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Major evolutionary transitions have produced higher-level individuals consti-
tuting new levels of adaptation with extensive effects on the history of life. How
3 such transitions occur remains an outstanding question. We show that a ma-
jor transition can happen from ancestral exploitation triggering specialization
that eventually dissolves conflict. Specifically, maternal manipulation of off-
6 spring help enables the mother to increase her fertility effort, thereby shifting
a parent-offspring conflict over helping to parent-offspring agreement. This
process of conflict dissolution requires that helpers alleviate maternal life-
9 history trade-offs, and results in reproductive division of labor, high queen
fertility, and honest queen signaling suppressing worker reproduction, thus
exceptionally recovering diverse features of eusociality. Our results explain

12 how a major evolutionary transition can happen from ancestral conflict.
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Major transitions in individuality from ancestral non-clonal groups (e.g., from prokaryotes
to eukaryotes, from solitary living to eusociality, and from multicellular organisms to inter-
specific mutualisms) require a substantial decrease in within-group conflict (/). Low conflict
is currently sought with factors facilitating cooperation (notably, high relatedness), repressing
competition (e.g., through policing or punishment), or aligning group members’ interests (e.g.,
through concomitant reproduction of group members) (7). Yet, a key question is how the evo-
lutionary switch from conflict to interest alignment can occur (2).

Here we report a process that dissolves conflict, that is, whereby conflict evolves to interest
alignment, and that yields a transition to eusociality. In this process, (i) the mother manipulates
offspring to become helpers; (i1) while offspring evolve resistance to manipulation, the mother
uses available help to become more fertile; (ii1) increased maternal fertility increases the benefit
of helping to the point of rendering helping voluntary (Fig. 1A,B). To show how this process
can occur, we formulate a game theory model and an evolutionary model.

Consider a sequential game between a mother (M) and a female offspring (O) (Fig. 1C).
First, M either manipulates O (e.g., behaviorally via differential food provisioning (3) or phys-
iologically with hormones (4) or pheromones (5)) or not. Second, if M manipulates O, then
O either resists manipulation or not. If O does not resist, then O helps M produce an extra
number B of daughters, at a cost C' to herself. If M is related to each daughter by r,;, and
if sisters are related by r, then M gets an “inclusive-fitness payoft” of ry, B — r),C while O
gets B — (. Otherwise, if M does not manipulate or if O resists, O does not pay any cost
and no extra daughters are produced, yielding payoffs of zero to both players. Under conflict
(1 < B/C < 1/r), selection favors resistance and manipulation does not yield helping—the
game has two subgame perfect equilibria, one with resistance and the other without manipula-
tion.

Consider now an extended game where, after O moves, M can choose (e.g., plastically (9))
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Figure 1: Conflict dissolution. (A,B) Helping is (i) disfavored by mother and offspring if the
benefit-cost ratio B/C satisfies B/C < 1/py (“no helping” zone); (ii) favored by mother and
offspring if B/C' > 1/po (“voluntary helping” zone); or (iii) favored by mother and disfavored
by offspring if 1/py; < B/C < 1/po (“conflict” zone). Conflict dissolution occurs when (A)
B/C starts in the conflict zone and (B) ends in the voluntary helping zone. Helping is favored
by actors A when psB — C' > 0 (a Hamilton’s rule; (6)), where C' is the cost to helpers, B is
the benefit to help recipients, and p4 is the “relative reproductive worth” of help recipients for
actors A relative to helpers, which generalizes life-for-life relatedness (7) to allow helpers and
recipients of both sexes (if all offspring are female, py; = 7y /ry = 1 and po = /1 = 1) (8).
(C,D) Sequential games modeling conflict and conflict dissolution via maternal reproductive
specialization. (C) Without specialization, conflict yields equilibria without helping (shaded);
(D) with specialization, conflict no longer occurs if B, /C > 1/po, yielding a unique equilib-
rium with voluntary helping (shaded).
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between specializing into reproduction or not (Fig. 1D). If O resists, M pays a cost K for
specializing due to a life-history trade-off. If O does not resist, M produces an extra number of
daughters B at no cost provided the helper alleviates the trade-off. If helping and specialization
are synergistic enough that B, /C' > 1/r, there is no conflict with specialization although there
is without. Thus, manipulation and specialization yield helping: the extended game has a unique
subgame perfect equilibrium with manipulation, specialization, and no resistance. This shows
that if mothers can use offspring help to increase the benefit sufficiently, the conflict can be
dissolved.

We now show, using an evolutionary model, that such evolution of the benefit can occur. The
model is class-structured with explicit population and mutant-invasion dynamics, which allows
us to derive rather than assume inclusive-fitness payoffs (the model is fully described in (8)).
We consider a large population with a fixed number of nesting sites and a monogamous life
cycle with two offspring broods. The genetic system is diploid or haplodiploid, and either both
sexes or only females help, which covers the spectrum of known eusocial taxa (/0). A mated
pair produces f; first-brood offspring and with probability s,; survives to old age to produce
f2 second-brood offspring. Each first-brood offspring of the helper sex becomes a helper with
probability p or disperses; hence, the number of helpers h of a mated pair is proportional to
p. All second-brood offspring disperse. Dispersing first-brood offspring (resp. second-brood
offspring) survive dispersal with probability s; (resp. s3). Surviving individuals mate randomly
once and start a nest if nesting sites are available. We assume that (i) f; increases with maternal
reproductive effort z (e.g., number of ovarioles), (i1) there is a trade-off between survival and
fertility, so that s, or s5 decreases with f5, and (iii) helpers increase mated-pair or second-brood
survival, so that s); or s, increases with A. A mated pair’s expected number of reproductive
first- or second-brood offspring is given by I1; = (f; — h)s; and Iy = s); fos9, respectively.

We study the co-evolutionary dynamics of the offspring helping probability p and the maternal
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reproductive effort z. We let p be under maternal, offspring, or shared control. Under shared
control, p is a joint phenotype (/) that increases with maternal influence x (e.g., pheromone
production) and decreases with offspring resistance y (e.g., receptor antagonist production).
Reproductive effort z is under maternal control.

If maternal influence and offspring resistance co-evolve under conflict while reproductive
effort is constant, resistance may win the ensuing arms race and eliminate helping in the long
run (Fig. 2A-E). This matches the standard expectation (/2). Alternatively, if reproductive ef-
fort co-evolves with influence and resistance, the benefit-cost ratio can move out of the conflict
zone (Fig. 2F-J). In this case, the arms race vanishes as manipulated helping becomes voluntary.
The outcome is eusociality where (i) helpers are maternally induced to help and not favored to
resist, and (i1) the mother has become highly fertile and reliant on helpers for her own or her
offspring’s survival. Moreover, ancestral manipulation becomes an honest signal (/3): the re-
sulting maternal influence alters the recipient’s phenotype in recipient’s interest (i.e., helpers
are induced to help, and they “want” to help); the signaler evolved to produce that effect (i.e.,
influence evolved to induce helping); and the recipient evolved to attend the signal (i.e., off-
spring evolved lack of resistance to influence). This process constitutes conflict dissolution via
maternal reproductive specialization, which generates eusociality with reproductive division of
labor, high queen fertility, and queen suppression of worker reproduction via an honest signal.

We now show that this conflict dissolution process requires that helpers alleviate the trade-
offs limiting maternal fertility. Each evolving trait  is favored by selection if and only if
its inclusive-fitness effect H, is positive (8). For helping, H, o psB — C, where C' =
—0I1; /Oh = s1, B = 0lly/0h, and p4 depends on relatedness, sex-specific reproductive val-
ues, and the stable sex distribution. For reproductive effort, ., o< 0Ily/0f,. Conflict occurs
when the mother favors helping (i.e., H,, > 0 with p under maternal control) while offspring

disfavor helping (i.e., H, < 0 with p under offspring control). Conflict dissolution occurs
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Figure 2: Conflict dissolution via maternal reproductive specialization (evolutionary model).
(A-E) Co-evolution of maternal influence = and offspring resistance y with constant reproduc-
tive effort z (i.e., the genetic variance of z, (G, is zero), where resistance wins the conflict. (A)
Starting from conflict, helping increases as maternal influence increases but resistance evolves
and helping is lost (circle). (B) Co-evolutionary trajectory of maternal influence and offspring
resistance (black). (C-E) Time series of: (C) the evolving traits, (D) the resulting helping proba-
bility and benefit-cost ratio, and (E) the vital rates. (F-J) Analogous plots but now reproductive
effort evolves as the mother chooses it optimally for the number of helpers she has (i.e., as if
GG, — 00) and resistance disappears. (F) Starting from conflict, helping increases as maternal
influence increases, and reproductive effort increases yielding voluntary helping (circle). (G)
Trajectories starting at conflict can converge to voluntary helping. (H) Resistance reversal. (I)
The benefit-cost ratio evolves and the Hamilton’s rule threshold from the helpers perspective
is crossed. (J) The mother becomes highly fertile and reliant on helpers for her own survival.
Functional forms and parameter values used are given in (8).
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when there is conflict at the start of the evolutionary process but mother and offspring favor
helping at the end (i.e., H,, > 0 with p both under maternal and offspring control). Hence,
conflict dissolution requires that selection for helping under offspring control increases with
evolutionary time 7, that is, d#H,/dr > 0 for p under offspring control, which is equiva-
lent to OH,/Opdp/dr + OH,/0zdz/dr > 0. Conflict dissolution via maternal reproductive
specialization occurs when 0H,/0zdz/dr > 0, and thus requires helping-fertility synergy
(0H,/0z > 0; (14)) as reproductive effort increases. Moreover, at an optimal fertility f; (im-
plicitly given by Olly/0fs|,—sr = 0), helping-fertility synergy is equivalent to helping and
fertility acting as strategic complements (i.e., 9°I1/0 f20h|s,—z: > 0), which in turn can be

written as

>0, (1
f2=13
where ex(Y) = (X/Y)0Y/0X = 0lnY/01In X is the elasticity of Y with respect to X (i.e.,

(e )

the percent change in Y caused by a marginal percent increase in X (/5)). From our assump-
tions, €y, (sy) < 0 or €,(s2) < 0, so inequality (1) states that helpers alleviate the trade-offs,
which is then required for conflict dissolution via maternal reproductive specialization (Fig. 3).

Conflict dissolution depends on the relative evolutionary speeds of the traits, as they de-
termine the size of the basin of attraction toward voluntary helping (/7). Conflict dissolution
is thus promoted by higher genetic variance in maternally-controlled traits and lower genetic
variance in offspring-controlled traits (Fig. S13A,B). The power mother and offspring have on
determining the joint phenotype (/8) also affects the evolutionary speed (but not the direc-
tion of selection) of influence and resistance (8). Hence, conflict dissolution is promoted by
relatively high maternal power (Fig. S13C). The evolutionary speed also depends on whether
mother and offspring contest the joint phenotype simultaneously (e.g., behaviorally, through
aggression (19, 20)) or sequentially (e.g., physiologically, where the mother alters offspring de-

velopment through nutrition or hormones transferred before eclosion or birth (3,4)) (8). Conflict

7



100

S
7))
©
=
P
=
Y 1071+
'© -
o === [1, indifference \
3 curve
IS Pair survival T
= === at optimal Mo
late fertility
1072 ——— T ———
100 101 h—»0 2468

Late fertility, f,

Figure 3: Helping-fertility synergy as trade-off alleviation. Mated pair survival decreases
with late fertility due to the assumed trade-off (blue lines; linear trade-off in log-log scale;
cf. Fig. S11). Mated pair survival at an optimal late fertility occurs when a blue line has the same
slope as a I, indifference curve (gray, where II, is constant), namely —1, since 0l /0f; = 0
is equivalent to €, (spr) + €f,(s2) = —1 (cf. (16)). In this example, mated pair survival at an
optimal late fertility increases as the number of helpers increases (i.e., the red line has posi-
tive slope), meaning that helpers alleviate the trade-off (i.e., (1) holds). Functional forms and
parameter values are as in Fig. 2.
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dissolution is promoted by simultaneous contests (Fig. S13D).

We have shown that maternal reproductive specialization can dissolve conflict and yield a
major transition. While conflict resolution refers to the conflict outcome even if conflict per-
sists (21) (thus, it is an equilibrium concept), we have defined conflict dissolution as the switch
from conflict to no conflict (thus, it is an out-of-equilibrium concept). By transforming ma-
nipulated helping into voluntary helping, conflict dissolution unifies classic hypotheses for the
origin of eusociality from voluntary (6) or manipulated (22) helping. On the one hand, disso-
lution makes evidence that queen pheromones are honest signals in extant taxa (5, 12, 23, 24)
consistent with manipulation at the origin of eusociality. On the other hand, dissolution re-
quires that Hamilton’s rule is eventually met from the offspring perspective, which is facilitated
by high relatedness. Thus, dissolution also makes evidence that eusociality originated exclu-
sively under lifetime monogamy (25) consistent with manipulation at the origin of eusociality.
The fact that dissolution has additional conditions (e.g., (1)) and occurs under restricted param-
eter combinations (Fig. S11) is in principle consistent with the patchy taxonomic distribution of
eusociality, including the absence of eusociality in vast numbers of species with high related-
ness (26). Moreover, dissolution helps explain the widespread occurrence of maternal influence
on workers across the diverse eusocial taxa, which seems more difficult to explain from ances-
tral voluntary helping.

Crucially, the process of conflict dissolution we identify requires that helpers alleviate trade-
offs limiting maternal fertility. Such trade-off alleviation is feasible across eusocial taxa—
indeed, it is thought to be key to explain queens’ extraordinary fertility and longevity (27). This
contrasts with previously reported conflict dissolution processes (17, 28), which did not yield
high maternal fertility and had more restrictive requirements, namely costly helping inefficiency
(17) or better help use by maternally neglected offspring (28).

Empirical inference of conflict dissolution may use its dependence on evolutionary his-
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tory. In particular, conflict relics may be indicative of conflict dissolution (28). For instance,
the complex chemical composition of honeybee queen mandibular pheromone (QMP; which
inhibits worker reproduction) suggests that it resulted from an arms race (29) that seemingly
halted since (i) worker reproduction follows the workers’ inclusive-fitness interests (23, 30),
(i1) QMP behaves as an honest signal (24, 317), and (iii)) QMP composition is seemingly similar
among related species (23, 32). By seemingly stemming from a halted arms race, QMP may be
a conflict relic suggesting conflict dissolution.

To conclude, our results offer a unified hypothesis for the origin of eusociality and diverse
features thereof, and suggest a reinterpretation of available evidence. More generally, con-
flict dissolution via analogous processes occurring during evolutionary, cultural, or behavioral

timescales may help understand how agreement arises.
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Outline

This Supplementary Information contains the details of our evolutionary model and is organized as follows.
First, in Evolutionary model set-up (section 1), we introduce assumptions, notions, and notation that will be
used when building the model. Second, in Selection gradients (section 2), we build the population dynamics
model that allows us to identify invasion fitness (i.e., the growth rate of a rare mutant subpopulation in a res-
ident population at equilibrium); this enables us to calculate the selection gradients which provide the direc-
tion of selection. We obtain a generic expression of the selection gradient from a general formula of eigenvalue
(here, invasion fitness) perturbation that writes the selection gradient in terms of reproductive value, stable
mutant distribution, and the local sensitivity of mutant vital rates to marginal changes in trait values. Using
the reproductive value and stable mutant distribution for our model, we obtain a generic yet simplified expres-
sion of the selection gradient for our model. We use this simplified expression to derive the selection gradient
of the evolving traits we study (helping probability and reproductive effort). Third, in Inclusive-fitness effects
(section 3), we show that the selection gradients of all traits can be written in terms of inclusive-fitness effects
for all the model cases we consider. Fourth, in Conflict dissolution and benefit-cost ratio zones (section 4), we
define conflict dissolution and show that a necessary condition for conflict dissolution via maternal reproduc-
tive specialization is that there is evolutionary synergy of reproductive effort on helping. Fifth, in Evolutionary
synergy and trade-off alleviation (section 5), we show that such synergy is equivalent to trade-off alleviation
by helpers if reproductive effort is optimal. Sixth, in Evolutionary dynamics (section 6), we postulate that the
evolutionary dynamics satisfy a form of the “canonical equation” of adaptive dynamics. This enables us to use
the derived selection gradients to write equations describing the evolutionary dynamics of the evolving traits.
Seventh, in Specific functional forms (section 7), we specify functions for the vital rates and the joint helping
probability which enables us to obtain numerical solutions for the evolutionary dynamics. Finally, in Specifi-
cation of Fig. 2, and additional figures (section 8), we give the specification of functional forms and parameter
values used to create the figures in the main text, and provide additional figures with results. Table S1 presents

a summary of our notation.



