive rates (S2.5.9), and simplifying, we obtain

v2,rm = q♀,m,rmF2,♀,r,rr

Π♂,r,rr

Π♀,r,rr
+q♂,m,rmF2,♂,r,rr, (S2.6.10a)

v2,mr = q♀,m,mrF2,♀,r,rr

Π♂,r,rr

Π♀,r,rr
+q♂,m,mrF2,♂,r,rr, (S2.6.10b)

for the reproductive value of old mated pairs.

As stated above, we will later show (in section 2.7) that the generic selection gradient (S2.4.4) can be sim-522

plified so that it only depends on two entries of v, namely the reproductive values of unmated females and

males, which in turn depend only on the resident sex ratio (equations (S2.6.8)). We will then use the simplified

notation525

v` ≡ v`,m (S2.6.11)
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for ` ∈ {
♀,♂

}
to refer to the reproductive values of unmated individuals. From equations (S2.6.8), (S2.6.11),

and (S2.2.7), we have

v♂ ≡ v♂,m = 1, (S2.6.12a)

v♀ ≡ v♀,m =
Π♂,r,rr

Π♀,r,rr
=

N∗
♂,r

N∗
♀,r

, (S2.6.12b)

which are respectively the neutral reproductive values of unmated (mutant) males and females. So, in our528

model, the modulating effect of reproductive value on selection is encapsulated by the sex ratio.

More explicitly, substituting the expression for resident sex-specific productivity (S1.6.18) into (S2.6.12),

via (S1.6.16), the sex-specific reproductive values are given by531

v♂ = 1, (S2.6.13a)

v♀ =
σ1,♂ f1(1−p♂,r,rr)s1 +σ2,♂Π2( f2,rr,hrr)

σ1,♀ f1(1−p♀,r,rr)s1 +σ2,♀Π2( f2,rr,hrr)
. (S2.6.13b)

Hence, the reproductive value of females and males is the same (v♀ = v♂ = 1) if both sexes help (G = B, so

p♂,r,rr = p♀,r,rr) and the sex proportion is unbiased in both broods (σa,` = 1/2 for a ∈ {1,2} and ` ∈ {♀,♂}),

for both diploids and haplodiploids. In contrast, females have a higher reproductive value than males (v♀ >534

v♂ = 1) if females help more than males (p♂,r,rr < p♀,r,rr) and the sex proportion is unbiased in both broods

(σa,` = 1/2 for a ∈ {1,2} and ` ∈ {♀,♂}), for both diploids and haplodiploids (see also [43, 47]).

Still more explicitly, using Fig. S5 and equations (S1.4.1), (S1.3.5), and (S1.1.5), the reproductive value of537

females (S2.6.13b) for each model case is given by

v♀ =



σ1,♂ f1(1−p)s1 +σ2,♂Π2( f2, f1p)

σ1,♀ f1(1−p)s1 +σ2,♀Π2( f2, f1p)
for C ∈ {O,M} and G = B

σ1,♂ f1s1 +σ2,♂Π2( f2, f1σ1p)

σ1,♀ f1(1−p)s1 +σ2,♀Π2( f2, f1σ1p)
for C ∈ {O,M} and G = F

σ1,♂ f1(1−p(x, y))s1 +σ2,♂Π2( f2, f1p(x, y))

σ1,♀ f1(1−p(x, y))s1 +σ2,♀Π2( f2, f1p(x, y))
for C = S and G = B

σ1,♂ f1s1 +σ2,♂Π2( f2, f1σ1p(x, y))

σ1,♀ f1(1−p(x, y))s1 +σ2,♀Π2( f2, f1σ1p(x, y))
for C = S and G = F.

Stable distribution, u. Let us now calculate the stable distribution (i.e., the right eigenvector)

uᵀ =
(
u♀,m,u♂,m,u1,rm,u1,mr,u2,rm,u2,mr

)
. (S2.6.14)

From the definition of a right eigenvector, and since the leading eigenvalue of J◦mut is equal to one, we have540

J◦mutu = u. (S2.6.15)
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Performing the matrix multiplication stated in (S2.6.15) with J◦mut given by (S2.4.6), we obtain the following

system of linear equations

u♀,m = F ◦
1,♀,m,rmu1,rm +F ◦

2,♀,m,rmu2,rm +F ◦
1,♀,m,mru1,mr +F ◦

2,♀,m,mru2,mr, (S2.6.16a)

u♂,m = F ◦
1,♂,m,rm

u1,rm +F ◦
2,♂,m,rm

u2,rm +F ◦
1,♂,m,mr

u1,mr +F ◦
2,♂,m,mr

u2,mr, (S2.6.16b)

u1,rm =
u♂,m

Π◦
♂,r,rr

, (S2.6.16c)

u1,mr =
u♀,m

Π◦
♀,r,rr

, (S2.6.16d)

u2,rm = s◦M ,rmu1,rm, (S2.6.16e)

u2,mr = s◦M ,mru1,mr. (S2.6.16f)

We manipulate these equations in a similar way to what we did for the system describing the reproductive543

values of our model. First, we isolate u♂,m and u♀,m from, respectively, equations (S2.6.16c) and (S2.6.16c),

and use (S2.5.11) to obtain

u♀,m =Π♀,r,rru1,mr. (S2.6.17a)

u♂,m =Π♂,r,rru1,rm, (S2.6.17b)

Second, we substitute (S2.6.16e) and (S2.6.16f) into (S2.6.16a) and (S2.6.16b), and use the definition of the546

productivitiesΠ`,i ,k (S1.6.1) to get

u♀,m =Π◦
♀,m,rmu1,rm +Π◦

♀,m,mru1,mr, (S2.6.18a)

u♂,m =Π◦
♂,m,rm

u1,rm +Π◦
♂,m,mr

u1,mr. (S2.6.18b)

Finally, we use expressions (S2.6.17) and (S2.6.18) to derive an identity linking the stable proportions of young

mated pairs of types rm and mr. We start by equating the right hand sides of the two expressions for u♀,m549

above (equations (S2.6.17a) and (S2.6.18a)), and simplify to obtain

(
Π♀,r,rr −Π◦

♀,m,mr

)
u1,mr =Π◦

♀,m,rmu1,rm(
1−q♀,m,mr

)
Π♀,r,rru1,mr = q♀,m,rmΠ♀,r,rru1,rm

q♂,m,mru1,mr = q♀,m,rmu1,rm

u1,mr

u1,rm
= q♀,m,rm

q♂,m,mr

(S2.6.19)

where the second line follows from substituting the expressions for neutral productivities (S2.5.10); the third

line follows because identity (S1.2.1d) implies 1− q♀,m,mr = q♂,m,mr; and the last line rearranges, where the552

ratio of the transmission probabilities is the one given by (S1.2.2a).

As stated above, we will later (section 2.7) show that the selection gradient (S2.4.4) can be simplified so that

it only depends on two entries of u, namely the stable proportions of mutant young mated pairs of either type,555

which in turn depend only on the transmission probabilities (equations (S2.6.20c) and (S2.6.20d)). Thus, it will

be convenient to normalize the right eigenvector u in such a way that u1,rm +u1,mr = 1, so that u1,k refers to

the proportion of mutant young mated pairs that are of type k. Imposing this constraint, equations (S2.6.19),558
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(S2.6.17), (S2.6.16e), and (S2.6.16f) lead to

u♀,m = q♀,m,rm

q♀,m,rm +q♂,m,mr

Π♀,r,rr, (S2.6.20a)

u♂,m =
q♂,m,mr

q♀,m,rm +q♂,m,mr

Π♂,r,rr, (S2.6.20b)

u1,rm =
q♂,m,mr

q♀,m,rm +q♂,m,mr

, (S2.6.20c)

u1,mr =
q♀,m,rm

q♀,m,rm +q♂,m,mr

, (S2.6.20d)

u2,rm =
q♂,m,mr

q♀,m,rm +q♂,m,mr

sM ,rr, (S2.6.20e)

u2,mr =
q♀,m,rm

q♀,m,rm +q♂,m,mr

sM ,rr, (S2.6.20f)

where we have also used the fact that s◦M ,rm = s◦M ,mr = sM ,rr (S2.5.6).

Since the simplified selection gradient will only depend u1,rm and u1,mr, we will henceforth use the simpli-561

fied notation

uk ≡ u1,k (S2.6.21)

for k ∈ {rm,mr}, and term the vector

ũᵀ = (
u♀,u♂

)
(S2.6.22)

the stable sex distribution of a neutral mutant allele among young parents, which in turn depends only on the564

transmission asymmetry. From equations (S2.6.20c), (S2.6.20d), (S2.6.21), and (S2.6.22), we have

u♀ ≡ umr =
q♀,m,rm

q♀,m,rm +q♂,m,mr

, (S2.6.23a)

u♂ ≡ urm =
q♂,m,mr

q♀,m,rm +q♂,m,mr

, (S2.6.23b)

as expressions for the neutral stable proportions of mated pairs of type rm and mr. So, the modulating effect

of the stable distribution on selection in our model is encapsulated by the transmission asymmetry.567

Link between the stable distribution, u, and “genetic reproductive values”. Because of our choice regarding

the normalization of the leading eigenvector u, the stable proportions (S2.6.23) give a well-defined probability

distribution. For diploids (P = D) and from Fig. (S4), the stable sex distribution is570

ũᵀ = (
u♀,u♂

)= (
u1,mr,u1,rm

)= (1/2,1/2) , (S2.6.24)

while for haplodiploids (P = HD) and from Fig. (S4), it is

ũᵀ = (
u♀,u♂

)= (
u1,mr,u1,rm

)= (2/3,1/3) . (S2.6.25)

Hence, in a diploid population, a neutral mutation is asymptotically equally likely to be in a young mother or

a young father, but in a haplodiploid population it is twice as likely to be in a young mother than in a young573

father. The asymmetry in the haplodiploid case is a consequence of the sex-related transmission asymmetry

of such genetic system (see equation (S2.6.19)).
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The entries of the stable sex distribution (u` for ` ∈ {
♀,♂

}
; equations (S2.6.24) and (S2.6.25)) coincide with576

the “genetic reproductive values” or “sex-specific reproductive values” that often appear in the literature of

social insects and social evolution ([49, 55, 57, 63]; see also [42, p. 39-41] and [37, p.190-191]). Such genetic

reproductive values are typically used to weigh sex-specific fitness effects so that allele frequency does not579

change without selection. They are interpreted as describing that, irrespectively of the sex ratio, in a hap-

lodiploid population a male is worth half as much as a female in transmitting genes because he can pass on

his genes only through daughters, while a female passes on her genes through both daughters and sons. Ge-582

netic reproductive values are often calculated as the normalized dominant left eigenvector of a right stochastic

(rows sum to one) “gene flow” matrix [63, A on p. 151] or as the normalized dominant right eigenvector of a

left stochastic (columns sum to one) matrix [42, P on p. 40].585

The stable sex distribution can also be obtained as follows. Let us define the transmission matrix

Q =
 q♀,♀ q♀,♂

q♂,♀ q♂,♂

≡
 q♀,m,mr q♀,m,rm

q♂,m,mr q♂,m,rm

 (S2.6.26)

where q`,`′ stands for the probability that a mutant parent of sex `′ transmits its mutant allele to an offspring

of sex ` when the mutant allele is rare (and hence the second parent is of resident genotype). By (S1.2.1d), Q588

is left stochastic (i.e., its columns sum to one) and hence its dominant eigenvalue is one. Direct calculation

shows that ũᵀ = (
u♀,u♂

)≡ (
u1,mr,u1,rm

)
is a dominant right eigenvector of Q. Note also that since ũ is both a

right eigenvector of Q and a probability distribution, we have that591

∑
k∈{rm,mr}

uk q`,m,k = ∑
k∈{♀,♂}

uk q`,k = u` ∀` ∈ {♀,♂}, (S2.6.27)

that is, the neutral asymptotic probability that an individual of sex ` is a mutant is also equal to u`. For diploids

(P = D) and from Fig. (S4),

Q =
1/2 1/2

1/2 1/2

 , (S2.6.28)

for which equation (S2.6.24) is a dominant right eigenvector. For haplodiploids (P = HD) and from Fig. (S4),594

Q =
1/2 1

1/2 0

 , (S2.6.29)

for which equation (S2.6.25) is a dominant right eigenvector.

Thus, for the specific values of the transmission probabilities under diploidy or haploidiploidy, our trans-

mission matrix Q coincides with the matrix P of [42, p. 40] and with the transpose of the gene-flow matrix A of597

[63, p. 151]. In any case, the (2/3,1/3) weights can be interpreted as the stable sex distribution.

2.7 Selection gradient (generic, simplified form)

Having calculated the left eigenvector v and right eigenvector u associated to the leading eigenvalue of J◦mut,600

we can proceed to simplify the selection gradient Sζ(z) of a generic trait ζ (where ζ ∈ {
p, z

}
for offspring and

maternal control, whereas ζ ∈ {
x, y, z

}
for shared control).
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Our starting point is the generic expression of the selection gradient of ζ given by (S2.4.4). Taking the partial603

derivatives of the elements of the mutant submatrix Jmut (S2.3.4) with respect to the mutant trait value ζm, and

since the resident productivities Π♀,r,rr and Π♂,r,rr appearing in the first two columns of Jmut are independent

of ζm, we have606

Sζ(z) = 1

vᵀu

∑
k∈{rm,mr}

v2,k
∂sM ,k

∂ζm

∣∣∣∣
zm=z

u1,k +
∑

`∈{♀,♂}

v`,m

∑
a∈{1,2}

∂Fa,`,m,k

∂ζm

∣∣∣∣
zm=z

ua,k

 . (S2.7.1)

From equations (S2.6.16e) and (S2.6.16f), u2,k = s◦M ,k u1,k holds for k ∈ {rm,mr}. Substituting this expression

into (S2.7.1) and collecting the u1,k ’s yields

Sζ(z) = 1

vᵀu

∑
k∈{rm,mr}

v2,k
∂sM ,k

∂ζm

∣∣∣∣
zm=z

+ ∑
`∈{♀,♂}

v`,m

[
∂F1,`,m,k

∂ζm

∣∣∣∣
zm=z

+ ∂F2,`,m,k

∂ζm

∣∣∣∣
zm=z

s◦M ,k

]u1,k . (S2.7.2)

Also, from equations (S2.6.3e) and (S2.6.3f), v2,k = F ◦
2,♀,m,k v♀,m+F ◦

2,♂,m,k
v♂,m hold for k ∈ {rm,mr}. Substitut-609

ing this expression into equation (S2.7.2) and collecting the v`,m’s yields

Sζ(z) = 1

vᵀu

∑
`∈{♀,♂}

v`,m

∑
k∈{rm,mr}

[
∂F1,`,m,k

∂ζm

∣∣∣∣
zm=z

+F ◦
2,`,m,k

∂sM ,k

∂ζm

∣∣∣∣
zm=z

+ ∂F2,`,m,k

∂ζm

∣∣∣∣
zm=z

s◦M ,k

]
u1,k . (S2.7.3)

Finally, from the definition of productivitiesΠ`,i ,k (S1.6.1), by using the simplified notation for sex-specific re-

productive values (S2.6.11) and stable sex distribution (S2.6.21), and by the product rule of derivatives, equa-612

tion (S2.7.3) can be more succinctly written as

Sζ(z) = 1

vᵀu

∑
`∈{♀,♂}

∑
k∈{rm,mr}

v`
∂Π`,m,k

∂ζm

∣∣∣∣
zm=z

uk . (S2.7.4)

Since vᵀu > 0 holds, the selection gradient of ζ is positive (i.e., ζ is favored by selection) if and only if∑
k∈{rm,mr}

uk

∑
`∈{♀,♂}

∂Π`,m,k

∂ζm

∣∣∣∣
zm=z

v` > 0. (S2.7.5)

This condition has an intuitive interpretation: a trait ζ is favored by selection if and only if the effect of a615

mutation in the trait on the mutant productivity of a mated pair, averaged over the stable sex distribution of

parents and weighted by the sex-specific reproductive values of offspring, is positive.