Table S1: Summary of notation.

Notation | Meaning
p Helping probability: probability that a first-brood offspring stays in the maternal nest and helps
X Maternal influence: maternal effort to induce first-brood offspring to become a helper
y Offspring resistance: offspring effort to resist the maternal influence
z Reproductive effort: maternal effort to produce second-brood offspring
Sa Offspring survival: probability that an offspring from brood a € {1, 2} survives dispersal
SM Mated pair survival: probability that a young mated pair becomes an old mated pair
fa Fertility: number of offspring produced a mated pair of age a € {1, 2}
Oar Brood sex proportion: fraction of sex-¢ offspring produced in brood a € {1,2}
qe.ik Transmission probability: probability that an offspring is of type i € {r,m} (resident or mutant)
given it is of sex-£ and its parents are of type k € {rm, mr} (resident mother and mutant father
or mutant mother and resident father)
h Expected number of helpers: expected number of helpers that an old mated pair has
Fareix | Effective fertility: expected number of surviving reproductive, sex-¢ offspring of type i produced by
an age-a mated pair of type k
Igae,ix | Productivity: probability that a young mated pair survives to age a times its effective fertility at that age
Ny i Density of unmated individuals: number of unmated individuals of genotype i and sex ¢
Ny Density of mated pairs: number of mated pairs of age a and type k
N Density of matings: number of matings of type k before density dependence
N Fixed number of nesting sites in the population
Nest availability: density dependent probability that a newly mated pair finds a nesting site
Invasion fitness: asymptotic growth rate of a rare mutant subpopulation in a resident
population at demographic equilibrium
S¢ Selection gradient of trait {
u Stable mutant distribution: asymptotic distribution of neutral mutants
\ Reproductive values: long-term contribution by neutral mutants to the population
G Genetic covariance matrix
t Ecological time
T Evolutionary time
B Marginal benefit of helping: marginal effect of helpers on late productivity
C Marginal cost of helping: marginal effect of helpers on early productivity
D Marginal productivity of late fertility: marginal effect of late fertility on late productivity
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1 Evolutionary model set-up

1.1 Basic assumptions and variables

Adaptive dynamics assumptions. We study the co-evolutionary dynamics of the helping probability p of
first-brood offspring and the reproductive effort z devoted to the production of second-brood offspring by a
mother. We do this by considering repeated invasion-fixation events of rare mutant alleles in a large popu-
lation of resident alleles [40, 44, 54, 58]. We make the standard assumptions that each trait is controlled by a
single locus, and that the effects of a mutation on trait values are marginally small and unbiased (i.e., a muta-
tion is equally likely to increase or decrease the trait value). Given the small phenotypic effect of mutations and
the large population size, a newly arisen mutation that is not neutral either becomes fixed or is eliminated. We
also assume a standard separation of timescales. Specifically, we assume that mutation events are rare enough
that natural selection either fixes or eliminates a non-neutral mutation before another mutation arises. The
repetition of this mutant invasion sequence leads to evolutionary change in the resident phenotype. Thus,
population dynamics occur in a fast “ecological” time scale ¢ (that we measure in discrete time) whereas evo-

lutionary change occurs in a slow “evolutionary” timescale 7 (that we measure in continuous time).

Model cases. We consider model cases that differ in three aspects. First, the genetic system (P, for “ploidy”)
can be either (i) diploid (P = D, in which case both sexes are diploid) or haplodiploid (P = HD, in which case fe-
males are diploid and males are haploid). Second, the individuals genetically controlling the helping behavior
(C, for “control”) can be either (i) offspring (C = O, for “offspring control”), (ii) the mother (C = M, for “mater-
nal control”), or (iii) both mother and offspring (C = S, for “shared control”). Third, the sex of helpers (G, for
“gender”) can be either (i) female and male (G = B, for “both sexes help”), or (ii) exclusively female (G = F, for
“only females help”). This yields twelve model cases (Fig. S1). For instance, in one model case the genetic sys-
tem is diploid, helping is under offspring control, and both sexes help (D-O-B), which is relevant to termites if
helping is under offspring control; in another model case, the genetic system is haplodiploid, helping is under
shared control, and only females help (HD-S-F), which is relevant to eusocial hymenoptera if helping is under
shared control. Although our focus is on model cases of shared control that allow us to study the evolution-
ary dynamics of parent-offspring conflict over helping, model cases of offspring control and maternal control

serve as stepping stones in the building and analysis of model cases of shared control.

Evolving traits. For the model cases where helping is under either offspring or maternal control, we con-
sider the coevolution of two traits: (i) the probability p € [0, 1] that a first-brood offspring stays at the nest and
becomes a helper, and (ii) the maternal reproductive effort z € [Rfrl. For all model cases, we assume that re-
productive effort z is exclusively under maternal control. Thus, when helping is under offspring or maternal
control, we follow the evolution of the phenotypic vector z = (p, z)T. For model cases where helping is under
shared control, we consider the coevolution of three traits: maternal influence x € R, offspring resistance

y € R4, and maternal reproductive effort z € R;. When considering helping under shared control, we assume

1Thr0ughout, R4 refers to the set of non-negative reals, that is, Ry = {x € R|x = 0}. Rfr refers to the set of positive reals, that is, [Ri =

{x eR|x>0}.
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Cases relevant to: Gall thrips Eusocial hymenoptera

Figure S1: Model cases we consider. Case relevance is based on Ross et al. [61] and Davies et al. [43].

that the helping probability p(x, y) is a function of maternal influence x and offspring resistance y (i.e., p(x, y)
is a “joint phenotype” between mother and offspring; 59). Thus, when helping is under shared control, we fol-
low the evolution of the phenotypic vector z = (x, y, z)T. For a given trait { (where { € { b, z} for model cases of
offspring and maternal control, and { € {x, b2 z} for model cases of shared control), we denote by {; the resident
trait value and by {y, the mutant trait value; similarly, we denote by z, = ({;)T the resident phenotypic vector
and by z, = ({)" the mutant phenotypic vector. By some abuse of notation, we also denote the resident trait

value by ¢ and the resident phenotypic vector by z. It is then understood that { = {; and z = z,.

Life cycle. We consider a finite but large population of individuals with a fixed number N of nesting sites.
Generations are overlapping, and the life cycle is lifetime monogamous with two offspring broods, as fol-
lows (Fig. S2). (i) In each nesting site, there is one singly mated female characterized by her genotype and
the genotype of the male she mated or is mating with: we refer to a mated female and her mate as a “mated
pair”. We let a index the age of a mated pair, so that a = 1 for a young mated pair and a = 2 for an old mated
pair. We let ¢ denote the sex of an individual, so ¢ = ¢ for a female and ¢ = & for a male. (ii) The female of
a young mated pair produces and provides care for a fixed number f; of first-brood offspring, a proportion
o1,¢ of which are of sex ¢. A first-brood offspring of sex ¢ either remains at the nest with probability p, to
become a non-reproductive helper, or disperses with probability 1 — p,. Each dispersed first-brood offspring
survives dispersal with probability s; to become an unmated reproductive. Thus, a young mated pair produces
Fi ¢ = fio1,¢(1—py)s; unmated reproductive offspring. (iii) A young mated pair either survives with probability
sy to become an old mated pair or dies with probability 1 — sys. (iv) The female of an old mated pair produces
anumber f, of second-brood offspring, a proportion o, , of which are of sex ¢. A second-brood offspring al-
ways disperses, and survives dispersal with probability s, to become an unmated reproductive. Thus, an old
mated pair produces F, ¢y = f>02 ¢ s, unmated reproductive offspring. We call F, , the age-specific sex-specific
effective fertility of a mated pair. Consequently, the expected number of sex-¢ unmated reproductives pro-
duced by a mated pair through first-brood offspring is I1; » = F; ¢, and the expected number of sex-¢ unmated
reproductives produced by a mated pair through second-brood offspring is I ¢ = sasF»,¢. We call 11, ¢ the age-
specific sex-specific productivity of a mated pair. (v) Old mated pairs die. (vi) Unmated reproductives mate

singly at random and establish nests subject to the availability of nesting sites, which is measured by a. Mated
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Figure S2: Resident life cycle. Unmated females and males mate once to become young mated pairs that may
survive to become old mated pairs. Each mated pair occupies a single nesting site, the number of which is
constant. The female of a young mated pair produces first-brood offspring and when the mating pair is old the
female produces second-brood offspring. Each ellipse corresponds to a “demographic class” of individuals
or of pairs of individuals. Here N; is the number of individuals of demographic class j, F,,¢ is the effective
fertility of a mated pair of age a through sex-¢ offspring, and @ measures the density dependent probability

that a newly mated pair finds a nesting site.

reproductives that fail to establish a nest die.

Genotypes. Consideration of mutant genotypes leads to a complete life cycle comprising ten classes of indi-
viduals or of pairs of individuals (Fig. S3). We let i index the genotype of unmated individuals. The genotype
i of an unmated individual can be either r for a resident or m for a mutant, where due to the assumption that
the mutant allele is rare, a mutant is heterozygous in diploids and in female haplodiploids, and hemizygous
in male haplodiploids. Similarly, we let k index the “type” of a mated pair, which comprises the genotype of
the female and the genotype of the male of the pair in that order. That is, the type k of a mated pair can be (i)
rr when the female and male are both residents, (ii) rm when the female is resident and the male is mutant,
or (iii) mr when the female is mutant and the male is resident. We do not need to consider the mated pair
type mm comprising a mutant female and a mutant male, as the frequency of such type is negligible when the
mutant allele is rare. For a mated pair of type k, we denote by @(k) the genotype of the female and by ¢ (k) the
genotype of the male in the pair, that is,

m ifk=mr
(k) = (S1.1.1a)

r ifk=rrork=rm,

and

m ifk=rm
d(k)= (S1.1.1b)

r if k=rror k=mr.
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Figure S3: Resident-mutant life cycle. There are ten demographic classes, of which four exclusively involve

resident genotypes and six involve mutant genotypes.

Dependence of vital rates on the evolving traits. We assume that early fertility f; and first-brood survival s;
are constants. In contrast, we assume that the mated pair’s survival sy, the late fertility f,, and the second-
brood survival s, depend on the individuals’ genotypes. Thus, the vital rates sy, f2, and s, are functions of
the evolving phenotype z. More specifically, we assume that the vital rates sy, f2, and s, are functions of the
expected number of helpers hj and the reproductive effort z; that an old mated pair of type k has. We express
hy in terms of genotypes in section 1.3 below. Regarding zj, since reproductive effort is always under maternal

control, the reproductive effort of an old mated pair of type k is
2k = ZQ(k)» (S1.1.2a)

which, via equation (S1.1.1a), equals z; (= z) if the female in the pair is resident or z, if she is mutant. With

our notational conventions, this implies that
Zn =% =2 (S1.1.2b)

always holds.

Brood sex proportions. As previously stated, we denote by o, ¢ the proportion of offspring of sex £ produced

by a mated pair of age a. The brood sex proportions satisfy

Y ogr=1Vace{l,2} (S1.1.3)
e{Q. o}

because each offspring is either a female or a male. In the following, we will also use the shorthand notation

04 =049, and refer to it as the sex proportion of brood a. Additionally, we will also write
o=
ol =(0490,) (S1.1.4)

for the vector collecting the sex proportions of brood a.
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Maximum number of helpers. We denote the maximum number helpers by /. For model cases where both

sexes help (G = B),
h=f. (S1.1.5a)

For model cases where only females help (G = F),

h:flUl. (Sl.l.Sb)

1.2 Transmission and helping probabilities

Transmission probability. We denote by ¢, ; ;. the probability that an offspring is of genotype i given that
it is of sex ¢ and that its parents are of type k. We refer to this conditional probability as the transmission
probability, and list its values in Fig. S4. Although the transmission probability depends on the genetic system

(diploid or haplodiploid), it invariably satisfies the following set of identities:

Gorir=1 V0 €{Q,T}, (S1.2.1a)

Jemr =0 VO e{Q,d}, (S1.2.1b)

Z qeix=1 YVl €{Q,Jd}and Yk € {rr,rm, mr}, (S1.2.1¢)
ie{r,m}

Y qrirx=1 VYie{r,m}and Vke {rm,mr}. (S1.2.1d)
{5}

Equations (S1.2.1a) and (S1.2.1b) state that all offspring of a resident mated pair (rr) are resident (r) regardless
of their sex. Equation (S1.2.1c) holds because an offspring is either resident or mutant, regardless of its sex and
the genotypes of its parents. Finally, (S1.2.1d) states that when parents have different genotypes (one being
resident, the other mutant), and for each possible genotype of the offspring, the transmission probability is a
probability distribution over the sexes of the offspring.
The ratio
g@mm

da ,m,mr
will naturally arise in our analysis. This ratio can be interpreted as a measure of transmission asymmetry

(S1.2.2a)

across sexes inherent to the genetic system, that is, a measure of how likely a mutant father is to transmit his
mutant allele to a daughter (the numerator of (S1.2.2a), ¢o m,m) compared to how likely a mutant mother is to
transmit her allele to a son (the denominator of (S1.2.2a), 45 mme)- It can be checked that the ratio (S1.2.2a)

simplifies to

1 fordiploids (G = D)
Qmrm _ (S1.2.2b)

99 mmr |2 for haplodiploids (G = HD)

Equation (51.2.2b) states that there is no transmission asymmetry across sexes in diploids, but that in hap-
lodiploids mutant fathers are twice as likely to transmit their mutant alleles to their daughters as mutant moth-
ers are to transmit their mutant alleles to their sons. We will see that such transmission asymmetry means that,
for diploids, a neutral mutation is asymptotically equally likely to occur in the female or the male of a mated
pair; in contrast, for haplodiploids, a neutral mutation is asymptotically twice as likely to occur in the female

rather than the male of a mated pair.
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Figure S4: Transmission probability. List of values for the conditional probability g; ¢ that an offspring is
of genotype i given that it is of sex £ and that its parents are of type k. Identities (S1.2.1c) and (S1.2.1d) are
highlighted in color.

Helping probability. We denote by p; x the probability that an offspring of sex ¢ and genotype i produced
by a mated pair of type k does not disperse and instead stays at the nest to become a helper. We refer to this
conditional probability as the helping probability and list its values in Fig. S5. The helping probability depends
on (i) whether both sexes or only females help and (ii) whether helping is under offspring, maternal, or shared

control. For model cases of shared control, we define the helping probability function

p:Ry xRy —[0,1]

(x, )= pl,y),

such that p(x, y) is the helping probability of an offspring when the mother exerts influence x and the offspring

exerts resistance y. We assume that p is smooth, increasing in x, and decreasing in y, so that

op

P o, (S1.2.3a)
ox

9

P <o (S1.2.3b)
ay

hold for all the domain of p(x,y). That is, an increase in maternal influence (resp. an increase in offspring

resistance) increases (resp. decreases) the probability that a first-brood offspring becomes a helper.

1.3 Expected number of helpers

Expected number of helpers of a mated pair of type k. As previously stated, the evolving phenotype z mod-
ulates the vital rates sy, f2, and sy because these vital rates are functions of the expected number of helpers
hy and of the reproductive effort z; that each old mated pair of type k has. We now derive an expression for i
in terms of individuals’ genotypes. We start by using the definitions of the transmission probability g, ; . and
the helping probability py,; i (section 1.2) to write an expression for the expected proportion of helpers of sex
¢ among the first-brood offspring of a mated pair of type k, py «, as

Pek = Z qe,i,kPe,i,k- (51.3.1)

ie{r,m}

10
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Figure S5: Helping probability. List of values for the helping probability py ; r for the model cases considered.