In addition to providing a natural interpretation for the action and direction of natural selection, equation618

(S2.7.4) is convenient for our subsequent analysis because all important terms (those appearing on the left-

hand side of (S2.7.5)) are written in terms of (marginal) productivities, sex-specific reproductive values, and

the stable sex distribution, thus abstracting away the additional complication of having age classes for mated621

pairs. Note also that the sex-specific reproductive values (S2.6.13) depend in general on the sex proportions

of the two broods, on whether both sexes help or only females do, and on the evolving traits, but not on the

transmission probabilities and hence on the genetic system. In contrast, the stable sex distribution (S2.6.23)624

depends exclusively on the transmission probabilities and hence on the genetic system but not on any other

feature of the model.

2.8 Selection gradient of traits affecting helping627

2.8.1 Derivation of the general expression

General expression. Consider a trait ζ affecting the probability of helping, that is, either ζ = p for model

cases of offspring and maternal control, or ζ ∈ {
x, y

}
for model cases of shared control. In this section, we630
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obtain expressions for the selection gradient of these traits by explicitly calculating the derivatives appearing

in equation (S2.7.4).

Evaluating the productivity Π`,i ,k (S1.6.17) at i = m, and differentiating the resulting expression with re-633

spect to ζm using the chain rule, we obtain

∂Π`,m,k

∂ζm

∣∣∣∣
zm=z

=
(
∂

∂ζm
q`,m,k

[
f1σ1,`(1−p`,m,k )s1 +σ2,`Π2,k

])∣∣∣∣
zm=z

= q`,m,k

(
− f1σ1,`

∂p`,m,k

∂ζm

∣∣∣∣
zm=z

s1 +σ2,`
∂Π2,k

∂hk

∣∣∣∣
zm=z

× ∂hk

∂ζm

∣∣∣∣
zm=z

)

= q`,m,k

− f1σ1,`
∂p`,m,k

∂ζm

∣∣∣∣
zm=z

s1 +σ2,`
∂Π2

∂h
( f2,h)× f1

∑
`′∈{♀,♂}

σ1,`′
∑

i ′∈{r,m}

q`′,i ′,k
∂p`′,i ′,k
∂ζm

∣∣∣∣
zm=z


= f1q`,m,k

−σ1,`
∂p`,m,k

∂ζm

∣∣∣∣
zm=z

s1 +σ2,`
∂Π2

∂h
( f2,h)× ∑

`′∈{♀,♂}

σ1,`′
∑

i ′∈{r,m}

q`′,i ′,k
∂p`′,i ′,k
∂ζm

∣∣∣∣
zm=z

 ,

(S2.8.1)

where we have used the expression for hk given in (S1.3.3b), and the fact that the functional form for late pro-

ductivity Π2,k is the same for all types k (equation (S1.6.16)), which together with our notational conventions636

allows us to write

∂Π2,k

∂hk

∣∣∣∣
zm=z

= ∂Π2

∂h
( f ◦

2,k ,h◦
k ) = ∂Π2

∂h
( f2,h).

Substituting (S2.8.1) into (S2.7.4) and rearranging, we obtain

Sζ(z) = 1

vᵀu
f1

(
−ιs1 +κ∂Π2

∂h
( f2,h)

)
, (S2.8.2)

where639

ι= ∑
`∈{♀,♂}

σ1,`

∑
k∈{rm,mr}

uk q`,m,k
∂p`,m,k

∂ζm

∣∣∣∣
zm=z

v`, (S2.8.3a)

κ= ∑
`∈{♀,♂}

σ1,`

∑
`′∈{♀,♂}

σ2,`′
∑

k∈{rm,mr}
uk

∑
i ′∈{r,m}

q`,i ′,k
∂p`,i ′,k
∂ζm

∣∣∣∣
zm=z

q`′,m,k v`′ . (S2.8.3b)

We call coefficients ι and κ the structure coefficients. Since σᵀ
1 and ũᵀ are probability distributions, (S2.8.3a)

shows that ι is the effect of a mutation on helping evaluated at neutrality (∂p`,m,k /∂ζm|zm=z), averaged over the

sexes of parents (uk ) and of potentially helping offspring (σ1,`), and weighted by the probability that a sex-`642

potentially helping offspring has the mutation (q`,m,k ) and by such offspring’s reproductive value (v`). Thus,

ι is a weighted average of a helping mutation’s phenotypic effect, with the weight given by the probability that

candidate helpers have the mutation and by their reproductive value. Similarly, (S2.8.3b) shows that κ is the645

effect of a mutation on helping evaluated at neutrality (∂p`,i ′,k /∂ζm|zm=z), averaged over the sexes of parents

(uk ), of potentially helping offspring (σ1,`), and of potentially helped offspring (σ2,`), and over the probability

that a potentially helping offspring has the mutation (q`,i ′,k ), and weighted by the probability that a sex-`′648

potentially helped offspring has the mutation (q`′,m,k ) and by such offspring’s reproductive value (v`′ ). Thus,

κ is a weighted average of a helping mutation’s phenotypic effect, with the weight given by the probability that

candidate recipients of help have the mutation and by their reproductive value.651

We now provide an interpretation for the remaining terms in large parentheses in equation (S2.8.2).
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Marginal cost and benefit of helping. The factors −s1 and ∂Π2( f2,h)/∂h appearing in (S2.8.2) have immedi-

ate interpretations in terms of marginal effects of the expected number of helpers on a mated pair’s produc-654

tivity. First, ∂Π2( f2,h)/∂h is the marginal effect of the expected number of helpers on the late productivity of

a mated pair. Second, s1 is the marginal effect of the expected number of helpers on the early productivity of

a mated pair (as it can be verified from equation (S1.6.9)). To underline the fact that the marginal effect on657

early productivity is always negative (because s1 > 0), while the marginal effect on late productivity is always

positive (since, given our assumptions on the vital rates given in section 1.4, Π2 is increasing in h) and for

subsequent use, we introduce the following definitions and notation. We define660

C =−dΠ1(h)

dh
= s1, (S2.8.4)

as the (marginal) cost of helping, and

B = ∂Π2

∂h
( f2(z),h). (S2.8.5)

as the (marginal) benefit of helping or the marginal late productivity of helping.

Note that the marginal cost of helping C equals the constant s1 for all the model cases we consider. In663

contrast, the marginal benefit of helping is a function of the evolving traits and of the neutral expected number

of helpers h and hence takes a different form for each model case, depending on who controls the helping

probability and on the sex of the helpers. To make this dependence explicit, hereafter we write B C,G for the666

benefit of helping when help control is of type C (where C ∈ {O,M,S}) and when the helpers’ sex is G (where

G ∈ {B,F}). Explicitly, using equations (S1.3.5) and (S1.1.5), the marginal benefit of helping (S2.8.5) for each

model case is given by669

B C,G =



∂Π2

∂h
( f2, f1p) for C ∈ {O,M} and G = B

∂Π2

∂h
( f2, f1σ1p) for C ∈ {O,M} and G = F

∂Π2

∂h
( f2, f1p(x, y)) for C = S and G = B

∂Π2

∂h
( f2, f1σ1p(x, y)) for C = S and G = F.

(S2.8.6)

Critical benefit-cost ratio. With the above definitions of helping cost and benefit, equation (S2.8.2) becomes

Sζ(z) = 1

vᵀu
f1 (−ιC +κB) . (S2.8.7)

Since f1/vᵀu > 0, the selection gradient of ζ is positive, and ζ is under positive directional selection when

−ιC +κB > 0, (S2.8.8)

or equivalently,672

B

C
>

(
B

C

)∗
if κ> 0, or (S2.8.9a)

B

C
<

(
B

C

)∗
if κ< 0 (S2.8.9b)
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where the critical benefit-cost ratio (B/C )∗ equals the ratio of the structure coefficients ι and κ (S2.8.3):(
B

C

)∗
= ι

κ
. (S2.8.10)

The case κ> 0 holds when the trait is the helping probability or maternal influence (ζ ∈ {p, x}) because in that

case ∂p/∂ζ> 0. In turn, the case κ< 0 holds when the trait is offspring resistance (ζ= y) because in that case675

∂p/∂ζ< 0.

As with the marginal benefit of helping B , the structure coefficients ι and κ depend on who controls the

helping probability (C) and the helpers’ sex (G). To make this dependence explicit, and similarly to how we678

did for the benefit of helping, hereafter we write SC,G
ζ

, ιC,G
ζ

, κC,G
ζ

, and (B/C )∗
ζ

C,G for the selection gradient, the

structure coefficients, and the critical benefit-cost ratio for trait ζ, under help control C and helpers’ sex G.

2.8.2 Derivation for each model case681

We now obtain explicit expressions for the structure coefficients and the critical benefit-cost ratios under the

model cases we consider.

Offspring control, both sexes help (O-B). For offspring control, ζ= p, and hence ζm = pm. Then, in the case684

of offspring control, and if both sexes help (see Fig. S5)

∂p`,i ,k

∂pm

∣∣∣∣
zm=z

= [i = m], ∀k ∈ {rm,mr} and ∀` ∈ {♀,♂}, (S2.8.11)

where [ ] is the Iverson bracket, such that

[P ] =


1 if P is true

0 otherwise.
(S2.8.12)

Substituting (S2.8.11) into (S2.8.3) and simplifying using equation (S2.6.27) yields:687

ιO,B
p = ∑

`∈{♀,♂}

σ1,`u`v`, (S2.8.13a)

κO,B
p = ∑

`∈{♀,♂}

σ1,`

∑
`′∈{♀,♂}

σ2,`′
∑

k∈{rm,mr}
uk q`,m,k q`′,m,k v`′ . (S2.8.13b)

We will provide an interpretation of ιC,G
ζ

and κC,G
ζ

later (section 3.2.4), which applies to all the cases we consider

and which recovers an inclusive-fitness interpretation.

The critical benefit-cost ratio is then given by690

(
B

C

)∗O,B

p
=

∑
`∈{♀,♂}σ1,`u`v`∑

`∈{♀,♂}σ1,`
∑
`′∈{♀,♂}σ2,`′

∑
k∈{rm,mr} uk q`,m,k q`′,m,k v`′

. (S2.8.14)

Offspring control, only females help (O-F). For offspring control, but now if only females help, we have (see

Fig. S5)

∂p`,i ,k

∂pm

∣∣∣∣
zm=z

= [`= ♀ and i = m], ∀k ∈ {rm,mr}. (S2.8.15)
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Substituting this expression into equation (S2.8.3) and simplifying using equation (S2.6.27) yields:693

ιO,F
p =σ1,♀u♀v♀, (S2.8.16a)

κO,F
p =σ1,♀

∑
`′∈{♀,♂}

σ2,`′
∑

k∈{rm,mr}
uk q♀,m,k q`′,m,k v`′ . (S2.8.16b)

The critical benefit-cost ratio thus reduces to(
B

C

)∗O,F

p
= u♀v♀∑

`′∈{♀,♂}σ2,`′
∑

k∈{rm,mr} uk q♀,m,k q`′,m,k v`′
. (S2.8.17)

Maternal control, both sexes help (M-B). For maternal control with both sexes helping, we have (see Fig. S5)

∂p`,i ,k

∂pm

∣∣∣∣
zm=z

= [k = mr] ∀` ∈ {♀,♂} and ∀i ∈ {r,m}. (S2.8.18)

Substituting this expression into (S2.8.3) yields:696

ιM,B
p = umr

∑
`∈{♀,♂}

σ1,`q`,m,mrv`, (S2.8.19a)

κM,B
p = umr

∑
`∈{♀,♂}

σ1,`

∑
`′∈{♀,♂}

σ2,`′
∑

i ′∈{r,m}

q`,i ′,mrq`′,m,mrv`′

= umr
∑

`∈{♀,♂}

σ1,`

∑
`′∈{♀,♂}

σ2,`′q`′,m,mrv`′

= umr
∑

`′∈{♀,♂}

σ2,`′q`′,m,mrv`′ , (S2.8.19b)

where we have used identities (S1.2.1c) and (S1.1.3).

The critical benefit-cost ratio is then(
B

C

)∗M,B

p
=

∑
`∈{♀,♂}σ1,`q`,m,mrv`∑
`′∈{♀,♂}σ2,`′q`′,m,mrv`′

. (S2.8.20)

Maternal control, only females help (M-F). For maternal control of the helping trait and if only females help,699

we have (see Fig. S5)

∂p`,i ,k

∂pm

∣∣∣∣
zm=z

= [k = mr and `= ♀] ∀i ∈ {r,m}. (S2.8.21)

Following the same steps as in the previous case (M-B), we obtain

ιM,F
p =σ1,♀umrq♀,m,mrv♀, (S2.8.22a)

κM,F
p =σ1,♀umr

∑
`′∈{♀,♂}

σ2,`′q`′,m,mrv`′ , (S2.8.22b)

with the critical benefit-cost ratio simplifying to702

(
B

C

)∗M,F

p
= q♀,m,mrv♀∑

`′∈{♀,♂}σ2,`′q`′,m,mrv`′
. (S2.8.23)

Shared control, both sexes help (S-B). Consider now shared control, so that ζ ∈ {
x, y

}
where x is maternal

influence and y is offspring resistance.
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Let us first calculate the structure coefficients and the critical benefit-cost ratio for maternal influence x. If705

both sexes help, then (see Fig. S5):

∂p`,i ,k

∂xm

∣∣∣∣
zm=z

= ∂p

∂x
(x, y)[k = mr] ∀` ∈ {♀,♂} and ∀i ∈ {r,m}. (S2.8.24)

Substituting this expression into equation (S2.8.3) and simplifying following the same steps as when calculat-

ing the coefficients for the case M-B yields:708

ιS,B
x = ∂p

∂x
(x, y)ιM,B

p , (S2.8.25a)

κS,B
x = ∂p

∂x
(x, y)κM,B

p , (S2.8.25b)

where ιM,B
p and κM,B

p are as given by equation (S2.8.19). Hence, using (S2.8.7), it follows that

SS,B
x (z) = ∂p

∂x
(x, y)SM,B

p (z). (S2.8.26)

Moreover, the critical benefit-cost ratio for maternal influence x is(
B

C

)∗S,B

x
=

(
B

C

)∗M,B

p
, (S2.8.27)

where (B/C )∗
M,B

p is the critical benefit-cost ratio for p for the case of maternal control and helpers from both711

sexes, as given by equation (S2.8.20).

Let us now calculate the structure coefficients and critical benefit-cost ratio for offspring resistance y . If

both sexes help, then (see Fig. S5):714

∂p`,i ,k

∂ym

∣∣∣∣
zm=z

= ∂p

∂y
(x, y)[i = m] ∀k ∈ {rm,mr} and ∀` ∈ {♀,♂}. (S2.8.28)

Substituting this expression into (S2.8.3) and simplifying following the same steps as when calculating the

coefficients for the case O-B yields:

ιS,B
y = ∂p

∂y
(x, y)ιO,B

p , (S2.8.29a)

κS,B
y = ∂p

∂y
(x, y)κO,B

p , (S2.8.29b)

where ιO,B
p and κO,B

p are as given by equation (S2.8.13). Hence, using (S2.8.7), it follows that717

SS,B
y (z) = ∂p

∂y
(x, y)SO,B

p (z). (S2.8.30)

Moreover, the critical benefit-cost ratio for offspring resistance y is(
B

C

)∗S,B

y
=

(
B

C

)∗O,B

p
, (S2.8.31)

where (B/C )∗
O,B

p is the critical benefit-cost ratio for p for the case of offspring control and helpers from both

sexes, as given by equation (S2.8.14).720

Shared control, only females help (S-F). For maternal influence x, when only females help, we have (see Fig.

S5)

∂p`,i ,k

∂xm

∣∣∣∣
zm=z

= ∂p

∂x
(x, y)[k = mr and `= ♀] ∀i ∈ {r,m}. (S2.8.32)
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Substituting this expression into (S2.8.3) and simplifying following the same steps as when calculating the723

coefficients for the case M-F yields:

ιS,F
x = ∂p

∂x
(x, y)ιM,F

p , (S2.8.33a)

κS,F
x = ∂p

∂x
(x, y)κM,F

p , (S2.8.33b)

where ιM,F
p and κM,F

p are as given by equation (S2.8.22). Hence, using (S2.8.7), it follows that

SS,F
x (z) = ∂p

∂x
(x, y)SM,F

p (z). (S2.8.34)

Moreover, we can write the critical benefit-cost ratio for maternal influence x as726 (
B

C

)∗S,F

x
=

(
B

C

)∗M,F

p
, (S2.8.35)

where (B/C )∗
M,F

p is the critical benefit-cost ratio for p for the case of maternal control when only females help,

as given by equation (S2.8.23).

For offspring resistance y , we also have (see Fig. S5)729

∂p`,i ,k

∂ym

∣∣∣∣
zm=z

= ∂p

∂y
(x, y)[`= ♀ and i = m] for all k ∈ {rm,mr}. (S2.8.36)

Substituting this expression into (S2.8.3) and simplifying following the same steps as when calculating the

coefficients for the case O-F yields:

ιS,F
y = ∂p

∂y
(x, y)ιO,F

p , (S2.8.37a)

κS,F
y = ∂p

∂y
(x, y)κO,F

p , (S2.8.37b)

where ιO,F
p and κO,F

p are as given by equation (S2.8.16). Hence, using (S2.8.7), it follows that732

SS,F
y (z) = ∂p

∂y
(x, y)SO,F

p (z). (S2.8.38)

Moreover, we can write the critical benefit-cost ratio for offspring resistance y as(
B

C

)∗S,F

y
=

(
B

C

)∗O,F

p
, (S2.8.39)

where (B/C )∗
O,F

p is the critical benefit-cost ratio for p for the case of offspring control when only females help,

as given by equation (S2.8.17).735

2.8.3 Summary

Summarizing, for model cases of offspring or maternal control of helping, the selection gradient of p is

SC,G
p (z) = 1

vᵀu
f1

(
−ιC,G

p C +κC,G
p B

)
, (S2.8.40)

for C ∈ {O,M} and G ∈ {B,F}. The structure coefficients ιC,G
p and κC,G

p are listed in Fig. S7A. This follows from738

(S2.8.7), (S2.8.13), (S2.8.16), (S2.8.19), and (S2.8.22).

For model cases of shared control, the selection gradients of x and y are

SS,G
x (z) = ∂p

∂x
(x, y)SM,G

p (z) (S2.8.41a)

SS,G
y (z) = ∂p

∂y
(x, y)SO,G

p (z), (S2.8.41b)

for G ∈ {B,F}. This follows from (S2.8.26), (S2.8.30), (S2.8.34), and (S2.8.38).741
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2.9 Selection gradient of reproductive effort

Finally, let us calculate the selection gradient of reproductive effort, ζ = z, using equation (S2.7.4). Evaluat-

ing the expression for productivity Π`,i ,k (S1.6.17) at i = m, and differentiating the resulting expression with744

respect to zm using the chain rule, we obtain

∂Π`,m,k

∂zm

∣∣∣∣
zm=z

=
(
∂

∂zm
q`,m,k

[
σ1,` f1(1−p`,m,k )s1 +σ2,`Π2,k

])∣∣∣∣
zm=z

= q`,m,kσ2,`
∂Π2,k

∂ f2,k

∣∣∣∣
zm=z

∂ f2,k

∂zk

∣∣∣∣
zm=z

∂zk

∂zm

∣∣∣∣
zm=z

= q`,m,kσ2,`
∂Π2

∂ f2
( f2,h)

d f2

dz
(z)[k = mr], (S2.9.1)

where the last equality follows from our assumptions on the functional form of the late productivity and late

fertility of a mated pair (equations (S1.6.16) and (S1.4.1)) and from differentiating zk with respect to the mutant747

trait. Substituting (S2.9.1) into (S2.7.4) and simplifying, we obtain

Sz (z) = 1

vᵀu

∂Π2

∂ f2
( f2,h)

d f2

dz
(z)umr

∑
`′∈{♀,♂}

σ2,`′q`′,m,mrv`′ . (S2.9.2)

The selection gradient of reproductive effort is a product of factors that can interpreted similarly as for

the selection gradient of traits affecting helping. First, this selection gradient is proportional to the marginal750

productivity of late fertility

D = ∂Π2

∂ f2
( f2,h), (S2.9.3)

that is, the marginal effect on a mated pair’s lifetime productivity from a marginal increase in late fertility:

since early productivity is independent from late fertility, the marginal effect on lifetime productivity from a753

marginal increase in late fertility equals the marginal effect on late productivity. As with the marginal benefit

of helping (S2.8.6), the marginal productivity of late fertility depends on who controls the helping probability

and on the sex of helpers via the neutral expected number of helpers, h. Thus, we follow a similar notational756

convention and write DC,G for the marginal productivity of late fertility when help control is of type C and

when the helpers’ sex is G. Specifically, we have

DC,G =



∂Π2

∂ f2
( f2(z), f1p) for C ∈ {O,M} and G = B

∂Π2

∂ f2
( f2(z), f1σ1p) for C ∈ {O,M} and G = F

∂Π2

∂ f2
( f2(z), f1p(x, y)) for C = S and G = B

∂Π2

∂ f2
( f2(z), f1σ1p(x, y)) for C = S and G = F

. (S2.9.4)

Second, this selection gradient is proportional to the structure coefficient759

κC,G
z = umr

∑
`′∈{♀,♂}

σ2,`′q`′,m,mrv`′ . (S2.9.5)

Although this structure coefficient has a similar form to the structure coefficient κM,B
p (S2.8.19b), reproductive

values v`′ depend on help control C and the helpers’ sex G (S2.6.13), so κC,G
z and κM,B

p may be different.
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With these two notational conventions, the selection gradient of reproductive effort for each model case is762

given by

SC,G
z (z) = 1

vᵀu

d f2

dz
(z)κC,G

z DC,G. (S2.9.6)

Since the factors f1/vᵀu, κC,G
z , and d f2(z)/dz are all strictly positive (e.g., (S1.4.3)), a necessary and sufficient

condition for the selection gradient of reproductive effort z to be positive, and for z to be under positive direc-765

tional selection is that the marginal productivity of fertility is positive, that is that

DC,G > 0 (S2.9.7)

holds.
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3 Inclusive-fitness effects768

Inclusive fitness describes selection in terms of how the phenotype of individual actors affects the personal

fitness of recipients [46, 48, 52, 62]. In general, the inclusive-fitness effect is the sum of the effects of a focal

individual’s phenotype on the fitness of recipients, where each effect is weighted by the relatedness of the actor771

to the recipient and by the reproductive value of the recipient.

In this section, we show that the sign of the selection gradient of all the traits in our model can be rewritten

as the sign of an inclusive-fitness effect. To do this, we proceed in six steps. First, we define social classes,774

actors, and recipients within a given nest, and introduce notation to refer to them (Social classes, actors, and

recipients; section 3.1). Second, we define reproductive worth, which is an inclusive-fitness measure of repro-

ductive valuation of social partners, and show that the structure coefficients can be written in terms of such777

measure (Reproductive worth; section 3.2). Third, we define relative reproductive worth, which is a measure of

relative reproductive valuation of social partners (Relative reproductive worth; section 3.3). Fourth, we define

personal fitness functions to calculate inclusive-fitness benefits and costs for a trait affecting helping (Individ-780

ual cost and benefit of helping; section 3.4). Fifth, we write the selection gradient of a trait affecting helping

in terms of the trait’s inclusive-fitness effect (Inclusive-fitness effect for a trait affecting helping and Hamilton’s

rule; section 3.5). Finally, we define the inclusive-fitness benefit for reproductive effort and write this trait’s783

selection gradient in terms of the trait’s inclusive-fitness effect (Inclusive-fitness effect for reproductive effort;

section 3.6).

3.1 Social classes, actors, and recipients786

In the following, we introduce some notation to refer to the different sets of individuals (or social classes) of a

“focal” nest in our model, and to distinguish between sets comprising actors and sets comprising recipients.

Social classes. We denote by M the singleton whose only member is the mother of the nest; and by Oa` the789

set of sex-` offspring produced in brood a. The set of a-th brood offspring is denoted by Oa , where Oa =
Oa♀∪Oa♂. We illustrate these social classes in Fig. S6.

Actors. Actors are individuals that genetically control the trait ζ in consideration. In our model the set of792

actors A is thus either (i) the mother’s singleton M (if helping is under maternal control, C = M; or if helping is

under shared control, C = S, and the trait is maternal influence, ζ= x), (ii) the set of first-brood offspring O1 (if

both sexes help, G = B, and either helping is under offspring control, C = O, or helping is under shared control,795

C = S, and the trait is resistance, ζ= y), or (iii) the set of first-brood female offspring O1♀ (if only females help,

G = F, and either helping is under offspring control, C = O, or helping is under shared control, C = S, and the

trait is resistance, ζ= y). In short,798

A =


M if C = M or (C = S and ζ= x)

O1 if G = B and [C = O or (C = S and ζ= y)]

O1♀ if G = F and [C = O or (C = S and ζ= y)].

(S3.1.1)
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BA

Figure S6: Social classes. Panels A and B show Venn diagrams illustrating the social classes in a given nest

resulting in our model. (A) Reproductive worth coefficients resulting in our model, as shown in Fig. S7. (B)

Relatedness coefficients involved in our model, as shown in section 3.2.1.

Moreover, we denote by A` the subset of sex-` individuals in A, e.g., A♀ = O1♀ and A♂ =; if A = O1♀, where

; is the empty set.

Recipients. Recipients are individuals whose fitness is affected by the trait. There are two types of recipients:801

individuals that can help (which we call candidate helpers), and individuals that can be helped (which we call

payees). In our model the set of candidate helpers H is thus either the set of first-brood offspring O1 (if both

sexes help, G = B), or (ii) the set of first-brood female offspring O1♀ (if only females help, G = F). A candidate804

helper is not necessarily a helper and a payee is not necessarily helped (e.g., if p = 0). We will see that the set

of payees P is the set of second-brood offspring P = O2 in all cases. Consequently, the set of recipients R is

either (i) the set of first-brood offspring O1 (the candidate helpers if both sexes help, G = B), (ii) the set of first-807

brood female offspring O1♀ (the candidate helpers if only females help, G = F), or (iii) the set of second-brood

offspring O2 (the payees). In short,

H =


O1 if G = B

O1♀ if G = F
(S3.1.2a)

P =O2 (S3.1.2b)

R =


H for candidate helpers

P for candidate recipients of help (payees).
(S3.1.2c)

Moreover, we denote by R` the subset of sex-` individuals in R.810

3.2 Reproductive worth

Sampling experiment. Consider a neutral (zm = z) rare mutant subpopulation introduced at a resident equi-

librium. As ecological time t advances, this mutant subpopulation asymptotically reaches a stable distribution813

proportional to u (S2.6.14); since the mutation is neutral, the mutation’s frequency remains constant. Now

consider sampling uniformly at random one young neutral mutant nest at ecological time t → ∞. Having

sampled a nest, we draw an individual actor uniformly at random from the subset A` of sex-` actors in the816
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Offspring control, both sexes help (OB)

Offspring control, only females help (OF)

Maternal control, only females help (MF)

Maternal control, both sexes help (MB)

Structure coefficients Substituting relatedness Substituting        and

Substituting 
reproductive 
worth

A B C D

Figure S7: Structure coefficients in terms of reproductive worth. (A) Structure coefficients when helping is

under offspring or maternal control, where either both sexes or only females help. Such structure coefficients

after substituting for (B) relatedness; (C) the probability that an actor is mutant and of a given sex, and the

probability that a recipient is of a given sex; and (D) reproductive worth. The structure coefficients when

helping is under shared control, where either both sexes or only females help, are given by ιSC
x = (∂p/∂x)ιMC

p ,

κSC
x = (∂p/∂x)κMC

p , ιSC
y = (∂p/∂y)ιOC

p , and κSC
y = (∂p/∂y)κOC

p .

nest; we denote this individual by •(A`). Then, we draw a recipient uniformly at random from the subset R`′

of sex-`′ recipients in the nest; we denote this individual by ◦(R`′ ).

Definition of reproductive worth. Based on the sampling experiment defined above, we define the repro-819

ductive worth for a random actor in A of a random recipient in R as

ωA,R =


∑
`∈{♀,♂}φ`(A)r•(A`),•(A`)v` if A = R∑
`∈{♀,♂}φ`(A)

∑
`′∈{♀,♂}σ`′ (R)r•(A`),◦(R`′ )v`′ if A 6= R,

(S3.2.1)

where (i) r•(A`),◦(R`′ ) is the relatedness of actor •(A`) to recipient ◦(R`′ ), defined as the conditional probability

that ◦(R`′ ) is mutant given that •(A`) is mutant (see section 3.2.1); (ii)φ`(A) is the probability that an individual822

in A is mutant and of sex ` (see section 3.2.2); and (iii)σ`′ (R) is the probability that an individual in R is of sex `′

(see section 3.2.3). Note that if the actor set is equal to the recipient set (A = R), reproductive worth is defined

so that the random actor and the random recipient are the same individual (i.e., the focal individual •(A`))825

so the relevant relatedness is r•(A`),•(A`). Given these definitions, reproductive worth ωA,R is an inclusive-

fitness measure of how a random actor values its own reproduction (if A = R) or the reproduction of a random

recipient (if A 6= R).828
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2nd-brood
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2nd-brood
sibling

relative to
self

1st-brood
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Haplodiploids
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of to

Relative worth,
for of

when both sexes help and 
brood sex proportions are unbiased

Figure S8: Relatedness and relative reproductive worth. (A) Values of the relatedness coefficient r we obtain.

Taken from (S3.2.5), (S3.2.8), and (S3.2.9). (B) Values of relative reproductive worth ρ when both sexes help

(G = B) and brood sex proportions are unbiased (σ1 =σ2 = 1/2). Taken from (S3.3.4) and (S3.3.7).

Outline. In subsections 3.2.1, 3.2.2, and 3.2.3, we give details about the calculation of all the building blocks of

our notion of reproductive worth. Then, in subsection 3.2.4 we show how to use these calculations to rewrite

the structure coefficients ι and κ in terms of reproductive worth, which we then use to obtain an inclusive-831

fitness interpretation of the selection gradients.

3.2.1 Relatedness

We define the relatedness ri , j of individual i to individual j as the conditional probability that i is mutant given834

that j is mutant, that is

ri , j = Pr( j ’s genotype = m|i ’s genotype = m)

= Pr(i ’s genotype = m and j ’s genotype = m)

Pr(i ’s genotype = m)
.

(S3.2.2)

Our measure of relatedness takes the following values, summarized in Fig. S8A.

Self-self (r•(A`),•(A`)). For any set of actors A, the relatedness of an actor to itself is837

r•(A`),•(A`) = 1, (S3.2.3)

which is obtained from (S3.2.2) by letting i = j = •(A`).