The proportion of helpers of either sex among the first-brood offspring of a mated pair of type k can then be

written as

pbr= Z O1,0P0,k = Z 01, Z qe,i,kPe,ik (81.3.2)
é(—:{Q,OZ} IE{Q,O”} i€fr,m}

from which the expected number of helpers hy is derived as

hi = fipk (S1.3.3a)

=fi )Y Ou Y GrikPeik- (S1.3.3b)
[E{Q,Oz} i€e{r,m}

Expected number of helpers of a resident mated pair. The expected number of helpers of a mated pair of
type1r (i.e., the expected number of helpers per nest in a resident population) will be important in our analysis.
We adopt a notational convention similar to the one we have adopted for the helping probability p, namely to
use h as (i) a generic variable referring to the expected number of helpers, (ii) as the value of such variable for
the specific case of a mated pair of type 11 (i.e., & = hy), and (iii) as a function of evolving traits whose output
is the expected number of helpers, to be specified below. With these conventions, the expected number of

helpers available to a mated pair of type 1t can be written as

hy=h (51.3.4a)

:fl Z 01,0 Z qe,ixrPe,irr
[e{Q,O”} ie{r,m}

=fi Y, oLePorm (S1.3.4b)
te{Q. o}

11
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where the first equality follows from expression (S1.3.3b) with k = rr, and the last one from identities (S1.2.1a)
and (S1.2.1b). By inspection of the values of the helping probability given in Fig. S5, and since 010 +0, » =1
(51.1.3) holds, expression (S1.3.4b) reduces to

hoe=h=h(p)=hp (S1.3.5a)
for model cases of offspring or maternal control, and to
hy=h=h(x,y) =hp(x,y) (S1.3.5b)

for model cases of shared control. Here, i = f1 for model cases where both sexes help (S1.1.5a) and h= fioy
for model cases where only females help (S1.1.5b). In expression (S1.3.5a) we have used the expected number

of helpers function
h:[0,1] — [0, /]
p— hp,
such that h(p) = hp, while h(x, y) in expression (S1.3.5b) refers to the function
hiRy xRy — [0, 1)
(x,y) — hp(x, ),

such that h(x, y) = hp(x, ).

1.4 Assumptions on vital rates

The process of conflict dissolution that we identify rests on three critical assumptions. First, we assume that
the late fertility of a mother can evolve (genetically or plastically). Second, we assume that mothers face life-
history trade-offs (i) between fertility and survival to old age; (ii) between fertility and survival of second-brood
offspring; or (iii) between fertility and both survival rates. Finally, we assume that such life-history trade-offs

can be alleviated by helpers. We now formalize each of these assumptions.

Late fertility of a mated pair of type k, f, x. We assume that the number of second-brood offspring produced

by a mated pair of type k, f,k, depends on the mother’s reproductive effort, zx = zo(x) (S1.1.2a), via

Fo ke = o2, (S1.4.1)
where
fo: R —RY
(51.4.2)
z— fo(2),
is a smooth function. Furthermore, we assume f5 is strictly increasing; that is,
d
STEA (S1.4.3)
dz

holds for all z € R} . Equations (S1.4.1) and (S1.4.3) respectively encapsulate the assumptions that mother’s late
fertility depends on the evolving mother’s reproductive effort zj, and that a larger reproductive effort implies

alarger late fertility f5 .

12
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Survival probabilities sy, . and s, . We assume that the survival probabilities sy . and s x can be written as
functions of both the late fertility, f, x, and the expected number of helpers, hy, of a mated pair of type k. More

explicitly, we let the survival probabilities be given by

sk = Sm(fo, 100 Bi) = sm(fa(2k), Be), (S1.4.4a)

So.k = S2(fo 1 hi) = s2(f2(21), hk), (S1.4.4b)
where the rightmost equalities follow from (S1.4.1), and where

sy Sy x [0, ] — (0,1)
(fZ, h) g SM(ﬁ) h)r

$2: 82 x [0, h] — (0,1]

(S1.4.5a)

(S1.4.5b)
(f2, h) = s2(fo, h),

are smooth functions decreasing in f22. In (S1.4.5), Spr and S, are subsets of R

We assume that either sy or s, is decreasing in f5, that s,

B
IM 5 or (S1.4.6a)

0f

g_z <0 (S1.4.6b)
holds for all f, and all # in the domains of these functions and where neither of the two derivatives is positive.
Inequalities (S1.4.6) encapsulate the idea that mothers face a life-history trade-off between fertility and sur-
vival: all else being equal, a greater investment in late fertility f, from the part of the mother negatively affects

at least one vital rate among sy and s,.

Finally, we assume that either sy; or s, is increasing in £, that is,

GSM

E >0or (S1.4.7a)
(382

— >0, S1.4.7b
oh = ( )

holds for all f> and all & in the domains of these functions and where neither of the two derivatives is negative.
Inequalities (S1.4.7) encapsulate the idea that helpers can increase the vital rates negatively affected by an

increase in the mother’s reproductive effort, thus potentially alleviating the trade-offs involved.

1.5 Effective fertility

The early effective fertility F; ¢,; i gives the expected number of offspring of sex ¢ and genotype i that success-
fully disperse and that are produced by a mated pair of age 1 and type k. The early effective fertility is given
by

Freik= 11010490,k = Pe,ik)st. (S1.5.1)

2The upper bound of the codomain of sy is open so that s M,ir < 1 and the resident equilibrium of the resident system is stable, as we
will show below. The lower bounds of the codomains of sp; and s are open so that, respectively, there are old mated pairs and second-

brood offspring can become reproductive.

13
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Indeed, a young mated pair produces a fixed number f; of first-brood offspring, a proportion o, , of which are
of sex £. Of these, a proportion ¢y ; i is of genotype i, of which a proportion (1 - py ; x)s1 both disperses and

survives dispersal. In particular, letting i =r, k = rt, and using identity (S1.2.1a), we find

Fronem = 101,01 = pe ) $1 (§1.5.2)

as an expression for the early effective fertility F; ., of a resident mated pair of type rr through offspring of
genotype r and sex ¢ (i.e., the early rate of production of offspring of sex ¢ by a resident mated pair in a resident
population).

An old mated pair of type k produces a number of offspring f i, a proportion o, ¢ of which are of sex ¢.
With probability g, ; x one of such offspring of sex ¢ is of genotype i, with probability one it disperses (as we
assume that all second-brood offspring disperse from their parental nest), and with probability s, i it survives
dispersal. It follows that the late effective fertility F» ¢ ; r (giving the expected number of individuals of sex ¢
and genotype i that successfully disperse and that are produced by a mated pair of age 2 and type k) is given

by
Foyik=f2,k020q0,ik52 k- (§1.5.3)

Similarly to early effective fertility, the late effective fertility of a resident mated pair in a resident population

evaluates to

Fz,é,r,rr = f2,rr02,€ $2,11- (S1.5.4)

1.6 Productivity

We will show that the selection gradient in our model can be conveniently written in terms of what we term
the age-specific and sex-specific productivity of a mated pair. The productivity I, ; ;. of a k-type mated pair
through offspring of sex ¢ and genotype i is the expected lifetime number of unmated reproductive offspring
of sex ¢ and genotype i produced by a mated pair of type k. The productivity of a k-type mated pair through
offspring of sex ¢ and genotype i is given by the sum of a young mated pair’s effective fertility and the old
mated pair’s effective fertility, the latter discounted by the probability sy, that a young mated pair survives to

old age. From this, we have
Upik=Freik+SmiFeik (81.6.1)

It will prove useful for our subsequent analysis to highlight the two summands of the previous expression with
more dedicated notation. We will then alternatively write the productivity of a k-type mated pair through

offspring of sex ¢ and genotype i as
ek =100,k + 12,0, 0 (S1.6.2)

where the first and second summands are respectively the early and late productivity of a mated pair of type k

through offspring of sex ¢ and genotype i. These are given by

Mgk =Freik = 4qe,ik01,e /11— Pe,ik)st, (S1.6.3a)

Mo 0,ik = SmkcFo0,ik = Ge,i k02,0 SM,k f2,k 52,k (51.6.3b)
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where the second equalities follow from substituting the expressions for early and late effective fertility (equa-
tions (S1.5.1) and (S1.5.3)) into (S1.6.1) and rearranging.

We define the (total) early and late productivity of a type-k mated pair as the sum of the productivities of
each age over both sexes (female and male) and both genotypes (resident and mutant) of offspring. We can
use previously established relationships between our variables to write down relatively simple expressions for

these two quantities. The early productivity of a type-k mated pair can be then written as:

M= Y Y Mgk (S1.6.4)
ge{Qyoﬂ}ie{r,m}
= Y Y qrikorei(l=peiKs (S1.6.5)
[e{g'o”}ie{r,m}
=fiss Y. oue Y. qrix(l—peip)
[e{Q,o”} ie{r,m}
=fist ) 01/( Y drik— Y Clz,i,kpz,i,k)
0€{Q,J"} ie{r,m} ie{r,m}
=fiss ), oue(l-pok) (S1.6.6)
2e{Q,d"}
=fisi| Y. o= Y, ouepek
2e{Q,3'} 0e{Q,d"}
= fis1(1—pg) (S1.6.7)
=(fi-hi) s, (S1.6.8)

where line (51.6.5) follows from substituting (S1.6.3a) into (S1.6.4); line (S1.6.6) follows from identities (S1.2.1c)
and (51.3.1); line (51.6.7) follows from identities (51.1.3) and (S1.3.2); and line (S1.6.8) uses (S1.3.3a) and rear-
ranges. Expression (51.6.8) makes it explicit that the early productivity of a k-type mated pair is equal to the
expected number of first-brood offspring that do not become helpers and instead disperse (f; — k) times the

probability that they survive dispersal (s;). To capture this in a general way, we define the early productivity

function
Hl : [OrfI] - |R+
(51.6.9)
h— (fl - h) S1,
such that ITy (k) = (fi — h) s1.
Similarly, the late productivity of a type-k mated pair can be written as:
Mae= Y Y Mok (S1.6.10)
0€(Q,5} i€{r,m}
= X ) 40ik02eSmMifokS2k (S1.6.11)
[E{Q,d‘} ie{r,m}
=SmkfokSak Y, 020 D doik
fE{Q,OZ} ie{r,m}
=smifokSak ), Oa¢ (S1.6.12)
0e{Q,3"}
= SMkf2,k82,k0 (S1.6.13)
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where line (S1.6.11) follows from substituting (S1.6.3b) into (S1.6.10); line (S1.6.12) follows from identity (S1.2.1c);
and line (51.6.13) follows from identity (S1.1.3).

The (total) productivity of a mated pair of type k is the sum of its early and late productivities, that is
Iy =1 + M k- (51.6.14)

Two further identities concerning productivities are worth pointing out. First, note that, by substituting

(S1.4.1) and (S1.4.4) into (S1.6.13), the late productivity of a mated pair of type k is given by
Ik = sm(f2(2x), he) f2(zx) s2(f2(2k), B
This motivates our introduction of the late productivity function

M :R* x [0, fi] — R}
(51.6.15)
(_fZ’ h) = sM(er h)ﬁsz(fZ) h))

such that IT>(f2, h) = sp(f2, h) f252(f2, h). The late productivity of a mated pair of type k can then be written as
Ik = T2 (f2,6 Bie)- (51.6.16)

Second, substituting equation (S1.6.1) into (S1.6.2) and by identity (S1.6.13) we find that the productivity

of a k-type mother through offspring of sex ¢ and genotype i (51.6.2) can be also written as
Mgk =qeik [0 fill = pei)s+02,M ] (§1.6.17)

In particular, and by setting i =r and k = rr in the previous expression, the productivity of a rr-type mother
through offspring of sex ¢ and type r (i.e., the productivity of a mother through offspring of sex ¢ in a resident

population) is given by

g e = qe e [Ul,lfl (1=per)s: + 02,€H2,rr]

=010 il = perm)s1+02elo 1, (51.6.18)

where the second equality follows from identity (S1.2.1a).
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2 Selection gradients

We now derive the selection gradients for our model. To do this, we proceed in nine steps. First, we build
a population dynamics model of a resident population and a rare mutant subpopulation (Resident-mutant
population dynamics; section 2.1). Second, we find the unique stable resident equilibrium where the mutant
is absent (Resident population dynamics and resident equilibrium; section 2.2). Third, we identify invasion
fitness, which is the growth rate of a rare mutant population around such resident equilibrium (Invasion fit-
ness; section 2.3). Fourth, we write a general expression for the selection gradient, which gives the direction
of selection in phenotypic space, by applying a general result on the sensitivity of the leading eigenvalue of
irreducible and nonnegative matrices [38, 39, 50, 54]. This expression gives the selection gradient in terms
of marginal effects of the mutant on vital rates weighted by reproductive values and the components of the
stable mutant distribution (Selection gradient (generic form); section 2.4). Fifth, we calculate the neutral mu-
tant submatrix required to obtain such reproductive values and stable mutant distribution (Neutral mutant
submatrix, J;,,; section 2.5). Sixth, we find the reproductive values and stable mutant distribution for our
model (Reproductive values and stable distribution; section 2.6). Seventh, using the particular form of the re-
productive values and the stable mutant distribution for our model, we obtain a simplified expression of the
selection gradient in terms of a mated pair’s productivity weighted by reproductive values and stable mutant
proportions of different classes (Selection gradient (generic, simplified form); section 2.7). Eighth, using such
simplified selection gradient, we obtain the selection gradient of traits affecting helping (Selection gradient of
traits affecting helping; section 2.8). Finally, we obtain the selection gradient of reproductive effort (Selection

gradient of reproductive effort; section 2.9).

2.1 Resident-mutant population dynamics

Having set up some of our general notation, we are ready to write the equations describing the population
dynamics of our model, which we let occur in discrete time.

Let Ny ; (t) denote the number of (dispersed) unmated reproductives of sex £ € {¢, 0"} and genotype i € {r,m}
at “ecological” time ¢, so that Ngyr(t), No m (1), Noz,r(t), and Noz, (D) represent, respectively, the number of
unmated resident females, mutant females, resident males, and mutant males at time ¢. Likewise, let N ;.(¢)
denote the number of mated pairs of age a € {1,2} and type k € {rr,rm, mr} at time ¢. The variables N, ; and
Ny for 0 €{Q,0}, i € {r,m}, a € {1,2}, and k € {rr,rm, mr} constitute the dynamic variables (ten in total) of the

population dynamics part of our model (Fig. S3). We collect these variables in the 10-dimensional vector
N(1) = , (S2.1.1)

concatenating the resident and the mutant population vectors, respectively given by
N (1) = (NQ,r(t)»Noﬂvr(t);Nl,rr(t)rNZ,rr(t))Tr (§2.1.2)
and

Nm(2) = (Ngym(t),Nd’m(t),Ner(t),lemr(t),Ngyrm(t),Ngymr(t))T. (82.1.3)
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We now write down the equations that allow us to project such variables from time ¢ to time ¢+ 1, and,
recursively, to any future time step.