Mother-offspring (r•(M),◦(Oa`)). The relatedness of a mother to her offspring of sex ` is

r•(M),◦(Oa`) =
u♀q`,♀

u♀
= q`,♀ ∀a ∈ {1,2} . (S3.2.4)
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Indeed, the mother is a mutant with probability u♀ so that both mother and offspring are mutants with840

probability u♀q`,♀. Simplifying, the relatedness of mother to offspring equals the transmission probability

q`,♀ ≡ q`,m,mr.

For both diploids and haplodiploids, and from Fig. S4, we then get843 (
r•(M),◦(O1♀),r•(M),◦(O

1♂)

)
=

(
r•M ,◦(O2♀),r•(M),◦(O

2♂)

)
= (1/2,1/2) . (S3.2.5)

Hence, irrespective of the genetic system and of the sex of the offspring, the relatedness of a mother to a ran-

dom offspring is one half.

Sibling-sibling (r•(O1`),◦(O2`′ )). Consider the relatedness of an individual to a (full) sibling. The conditional846

probability that a (second-brood) sibling of sex `′ is mutant given that a (first-brood) offspring of sex ` is

mutant is given by

r•(O1`),◦(O2`′ ) =
∑

k∈{♀,♂} uk q`,k q`′,k∑
k∈{♀,♂} uk q`,k

=
∑

k∈{♀,♂} uk q`,k q`′,k

u`
, (S3.2.6)

where the second equality makes use of equation (S2.6.27). Indeed, a first-brood offspring is a mutant if ei-849

ther the mother is a mutant that transmits her mutant allele to the offspring (which happens with probability

u♀q`,♀) or if the father is a mutant that transmits his mutant allele to the offspring (which happens with proba-

bility u♂q
`,♂). Summing up the two probabilities, we obtain the total probability that a first-brood individual852

is a mutant, which is equal to u`. This explains the denominator of the expression above. To calculate the nu-

merator, we follow a similar logic, now noting that both offspring are mutants if either the mother is a mutant

that transmits her mutant allele to both offspring (which happens with probability u♀q`,♀q`′,♀) or if the father855

is a mutant that transmits his mutant allele to both offspring (which happens with probability u♂q
`,♂q

`′,♂).

Summing up the two probabilities we obtain the total probability that both offspring are mutants. The ratio of

the two probabilities gives the conditional probability that both actor and recipient are mutants given that the858

actor is a mutant.

Note that, for a given sex of the actor, ` ∈ {
♀,♂

}
, r•(O1`),◦(O2`′ ) defines a probability distribution over the

possible sexes of the recipient, `′ ∈ {
♀,♂

}
. Indeed861

∑
`′∈{♀,♂}

r•(O1`),◦(O2`′ ) =
∑

`′∈{♀,♂}

∑
k∈{♀,♂} uk q`,k q`′,k

u`

= 1

u`

∑
k∈{♀,♂}

uk q`,k

∑
`′∈{♀,♂}

q`′,k

= 1

u`

∑
k∈{♀,♂}

uk q`,k

= 1, (S3.2.7)

where the first line substitutes the formula given in equation (S3.2.6), the second line rearranges, the third line

applies identity (S1.2.1d), and the last equality results from applying (S2.6.27).

For diploids, and from (S2.6.24) and Fig. S4, we obtain864 (
r•(O1♀),◦(O2♀),r•(O1♀),◦(O

2♂),r•(O
1♂),◦(O2♀),r•(O

1♂),◦(O
2♂)

)
= (1/2,1/2,1/2,1/2) , (S3.2.8)
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so that the relatedness of an individual to any sibling is, irrespective of the sexes of actor and recipient, equal

to one half.

For haplodiploids, and from (S2.6.24) and Fig. S4, we get867

(
r•(O1♀),◦(O2♀),r•(O1♀),◦(O

2♂),r•(O
1♂),◦(O2♀),r•(O

1♂),◦(O
2♂)

)
= (3/4,1/4,1/2,1/2) . (S3.2.9)

Here, the asymmetry of the transmission probabilities for the case of haplodiploids makes a female offspring

more related to a sister than to a brother, while a male offspring is equally related to both sisters and brothers.

Connection to other relatedness coefficients. Our relatedness coefficients are conceptually most similar to870

the weighted pedigree relatedness coefficients of Pamilo and Crozier [56, p. 190, G ′ in their notation]. Such

weighted relatedness involves pedigree relatedness weighted by the so-called genetic reproductive values (which

we have seen to arise in our model as the stable sex distribution rather than as reproductive values). Indeed,873

the stable sex distribution is part of our relatedness coefficients r (equation (S3.2.4) and (S3.2.6)). Hamilton’s

notion of complete or life-for-life relatedness coefficients includes both the stable sex distribution (described by

a factor 2 multiplying c in his cross-sex formulas in Table 1; 49), and the sex ratio (his c), which we have seen to876

arise in our model as reproductive values. Accordingly, the values for our relatedness coefficients (equations

(S3.2.5), (S3.2.8), and (S3.2.9)) numerically recover the standard values for Hamilton’s life-for-life relatedness

coefficients for the case of singly-mated, outbred queens, and unbiased sex ratio [e.g., 35, p. 81].879

3.2.2 Probability that an actor is mutant and of a given sex

φ`(A) in (S3.2.1) denotes the probability that an actor (i.e., an individual in A) is mutant and of sex `. This

probability takes the following values.882

Actors are first-brood offspring (A =O1). If the set of actors is the set of first-brood offspring, the probability

that an actor is mutant and of sex ` is

φ`(O1) =σ1,`u`, (S3.2.10)

since a first-brood offspring is of sex ` with probability σ1,` and it is a mutant with probability u` due to885

equation (S2.6.27).

Actors are first-brood female offspring (A =O1♀). If the set of actors is the set of first-brood female offspring,

the probability that an actor is mutant and of sex ` is given by888

φ`(O1♀) =


u` if `= ♀

0 if `=♂.
(S3.2.11)

Indeed, a first-brood female offspring is of sex ♀ with probability 1 and it is mutant with probability u` due to

equation (S2.6.27); by definition, a first-brood female offspring is of sex ♂ with probability 0.
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Actors are mothers (A = M). If the set of actors is the mother singleton, the probability that an actor is mutant891

and of sex ` is

φ`(M) =


u` if `= ♀

0 if `=♂.
(S3.2.12)

Indeed, a mother is of sex ♀ with probability 1 and it is mutant with probability u` due to equation (S2.6.22);

by definition, a mother is of sex ♂ with probability 0.894

3.2.3 Probability that a recipient is of a given sex

σ`′ (R) in (S3.2.1) denotes the probability that a recipient (i.e., an individual in R) is of sex `′. This probability

takes the following value.897

Recipients are a-th brood offspring (R =Oa ). Consider the case where the set of recipients is the set of a-th

brood offspring. The probability that an a-th brood offspring is of sex `′ is

σ`′ (Oa) =σa,`′ . (S3.2.13)

3.2.4 Structure coefficients in terms of reproductive worth900

We can obtain an inclusive-fitness interpretation of the selection gradients by rewriting the structure coeffi-

cients ι and κ in terms of reproductive worth (S3.2.1), for each of our model cases. These equivalences and

their derivation are summarized in Fig. S7. Substituting equations (S3.2.3), (S3.2.4), and (S3.2.6) into Fig. S7A903

yields Fig. S7B. Substituting equations (S3.2.10), (S3.2.11), (S3.2.12), and (S3.2.13) into Fig. S7B yields Fig. S7C.

In turn, substituting equation (S3.2.1) into Fig. S7C yields Fig. S7D which expresses the structure coefficients

in terms of reproductive worth.906

Overall, we have shown that the structure coefficients can be written in terms of reproductive worth with

the calculated expressions for the probability that an actor of a given sex and a recipient of a given sex carry

a mutation given that the actor carries it (r•(A`),◦(R ′
`

) and r•(A`),•(A`)), the probability that an actor is mutant909

given that it is of a given sex (φ`(A)), and the probability that a recipient is of a given sex (σ`′ (R)) (Fig. S7). In

doing this, we find that candidate recipients of help (i.e., the payees) are second-brood offspring for all our

model cases (Fig. S7). For instance, even if helping increases mated pair survival, payees are still second-brood912

offspring and the relevant relatedness is that toward such offspring rather than toward the mated pair.

3.3 Relative reproductive worth

In order to write more compact expressions, we define the relative reproductive worth, ρA,H ,P , for a random915

actor in A relative to a random candidate helper in H of a random payee in P as

ρA,H ,P = ωA,P

ωA,H
, (S3.3.1)

that is, as the ratio between the reproductive worth ωA,P (measuring how much a random actor from A val-

ues the reproduction of a random payee from P ) and the reproductive worth ωA,H (measuring how much a918
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random actor from A values the reproduction of a random candidate helper from H). Our measure of rela-

tive reproductive worth can be seen as a generalization of the concept of life-for-life relatedness coefficients

introduced by Hamilton [49] to allow for actors and recipients to be of both sexes.921

Relative reproductive worth ρA,H ,P takes the following values, summarized for the cases when both sexes

help and brood sex proportions are unbiased in Fig. S8B.

Sibling-sibling-sibling for both females and males (ρO1,O1,O2 ). The relative reproductive worth ρO1,O1,O2 for924

a random first-brood offspring actor relative to itself of a random second-brood offspring recipient is given by

ρO1,O1,O2 =
ωO1,O2

ωO1,O1

=
∑
`∈{♀,♂}φ`(O1)

∑
`′∈{♀,♂}σ2,`′r•(O1`),◦(O2`′ )v`′∑

`∈{♀,♂}φ`(O1)v`
. (S3.3.2)

This expression greatly simplifies for two particular but relevant cases. First, for diploids, and via Fig. S7, we

get927

ρO1,O1,O2 =
1

2

∑
`∈{♀,♂}σ2,`v`∑
`∈{♀,♂}σ1,`v`

. (S3.3.3)

Second, if both sexes help (G = B) and brood sex proportions are unbiased (i.e., σ1 = σ2 = 1/2), so that v♀ =
v♂ = 1 also holds, (S3.3.2) can be simplified as

ρO1,O1,O2 =
∑
`∈{♀,♂}φ`(O1)

∑
`′∈{♀,♂}σ2,`′r•(O1`),◦(O2`′ )∑

`∈{♀,♂}φ`(O1)

= 1

2

∑
`∈{♀,♂}

u`
∑

`′∈{♀,♂}

r•(O1`),◦(O2`′ )

= 1

2

∑
`∈{♀,♂}

u`

= 1

2
, (S3.3.4)

where the first line follows from substituting (S3.3.2) with v♀ = v♂ = 1; the second line substitutes σ2,♀ =930

σ2,♀ = 1/2, and identifies φ`(O1) = u`; the third line applies identity (S3.2.7); and the fourth line simplifies.

Mother-offspring-offspring (ρM ,O1,O2 ). The relative reproductive worth ρM ,O1,O2 for a mother relative to a

random candidate first-brood offspring helper of a random second-brood offspring payee is given by933

ρM ,O1,O2 =
ωM ,O2

ωM ,O1

=
∑
`∈{♀,♂}σ2,`r•(M),◦(O2`)v`∑
`∈{♀,♂}σ1,`r•(M),◦(O1`)v`

, (S3.3.5)

which, for both diploids and haplodiploids, simplifies to

ρM ,O1,O2 =
∑
`∈{♀,♂}σ2,`v`∑
`∈{♀,♂}σ1,`v`

. (S3.3.6)

If, additionally, both sexes help (G = B) and brood sex proportions are unbiased (i.e., σ1 = σ2 = 1/2), so that

v♀ = v♂ = 1 also holds, then936

ρM ,O1,O2 = 1. (S3.3.7)
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Sibling-sibling-sibling for females (ρO1♀,O1♀,O2 ). The relative reproductive worth ρO1♀,O1♀,O2 for a random

first-brood female offspring actor relative to herself of a random second-brood offspring payee is given by

ρO1♀,O1♀,O2 =
ωO1♀,O2

ωO1♀,O1♀
= ∑
`∈{♀,♂}

σ2,`r•(O1♀),◦(O2`)
v`
v♀

. (S3.3.8)

If only female offspring were produced, then σ2,♀ = 1 and σ2,♂ = 0 so the relative reproductive worth for a939

random first-brood female offspring actor relative to herself of a random second-brood sister payee reduces

to

ρO1♀,O1♀,O2 = r•(O1♀),◦(O2♀),

as stated in the main text.942

Mother-daughter-offspring (ρM ,O1♀,O2 ). The relative reproductive worth ρM ,O1♀,O2 for a mother relative to a

random candidate first-brood daughter helper of a random second-brood offspring payee is given by

ρM ,O1♀,O2 =
ωM ,O2

ωM ,O1♀
=

∑
`∈{♀,♂}σ2,`r•(M),◦(O2`)v`

r•(M),◦(O1♀)v♀
. (S3.3.9)

If only female offspring were produced, then σ2,♀ = 1 and σ2,♂ = 0 so the relative reproductive worth for a945

mother relative to a random candidate first-brood daughter helper of a random second-brood daughter payee

reduces to

ρM ,O1♀,O2 =
r•(M),◦(O2♀)v♀

r•(M),◦(O1♀)v♀
=

r•(M),◦(O2♀)

r•(M),◦(O1♀)
= 1,

as stated in the main text.948

3.4 Individual cost and benefit of helping

The cost C (S2.8.4) and the benefit B (S2.8.5) of helping refer to the marginal effects of changing the number of

helpers on either the early or the late productivity of a mated pair. These quantities can also be written in terms951

of inclusive fitness, which considers the effect that an individual candidate helper i ∈ H has, respectively, on

its own personal fitness and on the fitness of its payees (all members of P ). Such individual interpretations

of cost and benefit of helping are the last building block we need in order to interpret the selection gradients954

from an inclusive-fitness perspective.

For these purposes, let us define the personal fitness of a first or second-brood offspring as their personal

contribution to the stages of unmated reproductives. Now consider a focal individual i belonging to the set of957

candidate helpers H . Denoting by pi the probability that i becomes a helper, the personal fitness of i is then

given by

W1,i = (1−pi )s1, (S3.4.1)

while the expected total fitness of individuals belonging to P is960

W2 =Π2( f2,h). (S3.4.2)
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The marginal effects of the trait ζ affecting helping of a focal candidate helper on its own personal fitness and

on the total fitness of its second-brood offspring are then respectively given by

−cζ ≡
∂W1,i

∂ζi
= ∂W1,i

∂pi

∂pi

∂ζi
=−s1

∂p

∂ζ
=−C

∂p

∂ζ
, (S3.4.3a)

bζ ≡
∂W2

∂ζi
= ∂W2

∂pi

∂pi

∂ζi
= ∂Π2

∂h
( f2,h)

∂h

∂pi

∂p

∂ζ
= ∂Π2

∂h
( f2,h)

∂pi

∂ζi
= B

∂p

∂ζ
, (S3.4.3b)

where we have used the fact that ∂h/∂pi = 1, since the number of helpers can be written as963

h = pi +
∑

j∈H , j 6=i
p j

and the probabilities p` for all ` ∈ H are assumed to be independent.

Thus, the benefit B and cost C equal the inclusive-fitness benefit bζ and cost cζ when the trait is the helping

probability ζ= p.966

3.5 Inclusive-fitness effect for a trait affecting helping and Hamilton’s rule

We have obtained expressions for the selection gradient of a trait ζ affecting helping for all the model cases

we study in terms of structure coefficients (equations (S2.8.40) and (S2.8.41)). We have also shown how such969

structure coefficients translate into inclusive-fitness measures of reproductive valuation (Fig. S7). Finally, we

have also obtained expressions for the individual benefit and cost (equations (S3.4.3)). Using these results and

the definition of the maximum number of helpers h̄ (equation (S1.1.5)), it follows that the selection gradient972

of a trait ζ affecting helping for all the model cases we study can be written as

SC,G
ζ

= h̄

vᵀu
HC,G
ζ

, (S3.5.1)

where we define the inclusive-fitness effect of a trait ζ affecting helping as

HC,G
ζ

=−ωA,H cζ+ωA,P bζ. (S3.5.2)

Indeed,HC,G
ζ

is the marginal effect of a candidate helper’s phenotype on the candidate helper’s personal fitness975

(−cζ) weighted by how much a random actor values the reproduction of a random candidate helper (ωA,H ) plus

the marginal effect of a candidate helper’s phenotype on the fitness of payees (bζ) weighted by how much a

random actor values the reproduction of a random payee (ωA,P ).978

Therefore, for all the model cases we consider, a trait ζ affecting helping is favored by selection if and only

if

−ωA,H cζ+ωA,P bζ︸ ︷︷ ︸
HC,G

ζ

> 0. (S3.5.3)

Condition (S3.5.3) constitutes a Hamilton’s rule for the model cases we consider [46, 48, 52, 62]. Resistance is981

thus a selfish trait (both cy < 0 and by < 0) according to the terminology of West et al. [64].

Dividing by ωA,H (which is strictly positive), a trait ζ affecting helping is favored by selection if and only if

−cζ+ρA,H ,P bζ > 0,
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where ρA,H ,P is the relative worth for a random actor in A relative to a random candidate helper in H of a984

random payee in P . Specifically, if the trait is the helping probability ζ = p, helping is favored by selection if

and only if

−C +ρA,H ,P B > 0. (S3.5.4)

Then, for all the model cases we consider, the critical benefit-cost ratio (S2.8.10) can be alternatively written as987 (
B

C

)∗
= 1

ρA,H ,P
. (S3.5.5)

3.6 Inclusive-fitness effect for reproductive effort

We have obtained the selection gradient of reproductive effort z for all the model cases we study in terms of the

structure coefficient κC,G
z (S2.9.6). We have shown how this structure coefficient translates into an inclusive-990

fitness measure of reproductive valuation; specifically, it equals ωM ,O2 (Fig. S7). We can define the individual

benefit for a mother of increasing her reproductive effort z as

bz ≡ ∂W2

∂z
= ∂Π2

∂ f2

d f2

dz
= D

d f2

dz
. (S3.6.1)

Using these results, it follows that the selection gradient of reproductive effort z for all the model cases we993

study is

SC,G
z = 1

vᵀu
HC,G

z , (S3.6.2)

where we define the inclusive-fitness effect of reproductive effort z as

HC,G
z =ωM ,O2 bz . (S3.6.3)
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4 Conflict dissolution and benefit-cost ratio zones996

In this section, we define conflict dissolution and show that it can also be understood in terms of benefit-

cost ratios zones. To do this, we proceed in three steps. First, we define zones for the benefit-cost ratio in

which a party (i.e., the mother or the offspring) favors or disfavors increasing helping (Benefit-cost ratio zones999

considering the interest of a single party; section 4.1). Second, we define benefit-cost ratio zones considering

simultaneously the interests of both mother and offspring, and define the zone of parent-offspring conflict

over helping (Benefit-cost ratio zones simultaneously considering the interest of mother and offspring; section1002

4.2). Third, we define conflict dissolution and show how it can be understood in terms of benefit-cost ratio

zones (Conflict dissolution; section 4.3).

4.1 Benefit-cost ratio zones considering the interest of a single party1005

To define the benefit-cost ratio zones, recall the following. We have obtained that an increasing helping prob-

ability p is favored by selection if and only if
B

C
>

(
B

C

)∗
(S4.1.1)

(equations (S2.8.8) and (S2.8.9a) since κ> 0 for ζ= p). We have also obtained that the critical benefit-cost ratio

(B/C )∗ can be written in inclusive-fitness terms as(
B

C

)∗
= 1

ρA,H ,P

for all the model cases we consider (equation (S3.5.4)). Finally, we have seen that the critical benefit-cost ratio1008

depends on the model case, which when useful we highlight by writing (B/C )∗ = (B/C )∗
C,G

p for the helping

probability p (Fig. S9A).

When helping is under the control of a single party, that is, when helping is under offspring or maternal1011

control, we have the following benefit-cost ratio zones (Fig. S9B):

1. Low benefit-cost ratio (B/C < (B/C )∗). In this zone, the selection gradient of helping, Sp (z), is negative,

so helping is disfavored by selection. As the helping trait is either under maternal or offspring control,1014

we say that helping is disfavored by the party controlling helping.

2. High benefit-cost ratio (B/C > (B/C )∗). In this zone, the selection gradient of helping, Sp (z), is positive,

so helping is favored by selection. We say that helping is favored by the party controlling helping.1017

We can show that if the genetic system is diploid, if only females help, or if brood sex proportions are

unbiased, that is, if at least one of the following conditions is satisfied:

P = D, (S4.1.2a)

G = F, (S4.1.2b)

σ1 =σ2 = 1/2, (S4.1.2c)

then1020 (
B

C

)∗M,G

p
<

(
B

C

)∗O,G

p
(S4.1.3)
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Figure S9: Benefit-cost ratio zones. (A) Critical benefit-cost ratio for helping for all model cases and its cor-

responding inclusive-fitness interpretation (equations (S3.5.5), (S3.1.1), and (S3.1.2)). (B) Benefit-cost ratio

zones considering helping control by a single party. Who controls help is given by C (for C ∈ {O,M}, where

O stands for offspring control and M stands for maternal control). (C-E) Benefit-cost ratio zones simultane-

ously considering helping control by mother and offspring, (D) when condition (S4.1.3) holds and (E) when

the reverse of condition (S4.1.3) holds. Throughout, we consider only the case when (S4.1.3) holds (D).
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Figure S10: Rebel helping zone. In the case of haplodiploids where both sexes help, the reverse of inequality

(S4.1.3) holds in the red zone. (A) In full brood-sex-proportion space. (B) In “zoomed” brood-sex-proportion

space. Parameter values are: f1 = 30, f2 = 60, s1 = 0.2, s2 = 0.5, sM = 0.9, and p = 0.5.

holds, in which case the helping zone is greater when helping is under maternal control than under offspring

control. Note that at least one out of the three assumptions listed in (S4.1.2) holds in all of our model cases,

except for the case of haplodiploids where both sexes help (HD-C-B) with biased sex proportions (σ1 6=σ2). In1023

such a case, the reverse of inequality (S4.1.3) can hold in a thin band of extremely female biased sex proportions

(Fig. S10). Yet, such a case might be of limited biological interest as known real populations of haplodiploids

where both sexes help are characterized by unbiased sex proportions [43, 61].1026

We now show that if any of the assumptions listed in (S4.1.2) holds, then (S4.1.3) holds. First, let us consider

case (S4.1.2b) (i.e., only females help), for which (S4.1.3) takes the form

(
B

C

)∗M,F

p
<

(
B

C

)∗O,F

p
. (S4.1.4)
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Via the expressions in Fig. S9A, and using (S3.3.8) and (S3.3.9), inequality (S4.1.4) simplifies to1029

r•(M),◦(O1♀)∑
`∈{♀,♂}σ2,`r•(M),◦(O2`)v`

< 1∑
`∈{♀,♂}σ2,`r•(O1♀),◦(O2`)v`

. (S4.1.5)

For both diploids and haplodiploids, we have that r•(M),◦(Oa`) = 1/2 for all ` ∈ {♀,♂} and all a ∈ {1,2} (from

equation (S3.2.5)), so (S4.1.5) simplifies to

1∑
`∈{♀,♂}σ2,`v`

< 1∑
`∈{♀,♂}σ2,`r•(O1♀),◦(O2`)v`

,

which rearranging yields1032

∑
`∈{♀,♂}

σ2,`

(
1− r•(O1♀),◦(O2`)

)
v` > 0.

This holds true since r•(O1♀),◦(O2`) < 1 always holds (from equations (S3.2.8) and (S3.2.9)). We conclude that

(S4.1.4) is true for both diploids and haplodiploids.

Now, let us consider case (S4.1.2a) (i.e., the genetic system is diploid). Since (S4.1.4) has been established1035

irrespectively of the genetic system, we only need to consider the case where both sexes help (G = B), that is

(
B

C

)∗M,B

p
<

(
B

C

)∗O,B

p
. (S4.1.6)

for diploids. This inequality follows by substituting from (S3.3.3) and (S3.3.6).

Finally, let us assume that (S4.1.2c) holds (i.e., brood sex proportions are unbiased). Since (S4.1.4) has1038

been established irrespectively of the brood sex proportions, we only need to consider the case where both

sexes help (G = B). Then, via equations (S3.3.4) and (S3.3.7), we have that(
B

C

)∗M,B

p
= 1, (S4.1.7a)

(
B

C

)∗O,B

p
= 2 (S4.1.7b)

holds, and (S4.1.3) is satisfied.1041

4.2 Benefit-cost ratio zones simultaneously considering the interest of mother and off-

spring

Considering the interests of both mother and offspring simultaneously, we have two critical benefit-cost ratios:1044

one corresponding to helping under maternal control ((B/C )∗
M,G

p ) and one corresponding to helping under

offspring control ((B/C )∗
O,G

p ). Defining the minimum critical benefit-cost ratio,

(
B

C

)∗
≡ min

((
B

C

)∗O,G

p
,

(
B

C

)∗M,G

p

)
, (S4.2.1)

and the maximum critical benefit-cost ratio,1047

(
B

C

)∗
≡ max

((
B

C

)∗O,G

p
,

(
B

C

)∗M,G

p

)
, (S4.2.2)

we have the following three benefit-cost ratios zones (Fig. S9C-E):
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1. Low benefit-cost ratio (B/C < (B/C )∗). In this zone, the selection gradients of helping under maternal

control and under offspring control, SM,G
p (z) and SO,G

p (z), are both negative. Hence, we say that helping1050

is disfavored from both the mother’s and offspring’s perspective.

2. Intermediate benefit-cost-ratio ((B/C )∗ < B/C < (B/C )∗). In this zone, the selection gradients of helping

under maternal control and under offspring control, SM,G
p (z) and SO,G

p (z), have opposite sign. Thus,1053

helping is favored (resp. disfavored) from the mother’s perspective and disfavored (resp. favored) from

the offspring’s perspective. Hence, we say that there is parent-offspring conflict over helping. There are

two possibilities:1056

(a) If (B/C )∗
M,G

p < (B/C )∗
O,G

p holds, so that (B/C )∗ = (B/C )∗
M,G

p and (B/C )∗ = (B/C )∗
O,G

p , the selection

gradient of helping under maternal control, SM,G
p (z), is positive and the selection gradient of help-

ing under offspring control, SO,G
p (z), is negative. Hence, helping is favored from the mother’s per-1059

spective but is disfavored from the offspring’s perspective. We call “manipulated helping” the help-

ing that is in this zone.

(b) If (B/C )∗
O,G

p < (B/C )∗
M,G

p holds, so that (B/C )∗ = (B/C )∗
O,G

p and (B/C )∗ = (B/C )∗
M,G

p , the selection1062

gradient of helping under maternal control, SM,G
p (z), is negative and the selection gradient of help-

ing under offspring control, SO,G
p (z), is positive. Hence, helping is disfavored from the mother’s

perspective but is favored from the offspring’s perspective. We call “rebel helping” the helping that1065

is in this zone. As shown above, this case only occurs for haplodiploids where both sexes help and

with extremely female biased sex proportions (Fig. S10). We do not study this case.

3. High benefit-cost ratio (B/C > (B/C )∗). In this zone, the selection gradients of helping under maternal1068

and under offspring control, SM,G
p (z) and SO,G

p (z), are both positive. Hence, helping is favored from both

the mother’s and the offspring’s perspective. We call “voluntary helping” the helping that is in this zone.

4.3 Conflict dissolution1071

We say that conflict dissolution occurs if there are evolutionary times τ1 < τ2 such that

SM,G
p (z(τ1)) > 0, SO,G

p (z(τ1)) < 0, SM,G
p (z(τ2)) > 0, and SO,G

p (z(τ2)) > 0, (S4.3.1)

that is, helping is favored by the mother and disfavored by offspring at time τ1, and helping is favored by both

mother and offspring at time τ2. Given equation (S3.5.1), conditions (S4.3.1) are equivalent to1074

HM,G
p (z(τ1)) > 0, HO,G

p (z(τ1)) < 0, HM,G
p (z(τ2)) > 0, and HO,G

p (z(τ2)) > 0. (S4.3.2)

Provided that HO,G
p (z(τ)) is everywhere differentiable with respect to τ, conditions (S4.3.2) imply that the

inclusive-fitness effect for offspring-controlled helping satisfies the following: there exists an interval [τ′1,τ′2] ⊂
[τ1,τ2] such that1077

1. HO,G
p (z(τ)) increases with evolutionary time during [τ′1,τ′2], that is,

dHO,G
p

dτ
(z(τ)) > 0 (persuasion condition) (S4.3.3a)

for all τ ∈ [τ′1,τ′2], and
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2. HO,G
p (z(τ)) is null at some evolutionary time within [τ′1,τ′2], that is,1080

HO,G
p (z(τ)) = 0 (conversion condition) (S4.3.3b)

for some τ ∈ (τ′1,τ′2).

Conditions (S4.3.3) state that HO,G
p (z(τ)) changes sign from negative to positive for some τ ∈ [τ1,τ2]. We call

(S4.3.3a) the persuasion condition and (S4.3.3b) the conversion condition for conflict dissolution.1083

Since HO,G
p (z(τ)) =HO,G

p (p(τ), z(τ)) and from the chain rule, the persuasion condition (S4.3.3a) is equiva-

lent to
dHO,G

p

dτ
= ∂HO,G

p

∂p

dp

dτ
+ ∂HO,G

p

∂z

dz

dτ
> 0 (S4.3.4)

for all τ ∈ [τ′1,τ′2]. Following Brown and Taylor [36], we say that the derivative1086

∂HC,G
ξ

∂ζ

measures the evolutionary synergy of ζ on ξ: if the derivative is positive, there is evolutionary synergy; if it is

negative, there is evolutionary interference. Motivated by (S4.3.4), we say that there is conflict dissolution via

maternal reproductive specialization if there exist τ1 < τ2 such that (S4.3.1) hold and (S4.3.4) implies that1089

∂HO,G
p

∂z

dz

dτ
> 0 (S4.3.5)

for all τ ∈ [τ′1,τ′2]. Thus, by material implication [i.e., (A =⇒ B) ⇐⇒ (¬A∨B)], to establish that there is conflict

dissolution via maternal reproductive specialization, it is sufficient that there is conflict dissolution ((S4.3.1)

hold) and that (S4.3.5) holds for all τ ∈ [τ′1,τ′2]. From (S4.3.4) and (S4.3.5), if reproductive effort increases over

evolutionary time (i.e., dz/dτ > 0), a necessary condition for conflict dissolution via maternal reproductive

specialization is that there is evolutionary synergy of reproductive effort on helping, that is

∂HO,G
p

∂z
> 0. (S4.3.6)

Conflict dissolution can also be understood in terms of the benefit-cost ratio zones. If (B/C )∗
M,G

p < (B/C )∗
O,G

p

(condition (S4.1.3)) holds, conditions (S4.3.1) imply that conflict dissolution occurs if the system makes a tran-

sition from the conflict zone to the zone where both mother and offspring favor offspring helping, that is, if1092

there are evolutionary times τ1 < τ2 such that(
B

C

)∗M,G

p

∣∣∣∣∣
z(τ1)

< B

C

∣∣∣∣
z(τ1)

<
(

B

C

)∗O,G

p

∣∣∣∣∣
z(τ1)

and

(
B

C

)∗M,G

p

∣∣∣∣∣
z(τ2)

<
(

B

C

)∗O,G

p

∣∣∣∣∣
z(τ2)

< B

C

∣∣∣∣
z(τ2)

(S4.3.7)

hold.