Let
Ny (D) =NQ,9(k)(t)Noz,oz(k)(t) (S2.1.4)

denote the product of unmated females of genotype ¢ (k) and unmated males of genotype ' (k) (see definitions

(S1.1.1a) and (S1.1.1b)), which evaluates to

Nu() = No () Ng (1), (S2.1.5a)
Nim () = N, ()Ng . (8), (S2.1.5b)
Nmr(£) = Nom ()N L (2). (S2.1.5¢)

Assuming random mating, the number of matings at time ¢ giving rise to young mated pairs of type k is pro-

portional to NV (r). Hence,
Ny i(t+1) = aNE)N (D), (S2.1.6)

where a(N(?)) (an expression for which we derive in equation (S2.1.9) below) measures nesting site availabil-
ity and enforces the density-dependence condition that the total number of mated pairs (i.e., nests) in the

population is equal to the total number of nesting sites, N, that is,

> Y Ngr(t+1)=N. (S2.1.7)

ke{rr,rm,mr} a€{1,2}

Each young mated pair of type k becomes an old mated pair at the next time step with probability s, . Hence,
No i (£+1) = spp, N1 (7). (S2.1.8)

Substituting (S2.1.6) and (S2.1.8) into (52.1.7), @(N(#)) in (52.1.6) can be written in terms of our variables as

N- Zke{rr,rm,mr} sM,kNl,k(t)

a(N(2) = (82.1.9)
Zke{rr,rm,mr} Nk(t)
In turn, the number of dispersed unmated individuals of sex ¢ and genotype i at time ¢ + 1 is given by
Nei(t+D)= % 3, Nak®Farik (S2.1.10)

ke{rr,rm,mr} a€{1,2}
where F, ¢ ;  is the expected number of individuals of sex £ and genotype i that successfully disperse and that
are produced by a mated pair of age a and type k. The quantity F, ¢ ; . is the effective fertility defined in section
1.5 (see expressions (S1.5.1) and (51.5.3)).
Recursions (52.1.6), (52.1.8), and (52.1.10) describe the population dynamics of our model: recursion (52.1.6)
describes mating, recursion (52.1.8) describes mated pair survival, and recursion (S2.1.10) describes reproduc-

tion. It is convenient to write this set of equations in matrix notation as

N(z+1) = AN(DIN(1), (S2.1.11)
where the projection matrix
AL(N(2 A
A = | T "o, (2.1.12)
Amr(N(#))  Anm(N(2)
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comprises the submatrices

0 0 Fl,Q,r,rr FZ,Q,r,rr
0 0 F F.
Ar(N(1) = LOwm  “20nm | (S2.1.13a)
a(N(D))Ngy (1) a(N(2) N, (1) 0 0
0 0 SMrr 0
0 0 Fl,Q,r,rm Fl,Q,r,mr FZ,Q,r,rm FZ,Q,r,mr
Apy = 00 Fl,o",r,rm Fl,o",r,mr F2,O7‘,r,rm Fz,d‘,r,mr ’ (S2.1.13b)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0
0 0 0 0
a(N(D))Ny (1) 0 0 0
A (N(7)) = ’ , (S2.1.13¢)
0 a(N(t))NQ,m(t) 0 0
0 0 0 0
0 0 0 0
0 0 Fl,Q,m,rm Fl,Q,m,mr FZ,Q,In,rIn FZ,Q,m,mr
0 0 Fl,oz,m,rm Fl,oz,m,mr Fz,d,m,rm FZ,Oz,m,mr
0 a(N(t))NQ,r(t) 0 0 0 0
Anm(N(2)) = (S2.1.13d)
a(N(D)Ng (1) 0 0 0 0 0
0 0 SM.rm 0 0 0
0 0 0 SMomr 0 0

s 2.2 Resident population dynamics and resident equilibrium

In the absence of the mutant allele, N, () = (0, ...,0)T holds, and the population dynamics (S2.1.11) reduces to

the resident system

N (£ +1) = A (N (£))N(2), (S2.2.1)

366 With

N — sy, N1 (1)

2.2.2
N (2) (522.2)

a(N((2) =

Substituting (S2.2.2) into the projection matrix A (N;(#)) (S2.1.13a), performing the matrix multiplication in

(§2.2.1), and simplifying, yields

NQ,r(t+ D= Fl,Q,r,rer,rr(t) + FZ,Q,r,rrNZ,rr(t), (52.2.3a)
No”,r(t+ 1) = Fl,o",r,rer'rr(t) + Fz,o”,r,rrNZ'n'(t)' (52.2.3b)
Ny(t+1) =N = spee N1 (), (S2.2.3¢)
Ny (2+1) = Spg,ee N1 e (). (S2.2.3d)
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360 At an equilibrium N} (Né

’
)T

Substituting (52.2.4) into (S2.2.3)

Nd,r’

N N; )7, the system satisfies

1’

Nor(t+1) = No:(f) = Ng ., (S2.2.4a)
Ng (t+1)=Ng (=N , (S2.2.4b)
Nype(t+1) = Ny (2) = Ny, (S2.2.4c)
Nopr(t+1) = Npr(2) = Ny 1. (S2.2.4d)

and solving the resulting linear system of equations, we find that the system

admits a unique equilibrium given by

Né,r = T]\/j,rr (Fl,Q,r,rr + SM,rrFZ,Q,r,rr) = TI\/;\/LHHQ'r'rr, (S2.2.5a)
. (Fugr o SMrrFy ) = N q (52.2.5b)
dr 1+ SM.rr 1, rr T OMarly o p oy 1+ SMor dr,rr’
" N
1, = TM,H’ (S§2.2.5¢)
2*,rr = ?I\Z/LHSMJD (S2.2.5d)

where the second equality in expressions (S2.2.5a) and (52.2.5b) follows from identity (S1.6.1), which links
effective fertilities and productivities.

This equilibrium is locally stable. To show this, we perform a local stability analysis [54] of the resident
system (S2.2.1) at the resident equilibrium (S2.2.5). Evaluating the Jacobian matrix of (S2.2.1) at (S2.2.5) we

375

obtain the local stability matrix

ON;(t+1) ONy(t+1) ON;(t+1) ON(t+1)
Jres = ) ) ) (S2.2.6a)
aNQ,r(t) aNoz'r(t) ON1,(£) ~ ONp (1) N.=N*
0 0 Fl,Q,r,rr FZ,Q,r,rr
— 0 0 Fl,oz,r,rr FZ,OZ,r,rr (52 2 6b)
0 0 —Surr 0
0 0 SMrr 0

This matrix has a block-triangular form composed of four 2 x 2 submatrices; because of this block-triangular
form, the eigenvalues of J¢s correspond to the eigenvalues of the submatrices along the diagonal. As these
submatrices are both triangular, their eigenvalues are the values along their main diagonals. It follows that the
eigenvalues of Jres are zero (with multiplicity three) and —sys ;. Since we assume that sy < 1, the absolute
se1  value of the leading eigenvalue of J,.s is less than one, proving the local stability of N;. We conclude that the
resident equilibrium is locally stable in the absence of the mutant allele.

From (S2.2.5a) and (S2.2.5b), we have that the sex ratio among unmated reproductives at the resident equi-

ssa librium is given by the ratio of sex-specific productivities, that is,

*
IT
_Gx_ G (S2.2.7)
NQ,r l_[SE,r,rr
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2.3 Invasion fitness

We now identify invasion fitness, that is, the asymptotic growth rate of a rare mutant population introduced at

the resident equilibrium
N* = (N;,0), (S2.3.1)

where N} corresponds to (S2.2.5). To a first-order approximation, the population dynamics around the resi-

dent equilibrium are governed by the local stability matrix

) (§2.3.2)

_[0N(t+1) ON(t+1)  ON(t+1) 6N(t+1))
N=N*

| 0N (D) N (""" ONp,rm (£)" ONa,mr (1)

that is, the Jacobian matrix of (S2.1.11) evaluated at the resident equilibrium (S2.3.1). Taking the partial deriva-

tives, it can be checked that this Jacobian has the block-triangular form [54]:

v
y— [Jres , (52.3.3)

0 Jmut

featuring submatrices 0 (a 6 x 4 matrix of zeros), Jies (the 4 x 4 matrix given by equation (52.2.6b)), V (a4 x 6

matrix), and

0 0 Fl,Q,m,rm Fl,Q,m,mr FZ,Q,m,rm FZ,Q,m,mr

0 (1) 1,O7',m,rm Fl,Oz,m,mr FZ,OZ,m,rm F2,O7',m,mr

0 I 0 0 0 0

Jmut = 1 S (S2.3.4)
0 0 0 0 0
HQ,r,rr
0 0 SMm 0 0 0
0 0 0 SM,mr 0 0

(a 6 x 6 matrix). Given the block-triangular form of J (52.3.3), the mutant submatrix J,,; governs the mutant
population dynamics around the resident equilibrium.

Invasion fitness is given by the leading eigenvalue A of J,¢. Since raising Jiy¢ to a sufficiently high power
yields matrices with all entries being positive, Ju is nonnegative, irreducible, and primitive. It follows from
the Perron-Frobenius theorem that A is real and positive [39], and that invasion fitness is well defined. Then, a

rare mutant allele invades if and only if the absolute value of the invasion fitness is larger than one.

2.4 Selection gradient (generic form)

We now use our identification of invasion fitness to obtain a general expression of the selection gradient, which
gives the direction of selection. Invasion fitness can be written as A = A(zn,,2) to highlight the fact that it is
a function of both mutant and resident phenotypes because so are the entries of Ji,¢. Here, zy = ((n)" =
(Pm,2m)T and z = ()T = (p, 2)7 for model cases of offspring or maternal control, or zy = (()T = (Xm, Ym, Zm)7
andz=({)T = (x,y,2)T for model cases of shared control.

We assume that mutations have small phenotypic effects (i.e., we assume that selection is §-weak; 65).

Then, invasion fitness can be approximated by a first-order Taylor expansion of A(zy,z) with respect to zy,
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around z to obtain

AMzm,2) = 1+ (2zZm —2)"S(2),

where we have used the fact that A1(z,z) = 1 (since mutant alleles coding for the same trait as the resident are

neutral), and where the selection gradient of z is given by

oA
Sy (@) 0 _
s@m=|""|= ;Am = (S2.4.1)
S;(z) Ihaddl
0zZm Znm=2
for model cases of offspring and maternal control, or by
oA
Sc@) | 0%m lam=
S@=|S oA (82.4.2)
z) = =| 7 — 4.
y(Z) 6)’111 Zm=Z
S;(2) oA
0zm Znm=2

for model cases of shared control.

To calculate the selection gradient of {, S¢(z), (where { € { p,z} for offspring and maternal control; { €
{x,y,z} for shared control), that is,

S¢(z) = o

0Cm

we use a classic result on perturbations of the leading eigenvalue of irreducible and nonnegative matrices. This

(52.4.3)

’
Zm =2

result implies that the selection gradient of ¢ (52.4.3) can be written as [39, 54]

T 6] mut
v
O0lm
viu

Zm=Z

Si(@) = : (S2.4.4)

where v and u are, respectively, the left and right eigenvectors associated to the leading eigenvalue of the

neutral mutant submatrix J? ., which equals one. Henceforth, we will denote by X° a variable X considered

fe}
mut’

under neutrality, that is

X°= Xlzm:Z, (S2.4.5)
for any variable X. With this convention,
Tonut = Tmutlzy, =2 (S2.4.6)
0 0 Ff,Q,m,rm FiQ,m,mr F;,Q,m,rm F;,Q,m,mr
0 (1) Fl,Oz,m,rm Fl,Oz,m,mr FZ,OZ,m,rm FZ,Oz,m,mr
0 . 0 0 0 0
II
=l I . (S2.4.7)
S 0 0 0 0 0
l_[Q,r,rr
0 0 sz/l,rm 0 0 0
0 0 0 S?\/I,mr 0 0
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2.5 Neutral mutant submatrix, J,

To calculate the dominant left and right eigenvectors v and u of the neutral mutant submatrix J7,;, we now

calculate the entries of J together with other variables and rates considered under neutrality. All of these

0o
mut’
neutral variables and rates can be written in terms of variables and rates of resident individuals in a resident

population.

Neutral reproductive effort, z;. We start by calculating z;, that is, the neutral reproductive effort exerted by

the female of an old mated pair of type k. For all k € {rr,rm, mr}, this is given by
2z = Zklg, =z = 2Q(k) |Zm:Z =z=2zy, (S2.5.1)

where the first equality follows from the definitions of zj (S1.1.2a) and neutrality (S2.4.5); the second equality
follows from the definition of @(k) (S1.1.1a) and our notational convention (S1.1.2b); and the last equality

follows again from our convention (S1.1.2b).

Neutral expected number of helpers, 1;. We proceed now to calculate £}, that is, the expected number of
helpers for an old mated pair of type k evaluated at neutrality. Let us first note that, by inspection of the values

of the helping probabilities given in Figure S5, the following identity holds:

Pik= Plikly - = Pom- (S2.5.2)

Taking this into account, we can then write, for all k € {rr,rm, mr},

he=A Y, oue Y. deikPeik (S2.5.3a)
je{r,m}
ee{g,o’} ie{rm e
=h Z 01,0 Z qe,ik (Pl,i,k”zm:z (S2.5.3b)
fE{Q,O?I} ie{r,m}
=h Z O1,0 Z qe,i,kPexr (S2.5.3¢)
!e{Q,o’} ie{r,m}
=i Y OuePern Y, Goik (S2.5.3d)
[6{9,07'} ie{r,m}
=fi Y OuePrrr (S2.5.3€)
Ze{Q,o"}
=hx=h (S2.5.3f)

where the first line (52.5.3b) follows from substituting (51.3.3b) and the definition of neutrality (S2.4.5); the
second line (S2.5.3b) follows from the fact that only the probabilities p, ; x are functions of the evolving traits
z; the third line (S2.5.3c) applies identity (S2.5.2); the fifth line (S2.5.3e) applies identity (S1.2.1c); and the final
line (S2.5.3f) follows from (S1.3.4b).

Neutral vital rates ( f2° © s;’w © and s; k)' The entries of J; ; as given in equation (52.4.6) depend on the values

of the different vital rates under neutrality, that is, on fz° o s}’w o and 5‘2’ o We calculate these values now.
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The late fertility of the female of a mated pair of type k under neutrality is given by

forx = Py, =y = f2 (2klam=2) = folaw) = four, (S2.5.4)

where the first equality follows from substituting equation (S1.4.1) and from the definition of neutrality (52.4.5);
the second equality holds because the function f, (S1.4.2) is the same for all k; the third equality follows from
equation (§2.5.1); and the last equality follows from (S1.4.1) with k =rr.

The survival of a mated pair of type k under neutrality is given by

334']6 = sm(fo i hk)|zm:z =Sm (f;k; hz) =SMm (fz,rr: hrr) = SM,rmr» (82.5.5)

where the first equality follows from substituting equation (S1.4.4a) and from the definition of neutrality (52.4.5);
the second equality holds because the function sy (S1.4.5a) is the same for all k; the third equality follows from
equation (S2.5.4) and (S2.5.3f); and the last equality follows from (S1.4.4a) with k = rr. Thus, the probabilities

S})\/I,rm and S;\/I,mr featuringin J; . (52.4.6) simplify to
s;\/[,rm = s?\/[,mr = SM,xr- (S2.5.6)

Analogous reasoning leads to the following expression for the survival of the second-brood offspring of a

mated pair of type k under neutrality:

S;,k = s2(fo,k0 Pk |zm:z =8 (fzo,ky hZ) =5 (fz,rr» hrr) = S2,1r- (82.5.7)

Neutral effective fertility, F°

> i Thenonzero entries in the first two rows of J§,,, (52.4.6) are effective fertil-

ities (defined in section 1.5) under neutrality. We find explicit expressions for these effective fertilities below.

First, for all ¢, all i, and all k, the early effective fertility under neutrality, Ff , simplifies to

2,0,k

F ik = (0004010 =pripsi)l, _,
=q0,i, k101,01 = pe )i
=qe,ikF1Lenn (52.5.8)
where the first equality follows from substituting the expression for F; ¢ ; r (51.5.1) and the definition of neu-

trality (S2.4.5); the second equality follows from (52.5.2); and the final equality follows from (S1.5.2).

Likewise, for all , all i, and all k, the late effective fertility under neutrality, F; ik simplifies to

Fy ik = (k02,040 k52.k) |, -,
=q1,i,k02,0f5 1.5 1
= qf,i,kUZ,[fz,rrSZ,rr

=4,k 2,01 (S2.5.9)

where we have substituted the expressions for f2° e and s;, e given by equations (52.5.4) and (5§2.5.7), and the
expression for F, ¢ .y given by (S1.5.4).