There are two basic pathways whereby conflict dissolution could happen in models related to ours. First,1095

holding constant the benefit-cost ratio B/C , conflict dissolution requires that (B/C )∗
O,G

p decreases (equiva-

lently, that its associated relative reproductive worth increases) over evolutionary time. This might occur, for

instance, if brood sex proportions evolve in a model with a partially bivoltine life cycle [as in 60]. Second,1098

holding constant the critical benefit-cost ratios (B/C )∗
M,G

p and (B/C )∗
O,G

p (e.g., if sex brood proportions are un-

biased so (S4.1.2c) and hence (S4.1.7) hold), conflict dissolution requires the increase of the benefit-cost ratio

B/C over evolutionary time. In general, conflict dissolution might occur by a combination of the two pathways.1101

We focus our analysis and results on the second pathway.
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5 Evolutionary synergy and trade-off alleviation

We showed in the previous section that a necessary condition for conflict dissolution via maternal reproductive1104

specialization is that there is evolutionary synergy of reproductive effort z on helping p (equation (S4.3.6)) as

increasing z evolves. In this section, we show that evolutionary synergy of reproductive effort z on helping

p is equivalent to trade-off alleviation by helpers if reproductive effort is optimal. This yields the conclusion1107

that, at an optimal reproductive effort, conflict dissolution via maternal reproductive specialization requires

trade-off alleviation by helpers.

To do this, we proceed in four steps. First, we rewrite the selection gradient of reproductive effort in terms1110

of elasticities, which quantify the assumed trade-offs (Selection gradient of reproductive effort in terms of

elasticities; section 5.1). Second, we show that, if reproductive effort is optimal, evolutionary synergy of repro-

ductive effort z on helping p is equivalent to a positive marginal effect of late fertility on the benefit of helping,1113

B ; we also show that, if reproductive effort is optimal, evolutionary synergy of helping p on reproductive effort

z is equivalent to a positive marginal effect of helpers on the marginal productivity of late fertility, D (Synergy

of reproductive effort on helping and vice-versa; section 5.2). Third, we show that, if reproductive effort is1116

optimal, such synergy is symmetric (evolutionary synergy of reproductive effort z on helping p is equivalent

to evolutionary synergy of helping p on reproductive effort z) and equivalent to late productivity being super-

modular (Synergy as supermodularity of late productivity; section 5.3). Finally, we use these results to express1119

the supermodularity of late productivity at an optimal reproductive effort in terms of trade-off alleviation by

helpers (Synergy as trade-off alleviation; section 5.4).

5.1 Selection gradient of reproductive effort in terms of elasticities1122

We begin by rewriting the selection gradient of reproductive effort in terms of elasticities, which offer a conve-

nient way to quantify the trade-offs we have assumed. We have shown in section 2.4 that reproductive effort z

is under positive directional selection if the selection gradient of reproductive effort Sz (x) is positive, that is, if1125

Sz (x) > 0 . We saw in section 2.9 that this condition is satisfied if and only if

D > 0, (S5.1.1)

where

D = ∂Π2

∂ f2
( f2,h) (S5.1.2)

is the marginal productivity of late fertility. Hence, holding the helping probability p constant, selection leads1128

to a (locally) optimal reproductive effort z∗, and corresponding (locally) optimal late fertility

f ∗
2 = f2(z∗) (S5.1.3)

that locally maximizes late productivityΠ2. Such an optimal z∗ satisfies the first-order condition

D|z∗ = D| f ∗
2
= ∂Π2

∂ f2
( f ∗

2 ,h) = 0. (S5.1.4)
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Now, writing the late productivityΠ2 explicitly in terms of the vital rates (equation (S1.6.15)) and using the1131

product rule of derivatives, we can rewrite equation (S5.1.2) as

D = ∂

∂ f2

(
sM f2s2

)
= ∂sM

∂ f2
f2s2 + sM s2 + sM f2

∂s2

∂ f2

= sM s2

(
f2

sM

∂sM

∂ f2
+1+ f2

s2

∂s2

∂ f2

)
= sM s2

(
ε f2 (sM )+1+ε f2 (s2)

)
, (S5.1.5)

where we have identified

ε f2 (sM ) = f2

sM

∂sM

∂ f2
= ∂ ln sM

∂ ln f2
, and (S5.1.6a)

ε f2 (s2) = f2

s2

∂s2

∂ f2
= ∂ ln s2

∂ ln f2
, (S5.1.6b)

as, respectively, the (partial) elasticities of sM and s2 with respect to f2. The elasticity εX (Y ) is the percent1134

change in Y caused by a marginal percent increase in X holding all other variables constant. From our as-

sumptions on the trade-offs between the vital rates (S1.4.6), at least one of the elasticities (S5.1.6) is negative

but neither is positive. Thus, the elasticities (S5.1.6) quantify the trade-offs that we have assumed between1137

vital rates.

From (S5.1.5) and since sM s2 > 0 (equation (S1.4.5)), a necessary and sufficient condition for D > 0 is that

ε f2 (sM )+ε f2 (s2) >−1. (S5.1.7)

Together with (S5.1.4), this implies that the optimal reproductive effort z∗ is implicitly given by1140

(
ε f2 (sM )+ε f2 (s2)

)∣∣
z=z∗ =−1. (S5.1.8)

An elasticity equal to −1 means that a percent increase in the input variable leads to an exactly equal per-

cent decrease in the output variable. Hence, condition (S5.1.7) states that a necessary and sufficient condition

for reproductive effort to be favored to increase over evolutionary time is that a percent increase in late fertility1143

f2 caused by a marginal increase in reproductive effort leads to a weaker percent decrease in the total effect on

maternal survival sM and second-brood survival s2 (see also Charnov [41]).

5.2 Synergy of reproductive effort on helping and vice-versa1146

We now show that, if reproductive effort is optimal, the evolutionary synergy of reproductive effort z on helping

p can be equivalently expressed as either the marginal effect of f2 on B (section 5.2.1) or as the marginal effect

of h on D (section 5.2.2).1149

5.2.1 Synergy of reproductive effort on helping as late-fertility effects on benefit

At an optimal reproductive effort z∗, there is evolutionary synergy of reproductive effort z on helping p if

∂HO,G
p

∂z

∣∣∣∣∣
z=z∗

> 0. (S5.2.1)
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Noting that the set of actors is the set of candidate helpers (A = H) when helping is under offspring control1152

(C = O), taking the partial derivative, and by the product rule and the chain rule of derivatives, condition

(S5.2.1) can be written as (
−∂ωH ,H

∂ f2

d f2

dz
C + ∂ωH ,P

∂ f2

d f2

dz
B +ωH ,P

∂B

∂ f2

d f2

dz

)
z=z∗

> 0,

which, since d f2/dz > 0, is equivalent to1155 (
−∂ωH ,H

∂ f2
C + ∂ωH ,P

∂ f2
B +ωH ,P

∂B

∂ f2

)
f2= f ∗

2

> 0. (S5.2.2)

Now, for all C ∈ {M,O} and all G ∈ {B,F}, reproductive worth ωA,R depends on late fertility f2 only through

the reproductive value of females, v♀. More specifically, the partial derivative of ωA,R with respect to f2 is

proportional to the partial derivative of v♀ with respect to f2, which can be readily calculated as1158

∂v♀
∂ f2

= ∂

∂ f2

(
Π♂,r,rr

Π♀,r,rr

)

=
(
∂
∂ f2
Π♂,r,rr

)
Π♀,r,rr −

(
∂
∂ f2
Π♀,r,rr

)
Π♂,r,rr

Π2
♀,r,rr

=
(
σ2,♂

∂
∂ f2
Π2,rr

)
Π♀,r,rr −

(
σ2,♀ ∂

∂ f2
Π2,rr

)
Π♂,r,rr

Π2
♀,r,rr

=
(
σ2,♂v♂−σ2,♀v♀

)
Π♀,r,rr

∂Π2,rr

∂ f2

=
(
σ2,♂v♂−σ2,♀v♀

)
Π♀,r,rr

∂Π2

∂ f2
( f2,h)

=
(
σ2,♂v♂−σ2,♀v♀

)
Π♀,r,rr

D, (S5.2.3)

where the first line follows from substituting equation (S2.6.12b), the second line applies the quotient rule

of derivatives, the third line uses the derivatives of expression (S1.6.2) with respect to f2, the fourth line uses

the expressions for reproductive values (S2.6.12), the fifth line uses (S1.6.16), and the last line identifies the1161

marginal productivity of late fertility D (S2.9.3) and rearranges. Evaluating (S5.2.3) we then obtain, via (S5.1.4),

(
∂v♀
∂ f2

)
f2= f ∗

2

=
(
σ2,♂v♂−σ2,♀v♀

)
Π♀,r,rr

∣∣∣∣∣∣
f2= f ∗

2

× D| f2= f ∗
2
= 0, (S5.2.4)

so that the partial derivative of the reproductive value of females with respect to late fertility vanishes at an

optimal late fertility. It follows that1164 (
∂ωH ,H

∂ f2

)
f2= f ∗

2

=
(
∂ωH ,P

∂ f2

)
f2= f ∗

2

= 0,

and, since ωH ,P > 0, condition (S5.2.2) simplifies to(
∂B

∂ f2

)
f2= f ∗

2

> 0.

Summarizing, we have

∂HO,G
p

∂z

∣∣∣∣∣
z=z∗

> 0 ⇐⇒
(
∂B

∂ f2

)
f2= f ∗

2

> 0, (S5.2.5)
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which states that, at an optimal reproductive effort, there is evolutionary synergy of reproductive effort z on1167

helping p if and only if the marginal benefit of helping is increasing in late fertility, f2.

5.2.2 Synergy of helping on reproductive effort as helper effects on marginal productivity

Likewise, at an optimal reproductive effort z∗, there is evolutionary synergy of helping p on reproductive effort1170

z if

∂HC,G
z

∂p

∣∣∣∣∣
z=z∗

> 0. (S5.2.6)

Taking the derivative of the inclusive-fitness effect HC,G
z with respect to p, this condition can be written as(

∂ωM ,O2

∂p
D +ωM ,O2

∂D

∂h

∂h

∂p

)
z=z∗

> 0, (S5.2.7)

where ωM ,O2 is the reproductive worth for a mother of a second-brood offspring. Since D vanishes at z = z∗,1173

and since ωM ,O2 > 0 and ∂h/∂p = h̄ > 0, this condition simplifies to(
∂D

∂h

)
f2= f ∗

2

> 0.

Summarizing, we have that

∂HC,G
z

∂p

∣∣∣∣∣
z=z∗

⇐⇒
(
∂D

∂h

)
f2= f ∗

2

> 0, (S5.2.8)

which states that, at an optimal reproductive effort, there is evolutionary synergy of helping p on reproductive1176

effort z if and only if the marginal productivity of late fertility is increasing in the expected number of helpers,

h.

5.3 Synergy as supermodularity of late productivity1179

We now show that, at an optimal reproductive effort, the conditions for evolutionary synergy of helping on re-

productive effort (S5.2.1) and for evolutionary synergy of reproductive effort on helping (S5.2.6) are equivalent,

and that both are equivalent to the condition that late productivity is supermodular.1182

This observation is immediate from the fact that the right-hand inequalities in (S5.2.5) and (S5.2.8) are

equivalent. Indeed, it follows both from our definitions of marginal benefit of helping B (S2.8.5) and marginal

productivity of late fertility D (S2.9.3), and from the symmetry of second derivatives, that1185

∂B

∂ f2
= ∂2Π2

∂ f2∂h
= ∂2Π2

∂h∂ f2
= ∂D

∂h
, (S5.3.1)

and hence that

∂2Π2

∂ f2∂h
> 0 ⇐⇒ ∂B

∂ f2
> 0 ⇐⇒ ∂D

∂h
> 0. (S5.3.2)

Since this identity also holds at an optimal level of late fertility f ∗
2 , we have

∂2Π2

∂ f2∂h
( f ∗

2 ,h) > 0 ⇐⇒
(
∂B

∂ f2

)
f2= f ∗

2

> 0 ⇐⇒
(
∂D

∂h

)
f2= f ∗

2

> 0. (S5.3.3)
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Expression (S5.3.1) reminds us of the connection between the partial derivatives of the marginal productivity1188

of one input (e.g., expected number of helpers, h) with respect to the other (e.g., the late fertility f2). Expression

(S5.3.2) reminds us of the fact that the condition for the marginal productivity of one variable to be increasing

in the other is equal to the condition that the cross partial derivatives of the late productivity functionΠ2( f2,h)1191

are positive, that is, that the late productivity Π2 is supermodular. Supermodularity formalizes a classic way

of interpreting the notion of complementarity in economics; namely that having more of one input increases

the marginal returns to having more of another input [33]. In our case, supermodularity of Π2 means that1194

having more helpers increases the marginal productivity of late fertility, and that having more late fertility

(via increased reproductive effort) increases the marginal productivity of helping, that is, that helping and

reproductive effort act as strategic complements.1197

In conclusion, we have, via expressions (S5.3.3), (S5.2.5) and (S5.2.8), that

∂2Π2

∂ f2∂h
( f ∗

2 ,h) > 0 ⇐⇒ ∂HO,G
p

∂z

∣∣∣∣∣
z=z∗

> 0 ⇐⇒ ∂HC,G
z

∂p

∣∣∣∣∣
z=z∗

> 0. (S5.3.4)

Expression (S5.3.4) states that the supermodularity of the late productivity Π2 (i.e., the complementarity be-

tween helping and reproductive effort) at an optimal reproductive effort is a necessary and sufficient condi-1200

tion for evolutionary synergy between helping and reproductive effort. Such evolutionary synergy means that

helping and reproductive effort are in positive feedback whereby the evolution of reproductive effort increases

selection for helping, and the evolution of helping increases selection for reproductive effort.1203

5.4 Synergy as trade-off alleviation

Trade-off alleviation. The condition on the supermodularity of the late productivity function Π2 appearing

on the left hand side of (S5.3.4) can be given a demographically meaningful interpretation in terms of the way1206

helping by offspring alleviates life-history trade-offs faced by mothers. To do so, note that we can write the

cross partial derivative as

∂2Π2

∂ f2∂h
( f ∗

2 ,h) =
(
∂D

∂h

)
f2= f ∗

2

=
{
∂

∂h

[
sM s2

(
ε f2 (sM )+1+ε f2 (s2)

)]}
f2= f ∗

2

=
[
∂ (sM s2)

∂h

(
ε f2 (sM )+1+ε f2 (s2)

)+ sM s2
∂
(
ε f2 (sM )+1+ε f2 (s2)

)
∂h

]
f2= f ∗

2

, (S5.4.1)

where we made use of (S5.3.1) in the first line, of (S5.1.5) in the second line, and of the product rule of deriva-1209

tives in the third line.

Since at an optimal reproductive effort, ε f2 (sM )+1+ ε f2 (s2) = 0 holds (see (S5.1.8)), equation (S5.4.1) sim-

plifies to1212

∂2Π2

∂ f2∂h
( f ∗

2 ,h) =
[

sM s2
∂
(
ε f2 (sM )+1+ε f2 (s2)

)
∂h

]
f2= f ∗

2

. (S5.4.2)

Given that sM s2 > 0 (see (S1.4.5)), it follows that

∂2Π2

∂ f2∂h
( f ∗

2 ,h) > 0 ⇐⇒
(
∂ε f2 (sM )

∂h
+ ∂ε f2 (s2)

∂h

)∣∣∣∣
f2= f ∗

2

> 0. (S5.4.3)
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As previously stated, ε f2 (sM ) and ε f2 (s2) measure the percent life-history trade-offs faced by a mother by in-

creasing her late fertility f2. Hence, condition (S5.4.3) states that, at an optimal reproductive effort, the condi-1215

tion forΠ2 to be supermodular is equivalent to the condition that helpers alleviate the proportional life-history

trade-offs. Therefore, together with (S4.3.4) and (S5.3.4), condition (S5.4.3) yields the conclusion that conflict

dissolution via maternal reproductive specialization requires that helpers alleviate trade-offs as optimal repro-1218

ductive effort evolves.

Comparative statics of optimal reproductive effort with respect to the expected number of helpers. A con-

sequence of the supermodularity of the late productivity function is that a given (locally) optimal reproductive1221

effort z∗ is increasing in the expected number of helpers (see, e.g., 33). That is,

∂2Π2

∂ f2∂h
( f ∗

2 ,h) > 0 =⇒ ∂z∗

∂h
> 0. (S5.4.4)

For our purposes, this can be proven using the implicit function theorem as follows. A locally optimal late

fertility value f ∗
2 is implicitly given by (see equation (S5.1.4))1224

∂Π2

∂ f2
( f ∗

2 ,h) = 0. (S5.4.5)

Differentiating with respect to h, we have

∂2Π2

∂ f 2
2

( f ∗
2 ,h)

∂ f ∗
2

∂h
+ ∂2Π2

∂h∂ f2
( f ∗

2 ,h) = 0, (S5.4.6)

so that solving for ∂ f ∗
2 /∂h we get

∂ f ∗
2

∂h
=−

∂2Π2

∂h∂ f2
( f ∗

2 ,h)

∂2Π2

∂ f 2
2

( f ∗
2 ,h)

> 0, (S5.4.7)

from which (S5.4.4) follows by the chain rule, because
∂2Π2

∂ f 2
2

( f ∗
2 ,h) < 0 holds (as z∗ is a local maximum) and1227

f2(z) is an increasing function.

Examples of late productivity functions that do not allow for evolutionary synergy. There are at least two

important classes of possible late productivity functions that do not allow for evolutionary synergy: additively1230

separable functions, and multiplicatively separable functions.

First, consider late productivity functions that are additively separable, that is, late productivity functions

that could be written as1233

Π2( f2,h) =Π2,1( f2)+Π2,2(h) (S5.4.8)

with Π2,1 : R∗+ → R∗+ and Π2,2 : [0, f1] → R∗+. A function of the form of (S5.4.8) is not supermodular in any point

of its domain, as the cross partial derivative is zero at all points. It then follows that the condition in the left

hand side of (S5.3.4) is never satisfied.1236

Second, consider late productivity functions that are multiplicatively separable, that is, one could find

functionsΠ2,1 :R∗+ →R∗+ andΠ2,2 : [0, f1] →R∗+ so that

Π2( f2,h) =Π2,1( f2)×Π2,2(h) (S5.4.9)
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holds. To show that for functions of the form (S5.4.9) there is no evolutionary synergy between helping and1239

fertility at an optimal late fertility level, note first that in the case of a multiplicatively separable Π2 function,

the first order condition for an optimal reproductive effort (S5.1.4) implies

dΠ2,1

d f2
( f ∗

2 ) = 0. (S5.4.10)

Note second that evaluating the cross partial derivative ofΠ2 at an optimal fertility level, we obtain1242

∂2Π2

∂ f2∂h

∣∣∣∣
f2= f ∗

2

= ∂

∂h

(
∂Π2

∂ f2

)∣∣∣∣
f2= f ∗

2

= ∂

∂h

(
Π2,2(h)

dΠ2,1

d f2

)∣∣∣∣
f2= f ∗

2

=
(

dΠ2,2

dh

dΠ2,1

d f2
+Π2,2(h)

∂

∂h

(
dΠ2,1

d f2

))∣∣∣∣
f2= f ∗

2

= dΠ2,2

dh
(h)

dΠ2,1

d f2
( f ∗

2 )

= 0

where the third line applies the product rule of derivatives, the fourth line follows because dΠ2,1/d f2 is inde-

pendent of h (and hence ∂(dΠ22/d f2)/∂h = 0), and the last line follows from (S5.4.10).
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6 Evolutionary dynamics1245

In this section, we write equations describing the evolutionary dynamics of the evolving traits. To do this, we

proceed in two steps. First, in section 6.1 (Canonical equation) we write the evolutionary dynamic equations

by postulating that our evolving traits satisfy a form of the canonical equation of adaptive dynamics [44, 45, 53].1248

Second, in section 6.2 (Resulting evolutionary dynamic equations when traits are genetically uncorrelated) we

write the evolutionary dynamic equations that result when traits are genetically uncorrelated.

6.1 Canonical equation1251

We follow the evolutionary dynamics of the phenotypic vector z. Given our assumptions of δ-weak selection

and rare mutation, we expect that, in our model, invasion implies fixation [58] and that the deterministic

evolutionary dynamics are to first order approximately given by a form of the canonical equation of adaptive1254

dynamics [44, 45, 53]. Thus, we conjecture that the evolutionary dynamics of z over evolutionary time τ are to

first order given by
dz

dτ
= G(z)S(z), (S6.1.1)

with a covariance matrix G(z) given by1257

G(z) =
Gpp Gpz

Gzp Gzz


for model cases of offspring or maternal control, and by

G(z) =


Gxx Gx y Gxz

Gy x Gy y Gy z

Gzx Gz y Gzz


for model cases of shared control. The ζξ-th entry Gζξ(z) of G is proportional to the covariance of mutational

effects Cov[Zm−ζ,Ξm−ξ] = Cov[Zm,Ξm], where Zm andΞm are random variables with small variation around1260

their respective expected values E[Zm] = ζ and E[Ξm] = ξ. The diagonal entries Gζζ(z) are non-negative, and

we also denote them as Gζ(z). G is symmetric. If traits are genetically uncorrelated, then G is diagonal.

6.2 Resulting evolutionary dynamic equations when traits are genetically uncorrelated1263

When traits are genetically uncorrelated, the resulting evolutionary dynamic equations are

dζ

dτ
=Gζ

h̄

vᵀu
ωA,H

(−cζ+ρA,H ,P bζ
)

(S6.2.1a)

dz

dτ
=Gz

1

vᵀu
ωM ,O2 bz , (S6.2.1b)

for ζ affecting helping (i.e., ζ ∈ {p} for model cases of offspring or maternal control and ζ ∈ {x, y} for model

cases of shared control; using equations (S6.1.1), (S3.5.1), (S3.5.2), (S3.3.1), (S3.6.2), and (S3.6.3)). We now list1266

the resulting dynamic equations for each model case.
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Offspring control, both sexes help. When helping is under offspring control and both sexes help, and from

equations (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations are1269

dp

dτ
=Gp

f1

vᵀu
ωO1,O1

(−C +ρO1,O1,O2 B O,B)
, (S6.2.2a)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DO,B. (S6.2.2b)

For the particular case of unbiased sex proportions in both broods (i.e., σ1,♀ = σ1,♂ = σ2,♀ = σ2,♂ = 1/2)

using Fig. S7 and (S3.3.4), equations (S6.2.2) further simplify for both diploids and haplodiploids to

dp

dτ
=Gp

f1

vᵀu

1

2

 ∑
`∈{♀,♂}

u`v`

(
−C + 1

2
B O,B

)
, (S6.2.3a)

dz

dτ
=Gz

1

vᵀu
u♀

1

2

 ∑
`∈{♀,♂}

r•(M),◦(O2`)v`

 d f2

dz
DO,B. (S6.2.3b)

For diploids, each of the sums over ` in parentheses in equations (S6.2.3) equals 1.1272

Offspring control, only females help. When helping is under offspring control and only females help, and

from equations (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations

are1275

dp

dτ
=Gp

f1σ1,♀
vᵀu

ωO1♀,O1♀
(
−C +ρO1♀,O1♀,O2 B O,F

)
, (S6.2.4a)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DO,F. (S6.2.4b)

Maternal control, both sexes help. When helping is under maternal control and both sexes help, and from

equations (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations are

dp

dτ
=Gp

f1

vᵀu
ωM ,O1

(−C +ρM ,O1,O2 B M,B)
, (S6.2.5a)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DM,B. (S6.2.5b)

For the particular case of unbiased sex proportions in both broods (i.e., σ1,♀ = σ1,♂ = σ2,♀ = σ2,♂ = 1/2)1278

using Fig. S7 and (S3.3.7), equations (S6.2.5) further simplify for both diploids and haplodiploids to

dp

dτ
=Gp

f1

vᵀu
u♀

1

2

 ∑
`∈{♀,♂}

r•(M),◦(O1`)v`

(−C +B M,B)
(S6.2.6a)

dz

dτ
=Gz

1

vᵀu
u♀

1

2

 ∑
`∈{♀,♂}

r•(M),◦(O2`)v`

 d f2

dz
DM,B. (S6.2.6b)

For diploids, each of the sums over ` in parentheses in equations (S6.2.6) equals 1.

Maternal control, only females help. When helping is under maternal control and only females help, and1281

from equations (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations

are

dp

dτ
=Gp

f1σ1,♀
vᵀu

ωM ,O1♀
(
−C +ρM ,O1♀,O2 B M,F

)
(S6.2.7a)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DM,F. (S6.2.7b)
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Shared control, both sexes help. When helping is under shared control and both sexes help, and from equa-1284

tions (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations are

dx

dτ
=Gx

f1

vᵀu
ωM ,O1

∂p

∂x
(x, y)

(−C +ρM ,O1,O2 B S,B)
(S6.2.8a)

dy

dτ
=Gy

f1

vᵀu
ωO1,O1

∂p

∂y
(x, y)

(−C +ρO1,O1,O2 B S,B)
(S6.2.8b)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DS,B. (S6.2.8c)

For the particular case of unbiased sex proportions in both broods (i.e., σ1,♀ = σ1,♂ = σ2,♀ = σ2,♂ = 1/2)

using Fig. S7, (S3.3.7), and (S3.3.4), equations (S6.2.8) further simplify for both diploids and haplodiploids to1287

dx

dτ
=Gx

f1

vᵀu
u♀

1

2

 ∑
`∈{♀,♂}

r•(M),◦(O1`)v`

 ∂p

∂x
(x, y)

(−C +B S,B)
(S6.2.9a)

dy

dτ
=Gy

f1

vᵀu

1

2

 ∑
`∈{♀,♂}

u`v`

 ∂p

∂y
(x, y)

(
−C + 1

2
B S,B

)
(S6.2.9b)

dz

dτ
=Gz

1

vᵀu
u♀

1

2

 ∑
`∈{♀,♂}

r•(M),◦(O2`)v`

 d f2

dz
DS,B. (S6.2.9c)

For diploids, each of the sums over ` in parentheses in equations (S6.2.9) equals 1.

Shared control, only females help. When helping is under shared control and only females help, and from

equations (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations are1290

dx

dτ
=Gx

f1σ1,♀
vᵀu

ωM ,O1♀
∂p

∂x
(x, y)

(
−C +ρM ,O1♀,O2 B S,F

)
(S6.2.10a)

dy

dτ
=Gy

f1σ1,♀
vᵀu

ωO1♀,O1♀
∂p

∂y
(x, y)

(
−C +ρO1♀,O1♀,O2 B S,F

)
(S6.2.10b)

dz

dτ
=Gz

1

vᵀu
ωM ,O2

d f2

dz
DS,F. (S6.2.10c)
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7 Specific functional forms

In this section, we specify the functional forms for the vital rates composing late productivity Π2(h, z) (Vital

rates composing late productivity; section 7.1) and for the joint phenotype p(x, y) for helping under shared1293

control (Joint helping phenotype; section 7.2) that we use to illustrate our results in the main text.

7.1 Vital rates composing late productivity

We consider the following effects of helping and of reproductive effort. We let helpers increase only the mated1296

pair survival sM ( f2,h). In turn, reproductive effort increases the late fertility f2(z) and decreases only the mated

pair survival sM ( f2,h). We let second-brood survival s2( f2,h) be constant. Specifically, we use the following

functional forms for the vital rates composing late productivity:1299

f2(z) = f0zα, (S7.1.1a)

sM ( f2,h) = sM (h)

(
1− f2

f2(h)

)
, (S7.1.1b)

s2( f2,h) = s2, (S7.1.1c)

where s2 denotes a real-valued constant in the interval (0,1], sM (h) and f2(h) are positive increasing functions

of h, with sM (h̄) ≤ 1, and where the domain S = SM × [0, h̄] of sM (see (S1.4.5a)) is given by

S =
{

( f2,h) ∈R∗
+× [0, h̄] : f2 < f2(h)

}
,

so that the image of sM is the interval (0,1). Thus, for a given h, sM ( f2,h) is a linear function of f2 with negative1302

slope equal to −sM (h)/ f2(h) and intercept equal to sM (h). It follows that, for a given h, sM (h) is the maximum

mated pair survival that can be achieved (as late fertility f2 → 0) and f2(h) is the maximum late fertility that

can be achieved with a positive mated pair survival (as sM → 0). Eq. (S7.1.1b) thus specifies the simplest kind1305

of trade-off between sM ( f2,h) and f2: a linear trade-off.

Late productivity is given by the product of the three vital rates, hence

Π2( f2,h) = sM ( f2,h) f2s2. (S7.1.2)

The benefit of helping is then1308

B = ∂Π2

∂h
=

[
dsM (h)

dh

(
1− f2

f2(h)

)
+ sM (h)

f2

f2
2

(h)

d f2(h)

dh

]
f2s2, (S7.1.3)

which is positive since sM (h) and f2(h) are increasing in h.

The marginal productivity of late fertility is given by

D = ∂Π2

∂ f2
= s2sM (h)

(
1− 2 f2

f2(h)

)
. (S7.1.4)

D has a single sign change from positive to negative as f2 increases. This happens at the optimal late fertility1311

rate

f ∗
2 (h) = f2(h)

2
, (S7.1.5)
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obtained at an optimal level of reproductive effort equal to

z∗(h) =
(

f2(h)

2 f0

)1/α

. (S7.1.6)

Hence, for each value of h, the optimal late fertility is half the maximum late fertility. As f2(h) is increasing in1314

h, so is f ∗
2 (h). This is to be expected as there is synergy of optimal reproductive effort on helping, since

∂Π2

∂h∂ f2

∣∣∣∣
f2= f ∗

2

= s2sM (h)
1

f2(h)

d f2(h)

dh
> 0

holds. Further note that s∗M (h) = sM ( f ∗
2 ,h) = sM (h)/2.

We have assumed that f2(h) is strictly increasing. Suppose for a moment that f2(h) = f̄2, where f̄2 is a1317

constant. This is an example where the resulting late productivity functionΠ2 is multiplicatively separable (cf.

equation (S5.4.9)). Hence, f ∗
2 = f̄2 is independent of h and there is not synergy of optimal reproductive effort

on helping, as1320

∂Π2

∂h∂ f2

∣∣∣∣
f2= f ∗

2

= 0.