Equations (52.5.8) and (S2.5.9) state that the effective fertility of a young or old mated pair that has a neutral
mutation equals the corresponding effective fertility of a resident mated pair multiplied by the probability that

the mutant mated pair produces an offspring of the relevant genotype and relevant sex.
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Neutral productivity, IT} ;.  When simplifying the expression for the selection gradient, it will be useful to
have the expression for the neutral productivity H;,i, « of a k-type mated pair through offspring of sex ¢ and
genotype i. To calculate it, we start from the expression for I, ; ;. (equation (S1.6.1)), evaluate at neutrality, and
simplify using the expressions for the neutral effective fertilities (equations (S2.5.8) and (S2.5.9)) and mated

pair survival (equation (S2.5.5)) to obtain

My, = (Fueik+ SmiFaeik)l, -
) o o
=F it Smitaik

=qv,ik (Fl,!,r,rr + SM,rer,l,r,rr)

=40,k g (52.5.10)

where the last line follows from identifying the expression for the productivity of a mated pair of type rr through

resident offspring, I, . ,r given by equation (S1.6.18). In particular, and because of identity (S1.2.1a) we recover

My = e (S2.5.11)

o

Neutral mutant submatrix, J7 . Putting together our previous results in this subsection 2.5, we write the

neutral mutant submatrix, J7 , (52.4.6) as

]?nut = ]mut|zm:z

0 0 qQ,m,rmFl,Q,r,rr qQ,m,mrFl,Q,r,rr q@,m,rmFZ,Q,r,rr qQ,m,mrFZQ,r,rr

0 0 qd‘,m,rmFl,O”,r,rr qo’,m,mrFl,Cf‘,r,rr qo",m,rmFZ,O’,r,rr qo”,m,mrFZO’,r,rr

0 0 0 0 0

d
— ) T . (82.5.12)
0 0 0 0 0
1-IQ,r,rr
0 0 SM,rr 0 0 0
0 0 0 SMr 0 0

2.6 Reproductive values and stable distribution

Having calculated the neutral mutant submatrix, J7, ,;,, we are ready to calculate its (dominant) left and right
eigenvectors. These are the vectors v (52.6.1) and u (S2.6.14) appearing in our expression for the selection
gradient S;(z) of a generic trait { given by equation (S2.4.4). The biological meaning of these vectors is the
following [54]. The left eigenvector v lists the reproductive values of neutral mutants, with reproductive values
measuring the relative long-term contribution of individuals in a mutant class to the future mutant population.
The right eigenvector u is the stable class distribution of neutral mutants, which measures the relative asymp-
totic distribution of neutral mutants among classes. By the Perron-Frobenius theorem, the vectors u and v
are positive [39]. We will show that the selection gradient (S2.4.4) can be simplified so that it only depends on
two entries of u (namely, u; rm and u; ;) and two entries of v (namely, Vom and Uozym). Thus, without loss of
generality, we choose u and v so that v ;m + u1,mr = 1 (i.€., u i is the stable proportion of mutant young mated
pairs of type k) and vy =1 (i.e, the reproductive value of mutant males is arbitrarily set to one). Doing so

we slightly depart from common use in demographic models, where u is often chosen so that the whole vector
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u is a probability distribution, that is, so that 1Tu = 1 (where 1 is a vector of ones), and where v is sometimes
chosen so that the whole vector v'u is a probability distribution, that is, so that viu = 1. Regardless, we will

continue referring to the vector u as the stable distribution.

Reproductive values, v. We start by calculating the left eigenvector

vl = (VQ,m» Vs m V1,rm) V1,mr) V2,rm, V2,mr) ) (82.6.1)

giving the neutral reproductive values of mutants in each class. From the definition of a left eigenvector, and

since the leading eigenvalue of J; . is one, v is defined by

V=V (52.6.2)

mut —

Performing the matrix multiplication stated in (S2.6.2) with J7 . given by equation (S2.4.6), we obtain the

(e}
mut

system of equations

Ul,mr

Vom =T (S2.6.3a)
Q,r,1T

= —Lm $2.6.3b

UOZ,m - Ho ) ( -0. )
O7|,l‘,l‘l'

Vim = F o mmVem*F) o g o+ Sy m V2 (S2.6.3¢)

Vimr = FommeV@m+ F) o 1 Vo + Sy mr V2 me (S2.6.3d)

Varm = FpommVom+Fy o Ve (S2.6.3¢)

Vamr = Fy o meVoum + F; & eV m* (S2.6.30)

From these equations we can write down two equivalent expressions for the reproductive values of young
mutant mated pairs (v}, and vy,y) in terms of the reproductive values of mutant unmated reproductives
(UQ,m and Vg m). First, isolating vy m; and v; vy from, respectively, equations (S2.6.3a) and (S2.6.3b), and using

(S2.5.11), we obtain

Vi,mr = HQ,r,rrUQ,mr (S2.6.4a)

Vl,rm = HCf',r,rr yOz,m' (S2.6.4b)

Second, substituting the expressions for the reproductive value of old mated pairs of type rm, v, (S2.6.3e),
and the reproductive value of old mated pairs of type mr, v iy (S2.6.3f), into the equations for the reproductive
value of young mutant mated pairs (equations (S2.6.3¢) and (S2.6.3d)), rearranging, and using the definition

of productivities ITy ; x (S1.6.1), we get

Vime =G o e Vm + 1% Ve ) (S2.6.5a)

(e}
Q,m,rm

Vi,m =11 vo,m +11 (S2.6.5b)

o
14 .
J'mm J,m

We can now use expressions (S2.6.4) and (S2.6.5) in order to derive two identities linking the reproductive

values of various classes. We start by equating the right hand sides of the two expressions for v; ,; above
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(equations (S2.6.4a) and (S2.6.5a)), and simplify to obtain

(HQ'T'“ - HoQ,m,mr) VQo,m = H;"'m,mr VS m

(1 - qQ,m,mr) HQ,r,rr VQ,m = qcf,m,mrnoz,r,rr Vd m
Hornvem =g Vo (52.6.6)

U1,mr = V1,rm» (S2.6.7)

where the second line follows from substituting the expressions for neutral productivities (S2.5.10); the third
line follows because identity (51.2.1d) implies 1 — go,mmr = 4 1, i, @nd the last line follows from equation
(S2.6.4). Equation (S2.6.6) links the reproductive values of female and male reproductives, and can be inter-
preted as stating that the reproductive value of a mutant reproductive of a given sex is proportional to the
number of resident reproductives of the opposite sex and inversely proportional to the number of resident
reproductives of the same sex (S2.2.7). In turn, equation (S2.6.7) states that a consequence of this is that the
reproductive values of a mutant young mated pair is the same, whether the female in the pair is mutant (i.e.,
the female is mutant and the male is resident) or the male in the pair is mutant (i.e., the female is resident
and the male is mutant). Although we derived identities (S2.6.6) and (S2.6.7) by equating the expressions for
v1,mr above (equations (S2.6.4a) and (S2.6.5a)) we could have alternatively derived them by equating the two
expressions for v; r, (equations (S2.6.4b) and (S2.6.5b)) and simplifying in a similar way.

We can now proceed to obtain expressions for the reproductive values in terms of our variables and pa-

rameters. First, because of our choice of letting v | =1, isolating vo n, from equation (52.6.6) leads to

Vg m = 1, (S2.6.8a)
I
Vom = % (S2.6.8b)
Q1,11

for the reproductive values of unmated mutants. Thus, the reproductive value of unmated mutant females

equals the resident sex ratio (S2.2.7). Second, substituting (52.6.8) into (52.6.4) and simplifying, we obtain
Virm = V1,mr = Hoﬂ'r'rry (S2.6.9)

for the reproductive value of young mated pairs. Finally, substituting (S2.6.8) into equations (S2.6.3e) and

(S2.6.3f), using the expressions for neutral reproductive rates (S2.5.9), and simplifying, we obtain

d 1

U2rm = qQ,m,rmFZ,Q,r,rr o + qo’,m,rmFZ,o”,r,rr’ (52.6.10a)
Q,r,1T
drrr

V2mr = q9,m,mrF2,9,r,rr I + qo”'m,mer,Ozlr,rr, (52.6.10b)

JLIT
for the reproductive value of old mated pairs.

As stated above, we will later show (in section 2.7) that the generic selection gradient (52.4.4) can be sim-
plified so that it only depends on two entries of v, namely the reproductive values of unmated females and
males, which in turn depend only on the resident sex ratio (equations (52.6.8)). We will then use the simplified

notation

V¢ =V¢m (52.6.11)

27



528

534

540

for ¢ € {9,0”} to refer to the reproductive values of unmated individuals. From equations (S2.6.8), (S2.6.11),

and (S2.2.7), we have

Vg EVgp =1 (S2.6.12a)
y| N*

Vo = Vg = — 2 = I, (S2.6.12b)
l_IQ,r,rr NQJ

which are respectively the neutral reproductive values of unmated (mutant) males and females. So, in our
model, the modulating effect of reproductive value on selection is encapsulated by the sex ratio.
More explicitly, substituting the expression for resident sex-specific productivity (51.6.18) into (S2.6.12),

via (S1.6.16), the sex-specific reproductive values are given by

vy =1, (S2.6.13a)

015 Hha- po",r,rr)sl T0,q5 o (f2,rr) )

vo = . (52.6.13b)
? Ul,Qfl(l_ pQ,r,rr)Sl +UZ,QH2(f2,rrr Pyr)

Hence, the reproductive value of females and males is the same (UQ =vgy =1 if both sexes help (G =B, so
P&y = P and the sex proportion is unbiased in both broods (o, = 1/2 for a € {1,2} and ¢ € {Q,5'}),
for both diploids and haplodiploids. In contrast, females have a higher reproductive value than males (vg >
vy = 1) if females help more than males (p . < porn) and the sex proportion is unbiased in both broods
(040 =1/2for ac{1,2} and ¢ € {¢,d'}), for both diploids and haplodiploids (see also [43, 471]).

Still more explicitly, using Fig. S5 and equations (51.4.1), (S1.3.5), and (S1.1.5), the reproductive value of
females (S2.6.13b) for each model case is given by

0,5 hA=p)si+0o, 12(fo, fip)
o10fil=p)si+020M2(f2, fip)

for Ce {O,M} and G=B

0, g hs1+0, pla(f2, fio1p)

for Ce {O,M} and G=F
01,011 =p)si +020Il2(f2, fio1p)

UQ =
0, g hA=p,y)si+0, 7 2(f2, fip(x, )

forC=Sand G=B
01,0h0 = plx,y)si+020Ma(f2, ip(x, )

0y g hs1+0, pla(f2, fio1p(x, )

for C=Sand G=F.
01,011 =p(x, ¥)s1+020M2(f2, io1p(x, )

Stable distribution, u. Let us now calculate the stable distribution (i.e., the right eigenvector)
u' = (uQ,m’ Ug my Ul rms Ul,mr, U2,rm) uz,mr) . (52.6.14)
From the definition of a right eigenvector, and since the leading eigenvalue of J;, , is equal to one, we have

Ju=u. (82.6.15)
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Performing the matrix multiplication stated in (52.6.15) with J7_ . given by (52.4.6), we obtain the following

system of linear equations

UQm = FiQ,m,rm Ut,rm + F;,Q,rn,rrn U2,rm + Ff,Q,m,mr U1,mr + F;,Q,m,rnr Uz,mr, (S2.6.16a)
U m ™ Fl,o”,m,rm Uirm + FZ,O",m,rmuz'rm + Fl,o", ,mrul’mr + FZ,O’,m,mruz'mr’ (52.6.16b)
u
i em = (52.6.16¢)
d it
u
——L (52.6.16d)
Q,r,11
Up,rm = Sy rm Ul,rm, (S2.6.16e)
U2,mr = 510\/[,1111- Ul,mr- (S2.6.161)

We manipulate these equations in a similar way to what we did for the system describing the reproductive
values of our model. First, we isolate u; = and uo n, from, respectively, equations (52.6.16¢) and (52.6.16c¢),

and use (S2.5.11) to obtain

Uo,m = Ho rrrlt1,mr. (52.6.17a)

qu,In = Hoz,r,n_ulyrm, (82617b)

Second, we substitute (S2.6.16e) and (S2.6.16f) into (S2.6.16a) and (S2.6.16b), and use the definition of the

productivities Iy ; ¢ (S1.6.1) to get

UQum = TIg 1y o Ut rm + 0 1 oy 21, (S2.6.18a)
U m ™ Hoz,myrmul,rm + Hoz,m'mrul,mr- (52.6.18b)

Finally, we use expressions (S2.6.17) and (S2.6.18) to derive an identity linking the stable proportions of young
mated pairs of types rm and mr. We start by equating the right hand sides of the two expressions for uom

above (equations (S2.6.17a) and (S2.6.18a)), and simplify to obtain

o o
(HQ,r,rr - HQ,m,mr) Up,mr = HQ,m,rm Ul,rm
(1 - qQ,m,mr) Ho rrrth1,mr = 4Q,m,rmI1Q rrr th1,rm

945 m,mr ¥1,mr = 4Q,m,rm U1,rm

Umr  99mrm

= (52.6.19)
Ui, rm qoz,rn,mr

where the second line follows from substituting the expressions for neutral productivities (S2.5.10); the third
line follows because identity (S1.2.1d) implies 1 - gommr = 45 , s @nd the last line rearranges, where the
ratio of the transmission probabilities is the one given by (S1.2.2a).

As stated above, we will later (section 2.7) show that the selection gradient (S2.4.4) can be simplified so that
it only depends on two entries of u, namely the stable proportions of mutant young mated pairs of either type,
which in turn depend only on the transmission probabilities (equations (S2.6.20c) and (S2.6.20d)). Thus, it will
be convenient to normalize the right eigenvector u in such a way that u;;m + #1,mr = 1, so that u, ; refers to

the proportion of mutant young mated pairs that are of type k. Imposing this constraint, equations (S2.6.19),
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(S2.6.17), (S2.6.16e), and (S2.6.16f) lead to

qQ,m,
UQom = Pim.m HQ,r,rr; (S2.6.20a)
4Q,m,rm + qd',m,mr
43 m,mr
u = — II , (52.6.20b)
gm q42mrm * 4 m my o
q
Urm = Immr (S2.6.20¢)
q42mrm * 4 m my
g = 2 (52.6.20d)
4Q,m,rm + 43 m,mr
q
U2,rm = J m,mz SM,rt» (S2.6.20e)
q42mm * 4 m my
qQ,m,
Upmr = S . (52.6.200)

qQ,m,rm + qd',m,rnr
where we have also used the fact that S})\/I,rm = S})W,mr = Sy (52.5.6).
Since the simplified selection gradient will only depend u; ym and u; mr, we will henceforth use the simpli-

fied notation
Uk = Uy (S2.6.21)

for k € {rm, mr}, and term the vector

o7

a' = (ug, uz) (52.6.22)

the stable sex distribution of a neutral mutant allele among young parents, which in turn depends only on the

transmission asymmetry. From equations (52.6.20c), (52.6.20d), (S2.6.21), and (S2.6.22), we have

o = thy = —— 2 (52.6.23a)
qQ,m,rm + qoz,m,mr
q
Ug = Upm = I m,mr (S2.6.23b)

42mrm * 45 mmr
as expressions for the neutral stable proportions of mated pairs of type rm and mr. So, the modulating effect

of the stable distribution on selection in our model is encapsulated by the transmission asymmetry.

Link between the stable distribution, u, and “genetic reproductive values”. Because of our choice regarding
the normalization of the leading eigenvector u, the stable proportions (S2.6.23) give a well-defined probability

distribution. For diploids (P = D) and from Fig. (S4), the stable sex distribution is

a' = (ug, ug) = (t1,mr Ur,m) = (1/2,1/2), (S2.6.24)
while for haplodiploids (P = HD) and from Fig. (S4), itis

' = (ug, uz) = (t1,mr, t1,m) = (2/3,1/3). (52.6.25)

Hence, in a diploid population, a neutral mutation is asymptotically equally likely to be in a young mother or
a young father, but in a haplodiploid population it is twice as likely to be in a young mother than in a young
father. The asymmetry in the haplodiploid case is a consequence of the sex-related transmission asymmetry

of such genetic system (see equation (52.6.19)).
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The entries of the stable sex distribution (u, for ¢ € {9,d'}; equations (S2.6.24) and (S2.6.25)) coincide with
the “genetic reproductive values” or “sex-specific reproductive values” that often appear in the literature of
social insects and social evolution ([49, 55, 57, 63]; see also [42, p. 39-41] and [37, p.190-191]). Such genetic
reproductive values are typically used to weigh sex-specific fitness effects so that allele frequency does not
change without selection. They are interpreted as describing that, irrespectively of the sex ratio, in a hap-
lodiploid population a male is worth half as much as a female in transmitting genes because he can pass on
his genes only through daughters, while a female passes on her genes through both daughters and sons. Ge-
netic reproductive values are often calculated as the normalized dominant left eigenvector of a right stochastic
(rows sum to one) “gene flow” matrix [63, A on p. 151] or as the normalized dominant right eigenvector of a
left stochastic (columns sum to one) matrix [42, P on p. 40].