To complete the specification of the vital rates composing late productivity, we use the functions

sM (h) = sM +
(
sM − sM

) h

h̄
, (S7.1.7a)

f2(h) = f2 +
(

f2 − f2

) h

h̄
, (S7.1.7b)

where the constant sM ∈ (0,1) gives the smallest possible intercept for mated pair survival attained at h = 0, the

constant sM ∈ [sM ,1) gives the largest possible intercept for mated pair survival attained at h = h̄, the constant1323

f2 ∈R∗+ gives the smallest possible value of f2(h) attained at h = 0, and the constant f2 ∈ [ f2,∞) gives the largest

possible value of f2(h) attained at h = h̄ (the resulting sM ( f2,h) with the parameter values used is plotted in

Fig. S11).1326

7.2 Joint helping phenotype

Here we specify the function for the joint helping phenotype p(x, y) for model cases of shared control. We

suppose that maternal influence x and offspring resistance y engage in a contest to achieve the expression of1329

the helping phenotype p. We consider two different kinds of contests. First, we consider simultaneous con-

tests, where maternal influence x and offspring resistance y contest simultaneously to determine the helping

probability. For this kind of contest, we assume that the helping probability is given by the probability that the1332

mother wins an imperfectly discriminating contest within the class of contest success functions proposed and

axiomatized by Blavatskyy [34]. Specifically, we assume

p(x, y) = gM(x;χ)

1+ gM(x;χ)+ gO(y ;ψ)
, (S7.2.1)

where gM(x;χ) and gO(y ;ψ) are “impact functions” to be specified below, with parameters χ > 0 and ψ > 01335

measuring the “power” of mother and offspring, respectively.
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Figure S11: Helping-fertility synergy as trade-off alleviation. Analogous plot to Fig. 3, but here the scale is

linear. Mated pair survival decreases with late fertility due to the assumed trade-off (blue lines; linear trade-

off in linear scale). Late productivity Π2 is constant along each of its indifference curves (gray). Mated pair

survival at an optimal late fertility occurs when a blue line is tangent to a gray line (where ∂Π2/∂ f2 = 0 is

equivalent to ε f2 (sM )+ ε f2 (s2) =−1; see also [41]). Mated pair survival at optimal late fertility increases as the

number of helpers increases (i.e., the red line has positive slope), meaning that helpers alleviate the trade-off

(i.e., the inequalities in (S5.4.3) hold). Consequently, helping-fertility synergy occurs and the benefit of helping

increases with increasing optimal late fertility. Functional forms and parameter values are as in Fig. 2.
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Second, we also consider sequential contests, where the mother acts first (engaging in a contest “against

nature”; e.g., secreting molecules that alter offspring development) and the offspring acts second (e.g., by sub-1338

sequently readjusting its own development). For these contests we assume the following general form:

p(x, y) = gM(x;χ)

1+ gM(x;χ)

(
1− gO(y ;ψ)

1+ gO(y ;ψ)

)
= gM(x;χ)

1+ gM(x;χ)+ gO(y ;ψ)+ gM(x;χ)gO(y ;ψ)
(S7.2.2)

for impact functions gM(x;χ) and gO(y ;ψ).

We assume that the impact functions gM(x;χ) and gO(y ;ψ) satisfy the following properties:1341

1. gM(x;χ) and gO(y ;ψ) are non-negative strictly increasing functions gi : R+ →R+, i ∈ {M,O}. This can be

interpreted as the impact functions measuring the absolute effort devoted to the contest.

2. gM(x;χ) and gO(y ;ψ) are strictly increasing in their parameters, that is ∂gM(x;χ)/∂χ> 0 and ∂gM(x;ψ)/∂ψ>1344

0. This can be interpreted as power increasing the ability of the effort to succeed in the contest.

3. gM(0;χ) = 0. This can be interpreted as stating that without maternal influence, the mother devotes no

effort to contest offspring helping.1347

It follows that p(x, y) satisfies:

1. p(x, y) ∈ [0,1] for all x ≥ 0, y ≥ 0 (i.e., the helping probability is well defined).

2. p(x, y) is strictly increasing in x and strictly decreasing in y (i.e., maternal influence and offspring resis-1350

tance affect the helping probability as required by (S1.2.3)).

3. p(0, y) = 0 (i.e., there is no helping in the absence of maternal influence).

4. For given x ≥ 0 and y ≥ 0, p(x, y) is strictly increasing in χ and strictly decreasing in ψ (i.e., the “power”1353

of maternal influence can be increased by increasing χ and the “power” of offspring resistance can be

increased by increasing ψ).

It remains to specify the impact function. We consider an exponential function of the kind1356

gM(x;χ) = eχx −1, (S7.2.3a)

gO(y ;ψ) = eψy −1, (S7.2.3b)

which satisfies the required properties and has been used in contest models [51] (we add the −1 in the expo-

nential impact function to satisfy gM(0;χ) = 0). The resulting joint phenotype is illustrated in Fig. S12.
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Figure S12: Joint helping phenotype. The helping probability p(x, y) under (A) sequential or (B) simultaneous

contests. Parameter values are as in Fig. 2; in particular, mother and offspring have the same power in both

panels (χ=ψ= 1).

8 Specification of Fig. 2, and additional figures1359

The specification of Fig. 2 is the following. The genetic system is diploid, both sexes help, and the determina-

tion of the joint helping phenotype is sequential. Functions:

f2(z) = f0zα, (S8.0.1a)

sM ( f2,h) =
(

sM +
(
sM − sM

) h

h̄

)1− f2

f2 +
(

f2 − f2

)
h
h̄

 , (S8.0.1b)

p(x, y) = e−χx−ψy (
eχx −1

)
, (S8.0.1c)

Gζ =Gζ

(
1−e−βζ

)
for ζ ∈ {

x, y
}

. (S8.0.1d)

Parameter values: f0 = 1,α= 1, sM = 0.2, sM = 1, f1 = 8, f2 = 36, f2 = 72, s1 = s2 = 0.1,χ=ψ= 1,σ1♀ =σ2♀ = 0.5,1362

Gx = Gy = 1, and β = 100. Traits are genetically uncorrelated: Gx y = Gxz = Gy z = 0. Initial conditions for

z(τ) = (x(τ), y(τ), z(τ))ᵀ are x(0) = y(0) = 10−5 and z(0) = z∗(0). For Fig. 2A-E, z is constant. For Fig. 2F-J, z is

equal to z∗(h).1365

Promoters of conflict dissolution are described in Fig. S13. Conflict dissolution in haplodiploids is shown

in Fig. S14. Promoters of conflict dissolution in haplodiploids are described in Fig. S15. Conflict dissolution

with low genetic variance for reproductive effort is shown in Fig. S16. In all cases, Gz follows the functional1368

form given in eq. (S8.0.1d) with β= 100.
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Figure S13: Promoters of conflict dissolution. Resistance wins (trajectory ending at the purple circle) or con-

flict dissolution occurs (trajectory ending at yellow circle), respectively for (A) low or high genetic variance in

reproductive effort, (B) low or high genetic variance in maternal influence, (C) low or high maternal power, and

(D) sequential or simultaneous determination of the joint helping phenotype. The genetic system is diploid

and both sexes help. Functional forms and parameter values are as in Fig. 2 except as follows. For A, Gz = 225

for low genetic variance of z and Gz = 250 for high genetic variance of z. For B, Gx = 0.9 for low genetic vari-

ance of x and Gx = 1 for high genetic variance of x (and Gz = 250 for both). For C, χ = 0.9 for low maternal

power and χ= 1 for high maternal power (and Gz = 250 for both). For D, sequential contest and simultaneous

contest (and Gz = 225 for both).
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Figure S14: Conflict dissolution via maternal reproductive specialization (evolutionary model) in hap-

lodiploids. Analogous plots to Fig. 2. Same parameter values except that here the genetic system is hap-

lodiploid, only females help, f2 = 16, and f2 = 40.

72



A B C D

Helping probability, p

High 
Low

genetic variance
for reprod. effort

High 
Low

genetic variance
for mat. influence

High 
Low

maternal power Simultaneous
Sequential

No helping Conflict Voluntary helping

contest

La
te

 fe
rti

lit
y, 

f 2

f2*

Figure S15: Promoters of conflict dissolution in haplodiploids. Analogous plots to Fig. S13 except that here the

genetic system is haplodiploid, only females help, and parameter values are as in Fig. S14 with the following

genetic variances. For A, Gz = 70 for low genetic variance of z and Gz = 80 for high genetic variance of z. For

B, Gx = 0.9 for low genetic variance of x and Gx = 1 for high genetic variance of x (and Gz = 80 for both). For

C, χ= 0.9 for low maternal power and χ= 1 for high maternal power (and Gz = 80 for both). For D, sequential

contest and simultaneous contest (and Gz = 70 for both).
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Figure S16: Conflict dissolution with low genetic variance for reproductive effort. The genetic system is hap-

lodiploid and only females help. Analogous plots to Fig. S14F,H,I,J. Same parameter values except that here

f1 = 6, f2 = 12, f2 = 60, and Gx =Gy =Gz = 1.

73



References

[33] Amir, R. (2005). Supermodularity and complementarity in economics: an elementary survey. South. Econ.1371

J., 71:636–660.

[34] Blavatskyy, P. R. (2010). Contest success function with the possibility of a draw: axiomatization. J. Math.

Econ., 46:267–276.1374

[35] Bourke, A. F. and Franks, N. R. (1995). Social evolution in ants. Princeton University Press.

[36] Brown, S. P. and Taylor, P. D. (2010). Joint evolution of multiple social traits: a kin selection analysis. Proc.

R. Soc. B, 277(1680):415–422.1377

[37] Bulmer, M. (1994). Theoretical Evolutionary Ecology. Sinauer, Sunderland, MA, USA.

[38] Caswell, H. (1977). A general formula for the sensitivity of population growth rate to changes in life history

parameters. Theor. Popul. Biol., 14:215–230.1380

[39] Caswell, H. (2001). Matrix Population Models. Sinauer, 2nd edition.

[40] Champagnat, N. and Méléard, S. (2011). Polymorphic evolution sequence and evolutionary branching.

Probab. Theory Relat. Fields, 151:45–94.1383

[41] Charnov, E. L. (1997). Trade-off-invariant rules for evolutionarily stable life histories. Nature, 387:393–394.

[42] Crozier, R. H. and Pamilo, P. (1996). Evolution of Social Insect Colonies: Sex Allocation and Kin Selection.

Oxford University Press, Oxford, UK.1386

[43] Davies, N. G., Ross, L., and Gardner, A. (2016). The ecology of sex explains patterns of helping in arthropod

societies. Ecol. Lett., 19:862–872.

[44] Dieckmann, U. and Law, R. (1996). The dynamical theory of coevolution: a derivation from stochastic1389

ecological processes. Journal of Mathematical Biology, 34(5):579–612.

[45] Durinx, M., (Hans) Metz, J. A. J., and Meszéna, G. (2008). Adaptive dynamics for physiologically structured

population models. Journal of Mathematical Biology, 56(5):673–742.1392

[46] Frank, S. A. (1998). Foundations of social evolution. Princeton University Press.

[47] Gardner, A. and Ross, L. (2013). Haplodiploidy, sex-ratio adjustment, and eusociality. Am. Nat.,

181(3):E60–E67.1395

[48] Hamilton, W. D. (1964). The genetical evolution of social behaviour I and II. J. Theor. Biol., 7:1–52.

[49] Hamilton, W. D. (1972). Altruism and related phenomena, mainly in social insects. Ann. Rev. Ecol. Sys.,

3(1):193–232.1398

[50] Horn, R. A. and Johnson, C. R. (2013). Matrix Analysis. Cambridge Univ. Press, New York, NY, USA, 2nd

edition.

74



[51] Jia, H., Skaperdas, S., and Vaidya, S. (2013). Contest functions: theoretical foundations and issues in1401

estimation. Int. J. Ind. Organ., 31:211–222.

[52] Lehmann, L., Mullon, C., Akçay, E., and Van Cleve, J. (2016). Invasion fitness, inclusive fitness, and repro-

ductive numbers in heterogeneous populations. Evolution, 70:1689–1702.1404

[53] Metz, J. A. J. and de Kovel, C. G. F. (2013). The canonical equation of adaptive dynamics for mendelian

diploids and haplo-diploids. Interface Focus, 3:20130025.

[54] Otto, S. P. and Day, T. (2007). A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution.1407

Princeton Univ. Press.

[55] Pamilo, P. (1991). Evolution of colony characteristics in social insects. i. sex allocation. Am. Nat., 137(1):83–

107.1410

[56] Pamilo, P. and Crozier, R. H. (1982). Measuring genetic relatedness in natural populations: methodology.

Theor. Popul. Biol., 21:171–193.

[57] Price, G. (1970). Selection and covariance. Nature, 227:520–521.1413

[58] Priklopil, T. and Lehmann, L. (2020). Invasion implies substitution in ecological communities with class-

structured populations. Theor. Popul. Biol., 134:36–52.

[59] Queller, D. C. (2014). Joint phenotypes, evolutionary conflict and the fundamental theorem of natural1416

selection. Phil. Trans. R. Soc. B, 369(1642):20130423.

[60] Quiñones, A. and Pen, I. (2017). A unified model of Hymenopteran preadaptations that trigger the evolu-

tionary transition to eusociality. Nat. Comm., 8:15920.1419

[61] Ross, L., Gardner, A., Hardy, N., and West, S. A. (2013). Ecology, not the genetics of sex determination,

determines who helps in eusocial populations. Curr. Biol., 23:2383–2387.

[62] Rousset, F. (2004). Genetic structure and selection in subdivided populations. Princeton University Press,1422

Princeton, NJ.

[63] Taylor, P. D. (1988). Inclusive fitness models with two sexes. Theor. Popul. Biol., 34(2):145–168.

[64] West, S. A., Gardner, A., and Griffin, A. S. (2006). Altruism. Curr. Biol.1425

[65] Wild, G. and Traulsen, A. (2007). The different limits of weak selection and the evolutionary dynamics of

finite populations. J. Theor. Biol., 247:382–390.

75


	conflict-dissolution
	SI
	Outline
	Evolutionary model set-up
	Basic assumptions and variables
	Transmission and helping probabilities
	Expected number of helpers
	Assumptions on vital rates
	Effective fertility
	Productivity

	Selection gradients
	Resident-mutant population dynamics
	Resident population dynamics and resident equilibrium
	Invasion fitness
	Selection gradient (generic form)
	Neutral mutant submatrix, Jmut
	Reproductive values and stable distribution
	Selection gradient (generic, simplified form)
	Selection gradient of traits affecting helping
	Derivation of the general expression
	Derivation for each model case
	Summary

	Selection gradient of reproductive effort

	Inclusive-fitness effects
	Social classes, actors, and recipients
	Reproductive worth
	Relatedness
	Probability that an actor is mutant and of a given sex
	Probability that a recipient is of a given sex
	Structure coefficients in terms of reproductive worth

	Relative reproductive worth
	Individual cost and benefit of helping
	Inclusive-fitness effect for a trait affecting helping and Hamilton's rule
	Inclusive-fitness effect for reproductive effort

	Conflict dissolution and benefit-cost ratio zones
	Benefit-cost ratio zones considering the interest of a single party
	Benefit-cost ratio zones simultaneously considering the interest of mother and offspring
	Conflict dissolution

	Evolutionary synergy and trade-off alleviation
	Selection gradient of reproductive effort in terms of elasticities
	Synergy of reproductive effort on helping and vice-versa
	Synergy of reproductive effort on helping as late-fertility effects on benefit
	Synergy of helping on reproductive effort as helper effects on marginal productivity

	Synergy as supermodularity of late productivity
	Synergy as trade-off alleviation

	Evolutionary dynamics
	Canonical equation
	Resulting evolutionary dynamic equations when traits are genetically uncorrelated

	Specific functional forms
	Vital rates composing late productivity
	Joint helping phenotype

	Specification of Fig. 2, and additional figures