The stable sex distribution can also be obtained as follows. Let us define the transmission matrix

qQ, qg'd' _ 4do,mmr  4Q,m,rm

Q= (S2.6.26)

qOZ,Q 9z.g 49 mmr 95 m,m

where ¢y ¢ stands for the probability that a mutant parent of sex ¢’ transmits its mutant allele to an offspring
of sex ¢ when the mutant allele is rare (and hence the second parent is of resident genotype). By (S1.2.1d), Q
is left stochastic (i.e., its columns sum to one) and hence its dominant eigenvalue is one. Direct calculation
shows thata' = (ug, u@) = (ulymr, ul,rm) is a dominant right eigenvector of Q. Note also that since @ is both a

right eigenvector of Q and a probability distribution, we have that

Y. UkGemik= Y, Ukqek=ue¢ VEE{RT}, (52.6.27)
ke{rm,mr} kE{Q,OZ}

that is, the neutral asymptotic probability that an individual of sex ¢ is a mutant is also equal to u,. For diploids

(P = D) and from Fig. (S4),

1/2 1/2
Q= , (S2.6.28)

1/2 1/2

for which equation (52.6.24) is a dominant right eigenvector. For haplodiploids (P = HD) and from Fig. (54),

1/2 1
Q= , (S2.6.29)

1/72 0

for which equation (52.6.25) is a dominant right eigenvector.
Thus, for the specific values of the transmission probabilities under diploidy or haploidiploidy, our trans-
mission matrix Q coincides with the matrix P of [42, p. 40] and with the transpose of the gene-flow matrix A of

[63, p. 151]. In any case, the (2/3,1/3) weights can be interpreted as the stable sex distribution.

2.7 Selection gradient (generic, simplified form)

Having calculated the left eigenvector v and right eigenvector u associated to the leading eigenvalue of J7 ,,,
we can proceed to simplify the selection gradient S (z) of a generic trait { (where { € {p, z} for offspring and

maternal control, whereas { € {x, ¥ z} for shared control).
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Our starting point is the generic expression of the selection gradient of { given by (52.4.4). Taking the partial
derivatives of the elements of the mutant submatrix Ji (S2.3.4) with respect to the mutant trait value {,, and
since the resident productivities Ilo  ,y and I » . appearing in the first two columns of Jm are independent

of {1, we have

OF,
Ukt Z V¢,m Z —atmk

1 aSM,k
S@=— > |vok o
Zm=Z [E{Qyoz} ac{l,2} m

u . S2.7.1
VU keirm,mr} 0lm ak ( )

Znm=Z

From equations (52.6.16e) and (52.6.16f), up i = s}, . t1,« holds for k € {rm, mr}. Substituting this expression

into (S2.7.1) and collecting the u; ;s yields

1 OSwm,k OF ¢,m k 0F>, ¢m,k o
St@=r Y 2k + Y Vm [ e i Ml ULk (82.7.2)
viu ke{rm,mr} (m Zm=Z [e{Q,o"} (m Zm=2 (m Zm=Z
Also, from equations (52.6.3€) and (52.6.31), vy x = F; 0m kVQm + F; 7 miVdm hold for k € {rm, mr}. Substitut-
ing this expression into equation (52.7.2) and collecting the vy 1,’s yields
1 OF1,0,m,k o OSnm,k 0F,0,m,k o
S@=— Y vim L 5 o mk = Skl Uik (S2.7.3)
T o¢ 4 o¢ '
viu ée{Q,o”} ke{rm,mr} m Zm =2 m lzy,=2z m Zm=Z

Finally, from the definition of productivities I, ;  (S1.6.1), by using the simplified notation for sex-specific re-
productive values (52.6.11) and stable sex distribution (52.6.21), and by the product rule of derivatives, equa-

tion (§2.7.3) can be more succinctly written as

1
S((Z) = — Z Z vy
viu 2e{Q,d"} ke{rm,mr} 0lm

ot
—bmkl (S2.7.4)

Zn =2

Since vTu > 0 holds, the selection gradient of { is positive (i.e., { is favored by selection) if and only if

v >0. (S2.7.5)

Zm =%

OIlym, k
U Z —6(
ke{rm,mr} 0e{Q,d"} m

This condition has an intuitive interpretation: a trait { is favored by selection if and only if the effect of a
mutation in the trait on the mutant productivity of a mated pair, averaged over the stable sex distribution of
parents and weighted by the sex-specific reproductive values of offspring, is positive.

In addition to providing a natural interpretation for the action and direction of natural selection, equation
(S2.7.4) is convenient for our subsequent analysis because all important terms (those appearing on the left-
hand side of (5§2.7.5)) are written in terms of (marginal) productivities, sex-specific reproductive values, and
the stable sex distribution, thus abstracting away the additional complication of having age classes for mated
pairs. Note also that the sex-specific reproductive values (52.6.13) depend in general on the sex proportions
of the two broods, on whether both sexes help or only females do, and on the evolving traits, but not on the
transmission probabilities and hence on the genetic system. In contrast, the stable sex distribution (S2.6.23)
depends exclusively on the transmission probabilities and hence on the genetic system but not on any other

feature of the model.

2.8 Selection gradient of traits affecting helping
2.8.1 Derivation of the general expression

General expression. Consider a trait { affecting the probability of helping, that is, either { = p for model

cases of offspring and maternal control, or { € {x, y} for model cases of shared control. In this section, we
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obtain expressions for the selection gradient of these traits by explicitly calculating the derivatives appearing
in equation (52.7.4).
633 Evaluating the productivity I, ;  (51.6.17) at i = m, and differentiating the resulting expression with re-

spect to {y, using the chain rule, we obtain

Olly m & ( )
— o101 —- )s1 + 09 pI1
o acmqémk[fl 1,e(L=pemi)s1+02,01, k] s
0p¢m,k Ol ahk )
=(qrmk|—J101,¢ S1+02¢0 ——
qem ( fioy 3 | s 14020 . G(m -
0prmk oI, ope,ink
=qemk | —fio1,e 3 = S1+02,00" o> fi Y ove Y qeik P) l
(m Zm=Z ['E{Q,OZ} i’e{r,m} (IH Zm=2Z
0pr,m,k o1l ope,iv k
= fidemk|—01,¢ 3 = 81+Uzz—ah (fol)x Y. ove Y. qeik 3 ) )
(m Zm=Z [’G{Q,Oz} i'e{r,m} (m Zm=2

(52.8.1)

where we have used the expression for i given in (S1.3.3b), and the fact that the functional form for late pro-
ess ductivity I, i is the same for all types k (equation (S1.6.16)), which together with our notational conventions

allows us to write

Ol
ohx

61'[2

Zm=2

Substituting (S2.8.1) into (S2.7.4) and rearranging, we obtain

oIl

S¢(z) = —f1( 181K (fz,h)) (52.8.2)
630 Where
0po,m,k

L= ) O ), UkGrmik ’;'m’ 78 (S2.8.3a)

Ze{Q,o”} ke {rm,mr} (m Zm=2

0pe,ik
K= ) O ) Oar ), Uk ). drink 6Cl qermkVer- (S2.8.3b)
0e{Q,d"} 0€{Q,0"} ke{rmmr}  i’e{r,m} m lzy=z

We call coefficients ¢ and « the structure coefficients. Since a{ and @' are probability distributions, (S2.8.3a)
shows that ¢ is the effect of a mutation on helping evaluated at neutrality (0p,m /9 mlz,=z), averaged over the
esz  sexes of parents (u;) and of potentially helping offspring (0,,), and weighted by the probability that a sex-¢
potentially helping offspring has the mutation (q¢ m i) and by such offspring’s reproductive value (v,). Thus,
1 is a weighted average of a helping mutation’s phenotypic effect, with the weight given by the probability that
eas candidate helpers have the mutation and by their reproductive value. Similarly, (52.8.3b) shows that « is the
effect of a mutation on helping evaluated at neutrality (0py,i’ 1/ 0{m|z,=z), averaged over the sexes of parents
(ur), of potentially helping offspring (0, ), and of potentially helped offspring (o2 ¢), and over the probability
ess that a potentially helping offspring has the mutation (q, ;s ), and weighted by the probability that a sex-¢’
potentially helped offspring has the mutation (g m ) and by such offspring’s reproductive value (v,). Thus,
k is a weighted average of a helping mutation’s phenotypic effect, with the weight given by the probability that
es1 candidate recipients of help have the mutation and by their reproductive value.

We now provide an interpretation for the remaining terms in large parentheses in equation (52.8.2).
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Marginal cost and benefit of helping. The factors —s; and 911 (f>, h)/dh appearing in (S2.8.2) have immedi-
ate interpretations in terms of marginal effects of the expected number of helpers on a mated pair’s produc-
tivity. First, 0Il»(f2, h)/0h is the marginal effect of the expected number of helpers on the late productivity of
a mated pair. Second, s; is the marginal effect of the expected number of helpers on the early productivity of
a mated pair (as it can be verified from equation (S1.6.9)). To underline the fact that the marginal effect on
early productivity is always negative (because s; > 0), while the marginal effect on late productivity is always
positive (since, given our assumptions on the vital rates given in section 1.4, I1, is increasing in /) and for
subsequent use, we introduce the following definitions and notation. We define

_dIli(h) _
dh

S1 (52.8.4)

as the (marginal) cost of helping, and
o1l
B=— , h). S2.8.5
on (f2(2), b) ( )

as the (marginal) benefit of helping or the marginal late productivity of helping.

Note that the marginal cost of helping C equals the constant s; for all the model cases we consider. In
contrast, the marginal benefit of helping is a function of the evolving traits and of the neutral expected number
of helpers h and hence takes a different form for each model case, depending on who controls the helping
probability and on the sex of the helpers. To make this dependence explicit, hereafter we write B for the
benefit of helping when help control is of type C (where C € {O,M,S}) and when the helpers’ sex is G (where
G € {B,F}). Explicitly, using equations (S1.3.5) and (S1.1.5), the marginal benefit of helping (52.8.5) for each

model case is given by

oIl

a—hz(fz,flp) for Ce {O,M} and G=B

oIl

a—hz(fz,flcrlp) for Ce {O,M} and G=F

BYS =1 (52.8.6)

oIl,

E(fz,fm(X,y)) forC=Sand G=B

oIl

a—hz(fz,flolp(x,y)) forC=Sand G=F.

Critical benefit-cost ratio. With the above definitions of helping cost and benefit, equation (52.8.2) becomes
Sr(z) 1f( C+xB) (52.8.7)
z)= — fi (—1C+«B). .8.
¢ viu !

Since fi/vTu > 0, the selection gradient of { is positive, and { is under positive directional selection when

—1C+xB>0, (S2.8.8)
or equivalently,

B (BY*
— > (—) ifx >0, or (S2.8.9a)
c \C
B B\*
=< (—) ifx<0 (52.8.9b)
c \cC
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where the critical benefit-cost ratio (B/C)* equals the ratio of the structure coefficients : and x (52.8.3):

B\* 1
(_) _L (S2.8.10)
C K

The case x > 0 holds when the trait is the helping probability or maternal influence ({ € {p, x}) because in that
case 0p/0¢ > 0. In turn, the case x < 0 holds when the trait is offspring resistance ({ = y) because in that case
0pld <0.

As with the marginal benefit of helping B, the structure coefficients 1 and ¥ depend on who controls the

helping probability (C) and the helpers’ sex (G). To make this dependence explicit, and similarly to how we
CG _CG
¢ K¢

structure coefficients, and the critical benefit-cost ratio for trait {, under help control C and helpers’ sex G.

did for the benefit of helping, hereafter we write S(C’G, ! ,and (B/ C)ZSC’G for the selection gradient, the

2.8.2 Derivation for each model case

We now obtain explicit expressions for the structure coefficients and the critical benefit-cost ratios under the

model cases we consider.

Offspring control, both sexes help (0-B). For offspring control, { = p, and hence {;, = pi- Then, in the case
of offspring control, and if both sexes help (see Fig. S5)

0pe,ik

=[i=m], Vke{rm,mr} and V¥ € {Q,d'}, (52.8.11)
0pm Zm=Z

where [ ] is the Iverson bracket, such that

1 if Pistrue
[P] = (S2.8.12)

0 otherwise.

Substituting (S2.8.11) into (52.8.3) and simplifying using equation (S2.6.27) yields:

tg,B: Y ovcueve, (52.8.13a)
0e{Q,d"}

pP= Y owe Y, oo Y, UkGemkdemkVer (52.8.13b)
069,07} 0'e(Q,d ke {rm,mr}

We will provide an interpretation of LE’G and K?'G later (section 3.2.4), which applies to all the cases we consider
and which recovers an inclusive-fitness interpretation.
The critical benefit-cost ratio is then given by

0,B Z[e{Q,O"}ULZu[W

B)*
— = . (52.8.14)
( Clp de{g‘d'} 01,0 Z[’e{Q,o"} 02,0' X ketrmmi} Uk qe,m ke mkVe'

Offspring control, only females help (O-F). For offspring control, but now if only females help, we have (see
Fig. S5)

Ope,ik
0Pm

=[¢/=9andi=m], Vke {rm,mr}. (S2.8.15)

Zn=2
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eo3  Substituting this expression into equation (S2.8.3) and simplifying using equation (S2.6.27) yields:

Lg'F =01,0UQVQ, (S2.8.16a)
Kng =010 ), 00 Y. UkGQmkde,mkVer- (52.8.16b)
é’e{Q,O”} ke{rm,mr}

The critical benefit-cost ratio thus reduces to
( B ) +OF uQUo

—_ = . (52.8.17)
Clp Lpegor 92,0 Lketmmn) UkqGQm kqe,m,k Ve

Maternal control, both sexes help (M-B). For maternal control with both sexes helping, we have (see Fig. S5)

0pe,ik

=[k=mr] V¢ e {Q,d'} and Vi € {r,m}. (52.8.18)
0pm

Zm=Z

e0s Substituting this expression into (52.8.3) yields:

Ll;]/I'B = Uy Z 01,09¢,mmrVe> (52.8.19a)
le{Q,3"}
MB _
Kp™ = Umr Z 01,0 Z 02,0 Z qe,i' mrqe¢',m,mr Ve
0e(Q,5) e, i'e{r,m}

= Umr Z 01,0 Z 02,0'4¢' mmr Ve’
0€(Q,5 0'e{Q,0}

=Ume ), O20G0 mmeVe (S2.8.19b)
0'elQ,d}

where we have used identities (S1.2.1c) and (S1.1.3).

The critical benefit-cost ratio is then

C

M,B
B\*" Z[ J 01,04¢,mmrV¢
( ) = iRl (S2.8.20)

p Zg/e{gyo”}o'&é’ qe¢,mmr Ve’

e00 Maternal control, only females help (M-F). For maternal control of the helping trait and if only females help,

we have (see Fig. S5)

0pe,ik

=[k=mrand ¢ =¢] Vi€ {r,mj}. (52.8.21)
0pm

Zn=2

Following the same steps as in the previous case (M-B), we obtain

ll;;LF — 0-1’9 umrqum,mr 1/9, (82822a)
KI;)/LF - 0—1'9 Umr Z 0'2'[1 qw,m,mr Vyr, (82822'3)
0'e{Q,0"}

702 with the critical benefit-cost ratio simplifying to

MF

(E) *' 4Q,m,mrVQ

- : (S2.8.23)
¢ p 24/6{9,07'}UZ,Z’q!’,m,mrU['

Shared control, both sexes help (S-B). Consider now shared control, so that { € {x, y} where x is maternal

influence and y is offspring resistance.

36



705

Let us first calculate the structure coefficients and the critical benefit-cost ratio for maternal influence x. If

both sexes help, then (see Fig. S5):

opy; 0
Peik _ _p(x’ Yik=mr] V¢ e {Q,d}and Vi € {r,m}. (52.8.24)
0xm Zm=Z 0x

Substituting this expression into equation (S2.8.3) and simplifying following the same steps as when calculat-

ing the coefficients for the case M-B yields:

100 = _a (x, y) LI;/L , ( -0. )
,KS,B _ (x, y)KM’B, (82.8.25b)

where Ll;,/['B and KI;,/I'B are as given by equation (S2.8.19). Hence, using (S2.8.7), it follows that

S (@) = g—z(x, NS @). (52.8.26)

Moreover, the critical benefit-cost ratio for maternal influence x is

SB «M.B

B\*" B
U s2am
cl, cl,

where (B/ C);;,M'B is the critical benefit-cost ratio for p for the case of maternal control and helpers from both
sexes, as given by equation (52.8.20).

Let us now calculate the structure coefficients and critical benefit-cost ratio for offspring resistance y. If
both sexes help, then (see Fig. S5):

0pe,ik _op
6ym Zm=2Z ay

(x,)i =m] Vke {rm,mr}and V¢ € {Q,d}. (52.8.28)

Substituting this expression into (S2.8.3) and simplifying following the same steps as when calculating the

coefficients for the case O-B yields:

0

S8 = 61; (o, 119", (52.8.29a)
0

K?,’B = _65 (x, y)Kg'B, (S2.8.29b)

where th)’B and K?’B are as given by equation (S2.8.13). Hence, using (S2.8.7), it follows that
0
SJS,'B(Z) = £ (x, y)S,C,)’B(Z). (52.8.30)

Moreover, the critical benefit-cost ratio for offspring resistance y is

S,B 0,B
B\*" (B)*
) -3 52.831)
cl, “\cl,

where (B/C) ;;O'B is the critical benefit-cost ratio for p for the case of offspring control and helpers from both

sexes, as given by equation (52.8.14).

Shared control, only females help (S-F). For maternal influence x, when only females help, we have (see Fig.

S5)

Opy,i 0
9Ptk = —p(x,y)[k:mr and ¢ =9Q] Vi€ {r,m}. (52.8.32)
0xm Znm=2Z 0x

37



723

735

738

Substituting this expression into (S2.8.3) and simplifying following the same steps as when calculating the

coefficients for the case M-F yields:

op
SF _ M,F
1y = a(x, y)t,lJ R (S2.8.33a)
op
SF _ MF
Ky = x (x, y)Kp , (S2.8.33b)
where LI;A'F and KI;,/I’F are as given by equation (S2.8.22). Hence, using (S2.8.7), it follows that
5% = 2P (6, y)SHF @) (S2.8.34)
X - ax X, y p . .0.
Moreover, we can write the critical benefit-cost ratio for maternal influence x as
B #SF B «MF
(_) - (_) , (52.8.35)
cl, cl,

where (B/C) ’;,M'F is the critical benefit-cost ratio for p for the case of maternal control when only females help,
as given by equation (S2.8.23).

For offspring resistance y, we also have (see Fig. S5)

O0py.i 0
9Pk = 2P (%, )¢ =9andi=m] forall k€ {rm,mi. (52.8.36)
0Ym dy

Substituting this expression into (S2.8.3) and simplifying following the same steps as when calculating the

Zm=2

coefficients for the case O-F yields:

0
SF = 5 (9T, (S2.8.37a)
0
KSF = %(x, PKOF, (S2.8.37b)
where Lg’F and K?’F are as given by equation (52.8.16). Hence, using (S2.8.7), it follows that
557 @) = 22 (1,)59 @) (S2.8.38)
yz—ayx,ypz. 8.
Moreover, we can write the critical benefit-cost ratio for offspring resistance y as
«SF «OF
B B
Zl =(2] (S2.8.39)
cly Clp

where (B/C) ;,O'F is the critical benefit-cost ratio for p for the case of offspring control when only females help,

as given by equation (S2.8.17).

2.8.3 Summary
Summarizing, for model cases of offspring or maternal control of helping, the selection gradient of p is
1
CG(, — CG CG
Sy =—f (—lp C+x§ B), (52.8.40)

for C € {O,M} and G € {B,F}. The structure coefficients L%’G and KS'G are listed in Fig. S7A. This follows from
(52.8.7), (52.8.13), (S2.8.16), (S2.8.19), and (52.8.22).

For model cases of shared control, the selection gradients of x and y are
5362 = 2P (x, y)sMS S2.8.41
Y (@)= a(x,y) p o (2) (52.8.41a)
556@) = 2 (1,7)59% @) (S2.8.41D)
y - 6y x)y p ) -0.

for G € {B, F}. This follows from (S2.8.26), (S2.8.30), (S2.8.34), and (S2.8.38).
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2.9 Selection gradient of reproductive effort

Finally, let us calculate the selection gradient of reproductive effort, { = z, using equation (S2.7.4). Evaluat-
ing the expression for productivity Iy ; . (S1.6.17) at i = m, and differentiating the resulting expression with

respect to zy, using the chain rule, we obtain

OH[, k 0
a—m = (—qe,m,k (01,0 il = pomi)s+ Uz,enz,k])
Zm  |zg,=z Zm Znm=2
k2 OHZ,,C afz'k 0z
—Y4¢,m, k02,
o afZ,k Zm=% azk Znm=Z aZm Zm=Z
oIl d
= Gomk020 = (f2,h) da (2)[k = mr], (S2.9.1)
of> dz

where the last equality follows from our assumptions on the functional form of the late productivity and late
fertility of a mated pair (equations (S1.6.16) and (S1.4.1)) and from differentiating z; with respect to the mutant
trait. Substituting (52.9.1) into (S2.7.4) and simplifying, we obtain

1 o1l d
S;(z)=— —z(fz, h)ﬁ(z) Umr Z 02,0q¢ mmrVe - (82.9.2)
viu df;, dz reRd)

The selection gradient of reproductive effort is a product of factors that can interpreted similarly as for
the selection gradient of traits affecting helping. First, this selection gradient is proportional to the marginal
productivity of late fertility

oIl,
D=—=(f»,h), (§2.9.3)
ap 2

that is, the marginal effect on a mated pair’s lifetime productivity from a marginal increase in late fertility:
since early productivity is independent from late fertility, the marginal effect on lifetime productivity from a
marginal increase in late fertility equals the marginal effect on late productivity. As with the marginal benefit
of helping (S2.8.6), the marginal productivity of late fertility depends on who controls the helping probability
and on the sex of helpers via the neutral expected number of helpers, k. Thus, we follow a similar notational
convention and write DG for the marginal productivity of late fertility when help control is of type C and

when the helpers’ sex is G. Specifically, we have

@(fz(z),flp) for Ce {O,M} and G=B
0f2
Z—I;If(ﬁ(z),flalp) forCe {O,M} and G=F
2
D6 =4 . (S2.9.4)
oI,
—(f2(2), fip(x, ) forC=Sand G=B
0f
2—1}[2(]”2(2),f101p(x, y) forC=Sand G=F
2

Second, this selection gradient is proportional to the structure coefficient

KS’G:umr Z 02¢0d¢ mmrVe- (§2.9.5)

0eQ,d)

Although this structure coefficient has a similar form to the structure coefficient KIF\,A’B (52.8.19b), reproductive

values v, depend on help control C and the helpers’ sex G (52.6.13), so KS’G and KI;JA'B may be different.
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With these two notational conventions, the selection gradient of reproductive effort for each model case is

given by

1 df2
C,G, — C,GnCG
56 @) = = @xODOC, (S2.9.6)

Since the factors f/vTu, K(Z:’G, and d f>(z)/dz are all strictly positive (e.g., (S1.4.3)), a necessary and sufficient

condition for the selection gradient of reproductive effort z to be positive, and for z to be under positive direc-

tional selection is that the marginal productivity of fertility is positive, that is that
DS >0 (S2.9.7)

holds.
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3 Inclusive-fitness effects

Inclusive fitness describes selection in terms of how the phenotype of individual actors affects the personal
fitness of recipients [46, 48, 52, 62]. In general, the inclusive-fitness effect is the sum of the effects of a focal
individual’s phenotype on the fitness of recipients, where each effect is weighted by the relatedness of the actor
to the recipient and by the reproductive value of the recipient.

In this section, we show that the sign of the selection gradient of all the traits in our model can be rewritten
as the sign of an inclusive-fitness effect. To do this, we proceed in six steps. First, we define social classes,
actors, and recipients within a given nest, and introduce notation to refer to them (Social classes, actors, and
recipients; section 3.1). Second, we define reproductive worth, which is an inclusive-fitness measure of repro-
ductive valuation of social partners, and show that the structure coefficients can be written in terms of such
measure (Reproductive worth; section 3.2). Third, we define relative reproductive worth, which is a measure of
relative reproductive valuation of social partners (Relative reproductive worth; section 3.3). Fourth, we define
personal fitness functions to calculate inclusive-fitness benefits and costs for a trait affecting helping (Individ-
ual cost and benefit of helping; section 3.4). Fifth, we write the selection gradient of a trait affecting helping
in terms of the trait’s inclusive-fitness effect (Inclusive-fitness effect for a trait affecting helping and Hamilton’s
rule; section 3.5). Finally, we define the inclusive-fitness benefit for reproductive effort and write this trait’s
selection gradient in terms of the trait’s inclusive-fitness effect (Inclusive-fitness effect for reproductive effort;

section 3.6).

3.1 Social classes, actors, and recipients

In the following, we introduce some notation to refer to the different sets of individuals (or social classes) of a

“focal” nest in our model, and to distinguish between sets comprising actors and sets comprising recipients.

Social classes. We denote by M the singleton whose only member is the mother of the nest; and by O, the
set of sex-¢ offspring produced in brood a. The set of a-th brood offspring is denoted by O,, where O, =

049 U O, ;. We illustrate these social classes in Fig. S6.

Actors. Actors are individuals that genetically control the trait { in consideration. In our model the set of
actors A is thus either (i) the mother’s singleton M (if helping is under maternal control, C = M; or if helping is
under shared control, C = S, and the trait is maternal influence, { = x), (ii) the set of first-brood offspring O, (if
both sexes help, G = B, and either helping is under offspring control, C = O, or helping is under shared control,
C =S, and the trait is resistance, { = y), or (iii) the set of first-brood female offspring OIQ (if only females help,
G = E and either helping is under offspring control, C = O, or helping is under shared control, C = S, and the

trait is resistance, { = y). In short,

M ifC=Mor(C=Sand{=x)
A={0; ifG=Band[C=0or(C=Sand{=y)] (83.1.1)

O19 ifG=Fand[C=0Oor(C=Sand{=y)l.
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A
Wm0, Oy O, B Te(M),5(0,0)
I &
f.(M).c(o‘Q) l'e(o,

le(0,0).0(0,0)
Te(m).0(0, 4) .
cn o 6
Te(M).0(0,5) e(0 )00
N

wo,,0,

Figure S6: Social classes. Panels A and B show Venn diagrams illustrating the social classes in a given nest
resulting in our model. (A) Reproductive worth coefficients resulting in our model, as shown in Fig. S7. (B)

Relatedness coefficients involved in our model, as shown in section 3.2.1.

Moreover, we denote by A, the subset of sex-¢ individuals in A, e.g., AQ = 019 and Ay =9 if A= 019, where

@ is the empty set.

Recipients. Recipients are individuals whose fitness is affected by the trait. There are two types of recipients:
individuals that can help (which we call candidate helpers), and individuals that can be helped (which we call
payees). In our model the set of candidate helpers H is thus either the set of first-brood offspring O; (if both
sexes help, G = B), or (ii) the set of first-brood female offspring O;¢ (if only females help, G = F). A candidate
helper is not necessarily a helper and a payee is not necessarily helped (e.g., if p = 0). We will see that the set
of payees P is the set of second-brood offspring P = O, in all cases. Consequently, the set of recipients R is
either (i) the set of first-brood offspring O, (the candidate helpers if both sexes help, G = B), (ii) the set of first-
brood female offspring O; ¢ (the candidate helpers if only females help, G = F), or (iii) the set of second-brood

offspring O, (the payees). In short,

0, ifG=B

H= (S3.1.2a)
Oip ifG=F

P=0, (S3.1.2b)

H for candidate helpers
R= (S3.1.2¢)

P for candidate recipients of help (payees).

Moreover, we denote by R, the subset of sex-¢ individuals in R.

3.2 Reproductive worth

Sampling experiment. Consider a neutral (z, = z) rare mutant subpopulation introduced at a resident equi-
librium. As ecological time t advances, this mutant subpopulation asymptotically reaches a stable distribution
proportional to u (52.6.14); since the mutation is neutral, the mutation’s frequency remains constant. Now
consider sampling uniformly at random one young neutral mutant nest at ecological time ¢ — co. Having

sampled a nest, we draw an individual actor uniformly at random from the subset A, of sex-¢ actors in the
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A B C D

—ic+Kkb>0 Substituting
reproductive
Structure coefficients Substituting relatedness Substituting ¢, and o, worth
Offspring control, both sexes help (OB)
lf,)B = Z O1,0UgVy = Z O1,0Uple(0y,),0(04) Ve = Z D¢(O1)Fa(011).0(010) Ve = wo,,0,
—— )
£e{Q.d'} ée(Q,o’}m(O‘) e{Q.d'}
K,(;)B = Z O Z 02,0/ Z UkQe,m kQe . kVer = Z O1,0Up Z 02,0'Te(04),0(05 ) VO = Z @,(01) Z Ut‘f(02)f-(ow),o(02,,)Vt” = Wo,,0,
£e{9,5'} ve{.d'} Ke{mx;rm} (9,0} ~— 1'e{R.T} e{Q,d'} re{Q,d}
Ugle(040).0(0501) ¢,(01) ¢ (02)
Offspring control, only females help (OF)
" = o19Ugvo = 019U07e(0,0),(0,0) R =019 D 9ulOi0)re00e000 Ve = 91990000
—
9(Or¢) e
K =010 Z 02,01 Z UkQQ m k Qe s kVer = 01,953 Z 02,0/ 14(0,0),0(0,0) V2! =019 Z ¢,(Os9) Z 00 (02)le(0y),0(0p) Ver = 91.2900,0.0;
re{Q,d'} ke {mr,rm} 4,9(0'9)4/6{9.0’} 0¢(0s) £e{Q,5"} re{Q.d'}
UQre(0,0),0(0zer)
Maternal control, both sexes help (MB)
(5" = Uy Z 010Gt m,mr Ve =ug Z O1,eFe(M),0(0y) Ve = Z (M) Z 00 (O1)la(My),0(0,0) Ver = Wm0
" — 0 o'
€129V 1y oon) ¢9(%£€{9’d}2701) e{Q.9'} ve{Q.d}
K = U > 020 Qo e Ver =Uo D> Oouleo(0u Ve = > oM S 00 (0w e(0,) Ve = Wm0,
. Y “ g oy %
Y roun o(0,) ¢Q<M)f e(Q,o’}gw(oz) e{Q.F} re{Q,d}
Maternal control, only females help (MF)
" = 01,0Unr o mm: Vo = 019Uol(M)0(0,0) VR =010 > M) D 0u(O1)rem) e, Ve = 01,90M0,0
Y Y {9, e{Q,F
To(M).0(0,0) ®q (M) te{9.9'} re{Q.7}
Ky = 01 Une Z 02,0/ Qe m,mr Ve = 0y 9Ug Z 02,0 Fo(M),0(051) Ve =019 Z (M) Z 00 (O2)le(My),0(0,,) Ve = 01,90M0,
’ — bt} by ,
re{.3"} Ta(M),(Oper) ¢Q(,V,)L €{Q.d'} 0,(02) 2e{Q,d"} e{Q,3}

Figure S7: Structure coefficients in terms of reproductive worth. (A) Structure coefficients when helping is
under offspring or maternal control, where either both sexes or only females help. Such structure coefficients
after substituting for (B) relatedness; (C) the probability that an actor is mutant and of a given sex, and the
probability that a recipient is of a given sex; and (D) reproductive worth. The structure coefficients when
helping is under shared control, where either both sexes or only females help, are given by 1;¢ = (3p/3x)1},'C,

K56 = (@p/3x0)xC, 5° = Op1ay))©, and k§C = (Bp/dy)x)C.

nest; we denote this individual by (A,). Then, we draw a recipient uniformly at random from the subset Ry

of sex-¢’ recipients in the nest; we denote this individual by o(R).

Definition of reproductive worth. Based on the sampling experiment defined above, we define the repro-
ductive worth for a random actor in A of a random recipient in R as

3 Ge(A)reay),ea) Ve ifA=R
wap=1{ (€99 e (53.2.1)

Z;E{Q,Oz} be(A) Z[’e{g,o”} 0p(RTeape®nVe HA#R,
where (i) 7.(a,),0(r,) is the relatedness of actor (Ay) to recipient o(R,), defined as the conditional probability
that o(R,/) is mutant given that «(A,) is mutant (see section 3.2.1); (ii) ¢, (A) is the probability that an individual
in Ais mutant and of sex ¢ (see section 3.2.2); and (iii) o, (R) is the probability that an individual in R is of sex ¢’
(see section 3.2.3). Note that if the actor set is equal to the recipient set (A = R), reproductive worth is defined
so that the random actor and the random recipient are the same individual (i.e., the focal individual «(A,))
so the relevant relatedness is r.(4,).(4,). Given these definitions, reproductive worth w4 r is an inclusive-
fitness measure of how a random actor values its own reproduction (if A = R) or the reproduction of a random

recipient (if A # R).
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Figure S8: Relatedness and relative reproductive worth. (A) Values of the relatedness coefficient r we obtain.
Taken from (S3.2.5), (S3.2.8), and (S3.2.9). (B) Values of relative reproductive worth p when both sexes help

(G =B) and brood sex proportions are unbiased (o] = g2 = 1/2). Taken from (S3.3.4) and (S3.3.7).

Outline. Insubsections3.2.1,3.2.2, and 3.2.3, we give details about the calculation of all the building blocks of
our notion of reproductive worth. Then, in subsection 3.2.4 we show how to use these calculations to rewrite
the structure coefficients ¢ and « in terms of reproductive worth, which we then use to obtain an inclusive-

fitness interpretation of the selection gradients.

3.2.1 Relatedness

We define the relatedness r; ; of individual i to individual j as the conditional probability that i is mutant given

that j is mutant, that is

ri,j = Pr(j’s genotype = m|i’s genotype = m)

_ Pr(i’s genotype = m and j’s genotype = m) (53.2.2)
B Pr(i’s genotype = m) '
Our measure of relatedness takes the following values, summarized in Fig. S8A.
Self-self (r.(4,),.(4,)). For any set of actors A, the relatedness of an actor to itself is
Fe(ap,sap =1, (S3.2.3)
which is obtained from (S3.2.2) by letting i = j = «(Ay).
Mother-offspring (. ,0(0,,))- The relatedness of a mother to her offspring of sex ¢ is
uedqe,
Te(M),0(040) = °Y? qeo Vaeil,2}. (83.2.4)
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Indeed, the mother is a mutant with probability ug so that both mother and offspring are mutants with

probability ug gy o. Simplifying, the relatedness of mother to offspring equals the transmission probability

qe¢,Q = q¢,mmr-

For both diploids and haplodiploids, and from Fig. S4, we then get

(T.(M),o(olg), r.(M),o(Olo7,)) = (F.M,O(OZQ), r'(M)'°(Ozo’)) =(1/2,1/2). (83.2.5)

Hence, irrespective of the genetic system and of the sex of the offspring, the relatedness of a mother to a ran-

dom offspring is one half.

Sibling-sibling (r.(0,,),c(0,,)). Consider the relatedness of an individual to a (full) sibling. The conditional
probability that a (second-brood) sibling of sex ¢’ is mutant given that a (first-brood) offspring of sex ¢ is

mutant is given by

ZkE{Q,OZ} Urqekqde k ZkE{Q,Oz} Urqe,kqdek

Te(010),0(0pp1) = ) (83.2.6)

Y erq.qy Ukde k ue
where the second equality makes use of equation (52.6.27). Indeed, a first-brood offspring is a mutant if ei-
ther the mother is a mutant that transmits her mutant allele to the offspring (which happens with probability
ug qe,o) or if the father is a mutant that transmits his mutant allele to the offspring (which happens with proba-
bility # 7 g, ). Summing up the two probabilities, we obtain the total probability that a first-brood individual
is a mutant, which is equal to u,. This explains the denominator of the expression above. To calculate the nu-
merator, we follow a similar logic, now noting that both offspring are mutants if either the mother is a mutant
that transmits her mutant allele to both offspring (which happens with probability uo gs,0 g o) or if the father
is a mutant that transmits his mutant allele to both offspring (which happens with probability u; q, 74, ).
Summing up the two probabilities we obtain the total probability that both offspring are mutants. The ratio of
the two probabilities gives the conditional probability that both actor and recipient are mutants given that the
actor is a mutant.

Note that, for a given sex of the actor, £ € {Q,d}, r.(0, 0,0(0,,) defines a probability distribution over the

possible sexes of the recipient, ¢’ € {9,5'}. Indeed

Zke{Q,o"} Urqe,kqe k

Z Te(01¢),0(0pp1) = Z

0e(Q,5) 0'e{Q,d"}
1

:u_ Z Urqe,k Z qe k
? ke(Q,d} (.5}
1

:u_ Z Urqe,k
? kelQ,d'}

Ue

=1, (83.2.7)

where the first line substitutes the formula given in equation (S3.2.6), the second line rearranges, the third line
applies identity (S1.2.1d), and the last equality results from applying (S2.6.27).
For diploids, and from (S2.6.24) and Fig. S4, we obtain

(r'(OIQ)’O(OZQ)’r'(OIQ)’O(Och)’r°(olo’)'°(029)’r'(o1o7')’°(och)) =(1/2,1/2,1/2,1/2), (S3.2.8)
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so that the relatedness of an individual to any sibling is, irrespective of the sexes of actor and recipient, equal
to one half.

For haplodiploids, and from (S2.6.24) and Fig. S4, we get

(r'(olQ)’o(OzQ)’r.(OIQ)'O(Ozd)’r'(old)'o(OZQ)’r'(o1o7')'°(och)) =(3/4,1/4,1/2,1/2). (83.2.9)

Here, the asymmetry of the transmission probabilities for the case of haplodiploids makes a female offspring

more related to a sister than to a brother, while a male offspring is equally related to both sisters and brothers.

Connection to other relatedness coefficients. Our relatedness coefficients are conceptually most similar to
the weighted pedigree relatedness coefficients of Pamilo and Crozier [56, p. 190, G’ in their notation]. Such
weighted relatedness involves pedigree relatedness weighted by the so-called genetic reproductive values (which
we have seen to arise in our model as the stable sex distribution rather than as reproductive values). Indeed,
the stable sex distribution is part of our relatedness coefficients r (equation (S3.2.4) and (S3.2.6)). Hamilton’s
notion of complete or life-for-life relatedness coefficients includes both the stable sex distribution (described by
a factor 2 multiplying c in his cross-sex formulas in Table 1; 49), and the sex ratio (his c), which we have seen to
arise in our model as reproductive values. Accordingly, the values for our relatedness coefficients (equations
(§3.2.5), (S3.2.8), and (S3.2.9)) numerically recover the standard values for Hamilton’s life-for-life relatedness

coefficients for the case of singly-mated, outbred queens, and unbiased sex ratio [e.g., 35, p. 81].

3.2.2 Probability that an actor is mutant and of a given sex

¢¢(A) in (S§3.2.1) denotes the probability that an actor (i.e., an individual in A) is mutant and of sex ¢. This

probability takes the following values.

Actors are first-brood offspring (A = O;). If the set of actors is the set of first-brood offspring, the probability
that an actor is mutant and of sex ¢ is

¢e(O1) =010y, (S3.2.10)

since a first-brood offspring is of sex ¢ with probability o;,, and it is a mutant with probability u, due to

equation (S2.6.27).

Actors are first-brood female offspring (A = 019). Ifthe set of actors is the set of first-brood female offspring,

the probability that an actor is mutant and of sex ¢ is given by

up ifl=¢
$e(O19) = (S3.2.11)
0 ife=0.

Indeed, a first-brood female offspring is of sex ¢ with probability 1 and it is mutant with probability u, due to

equation (52.6.27); by definition, a first-brood female offspring is of sex & with probability 0.
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Actors are mothers (A = M). Ifthesetofactorsis the mother singleton, the probability that an actor is mutant
and of sex ¢ is

u, iflé=¢9
¢e(M) = (S3.2.12)

0 ife=d.
Indeed, a mother is of sex ¢ with probability 1 and it is mutant with probability u#, due to equation (S2.6.22);

by definition, a mother is of sex & with probability 0.

3.2.3 Probability that a recipient is of a given sex

o¢(R) in (S3.2.1) denotes the probability that a recipient (i.e., an individual in R) is of sex ¢'. This probability

takes the following value.

Recipients are a-th brood offspring (R = O,). Consider the case where the set of recipients is the set of a-th

brood offspring. The probability that an a-th brood offspring is of sex ¢’ is

00 (Og) =04 (S3.2.13)

3.2.4 Structure coefficients in terms of reproductive worth

We can obtain an inclusive-fitness interpretation of the selection gradients by rewriting the structure coeffi-
cients ¢ and « in terms of reproductive worth (S3.2.1), for each of our model cases. These equivalences and
their derivation are summarized in Fig. S7. Substituting equations (53.2.3), (S3.2.4), and (S3.2.6) into Fig. S7TA
yields Fig. S7B. Substituting equations (53.2.10), (S3.2.11), (S3.2.12), and (S3.2.13) into Fig. S7B yields Fig. S7C.
In turn, substituting equation (S3.2.1) into Fig. S7C yields Fig. S7D which expresses the structure coefficients
in terms of reproductive worth.

Overall, we have shown that the structure coefficients can be written in terms of reproductive worth with
the calculated expressions for the probability that an actor of a given sex and a recipient of a given sex carry
a mutation given that the actor carries it (1,4 0(R)) and r.(a,),.(4,)), the probability that an actor is mutant
given that it is of a given sex (¢, (A)), and the probability that a recipient is of a given sex (o, (R)) (Fig. S7). In
doing this, we find that candidate recipients of help (i.e., the payees) are second-brood offspring for all our
model cases (Fig. S7). For instance, even if helping increases mated pair survival, payees are still second-brood

offspring and the relevant relatedness is that toward such offspring rather than toward the mated pair.

3.3 Relative reproductive worth

In order to write more compact expressions, we define the relative reproductive worth, p 4 i p, for a random

actor in A relative to a random candidate helper in H of a random payee in P as

wAp
PAHP= ) (83.3.1)
WAH

’

that is, as the ratio between the reproductive worth w4 p (measuring how much a random actor from A val-

ues the reproduction of a random payee from P) and the reproductive worth w4 iy (measuring how much a
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random actor from A values the reproduction of a random candidate helper from H). Our measure of rela-
tive reproductive worth can be seen as a generalization of the concept of life-for-life relatedness coefficients
introduced by Hamilton [49] to allow for actors and recipients to be of both sexes.

Relative reproductive worth p 4 7, p takes the following values, summarized for the cases when both sexes

help and brood sex proportions are unbiased in Fig. S8B.

Sibling-sibling-sibling for both females and males (p¢,,0,,0,)- The relative reproductive worth pg,,0,,0, for

arandom first-brood offspring actor relative to itself of a random second-brood offspring recipient is given by

00 00, = 0102 _ Y190 POV Lpreig, 51 T2,67+(010),005 Ve $332)
R wo,,0, Z(E{Q,O”}(p[(ol)v[

This expression greatly simplifies for two particular but relevant cases. First, for diploids, and via Fig. S7, we

get

1 2[6{9107‘} 02¢0Vy¢

£01,01,0, = (83.3.3)

2 perg,y 01,0 Ve

Second, if both sexes help (G = B) and brood sex proportions are unbiased (i.e., o1 = 02 = 1/2), so that vo =

vy =1 also holds, (S3.3.2) can be simplified as

2[6{9,07'} ¢¢(01) Z['E{Q,d} 02,0'Te(014),0(0,,1)
ZIE{Q,OZ} ¢e(01)

P0:1,0,,0, =

1
=5 Z Uy Z T'e(01¢),0(0y1)
0eiQ,F}  C'e(@,F)
3
= — u[
zee{g,o”}
1
=, (S3.3.4)
2

where the first line follows from substituting (S3.3.2) with vo = v, = 1; the second line substitutes 030 =

02,0 = 1/2, and identifies ¢,(O;) = uy; the third line applies identity (S3.2.7); and the fourth line simplifies.

Mother-offspring-offspring (0x7,0,,0,)- The relative reproductive worth pys,0,,0, for a mother relative to a

random candidate first-brood offspring helper of a random second-brood offspring payee is given by

MO0, 2te(Q,F) T2LTH(M),0(020) Ve

PM,0,,0, = = ) (83.3.5)
2 oo, Z[E{Qyoz}al'gr.(M),o(ow) vy
which, for both diploids and haplodiploids, simplifies to
Zg 9,5} O2¢0Vy¢
OM01,0, = T ($3.3.6)

Yieg,q O10ve

If, additionally, both sexes help (G = B) and brood sex proportions are unbiased (i.e., 0; = 02 = 1/2), so that

vo =vgp =1 also holds, then

PM,0,,0, = 1. (S3.3.7)
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Sibling-sibling-sibling for females (oo, 9'019’02)' The relative reproductive worth £0,6.0,0.0; for a random

first-brood female offspring actor relative to herself of a random second-brood offspring payee is given by

wo,,,0
1972 Vg
£0,0,0,0,0: = = Z 02,074(0,0),0(020)

©010.019 79,

—. (83.3.8)
Ve

If only female offspring were produced, then 0,0 =1 and 0, ; = 0 so the relative reproductive worth for a

random first-brood female offspring actor relative to herself of a random second-brood sister payee reduces

to

9019’019’02 = r'(OIQ)YO(OZQ)’

as stated in the main text.

Mother-daughter-offspring (p s, 0,0.02 ). The relative reproductive worth pas,0, 0.02 for a mother relative to a

random candidate first-brood daughter helper of a random second-brood offspring payee is given by

oMo, | e ) T2 M09 Ve
pM,OIQ,Oz = o = ’ » .
M09 *(M),0(0,0) VQ

(83.3.9)

If only female offspring were produced, then 0,0 =1 and 0, » = 0 so the relative reproductive worth for a
mother relative to a random candidate first-brood daughter helper of a random second-brood daughter payee
reduces to

Te(M),0(0,0) VR To(M),0(0y0)

PM,0,0,0, = L

Te(M),e(0,0) VR Te(M),0(0,0)

as stated in the main text.

3.4 Individual cost and benefit of helping

The cost C (52.8.4) and the benefit B (S2.8.5) of helping refer to the marginal effects of changing the number of
helpers on either the early or the late productivity of a mated pair. These quantities can also be written in terms
of inclusive fitness, which considers the effect that an individual candidate helper i € H has, respectively, on
its own personal fitness and on the fitness of its payees (all members of P). Such individual interpretations
of cost and benefit of helping are the last building block we need in order to interpret the selection gradients
from an inclusive-fitness perspective.

For these purposes, let us define the personal fitness of a first or second-brood offspring as their personal
contribution to the stages of unmated reproductives. Now consider a focal individual i belonging to the set of
candidate helpers H. Denoting by p; the probability that i becomes a helper, the personal fitness of i is then

given by
Wii =0 -pi)sy, (S3.4.1)
while the expected total fitness of individuals belonging to P is

Wy =11z (f2, h). (S3.4.2)
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The marginal effects of the trait ¢ affecting helping of a focal candidate helper on its own personal fitness and

on the total fitness of its second-brood offspring are then respectively given by

OWy;  0Wy; dp; Op ap
—cr = = - — = -C— (S3.4.3a)
“STe T opi o ar T T ag
OWZ OWZ Gp, 6H2 oh 6;9 61_[2 ap, ap
_ , 2Pl _ gP $3.4.3b
6(1 6pl o¢; oh (f2 )6 6( oh on 2 )afl 0( ( )

where we have used the fact that dh/dp; = 1, since the number of helpers can be written as
h=pi+ ) pj
jEH,j#i
and the probabilities p, for all ¢ € H are assumed to be independent.
Thus, the benefit B and cost C equal the inclusive-fitness benefit b; and cost ¢; when the trait is the helping
probability { = p.

3.5 Inclusive-fitness effect for a trait affecting helping and Hamilton’s rule

We have obtained expressions for the selection gradient of a trait { affecting helping for all the model cases
we study in terms of structure coefficients (equations (S2.8.40) and (52.8.41)). We have also shown how such
structure coefficients translate into inclusive-fitness measures of reproductive valuation (Fig. S7). Finally, we
have also obtained expressions for the individual benefit and cost (equations (S3.4.3)). Using these results and
the definition of the maximum number of helpers % (equation (S1.1.5)), it follows that the selection gradient

of a trait { affecting helping for all the model cases we study can be written as

h
SCG —HCG, (S3.5.1)
viu ¢

where we define the inclusive-fitness effect of a trait { affecting helping as

H?’G =—WAHC] +a)A,pb(. (S3.5.2)

Indeed, Hg’c’ is the marginal effect of a candidate helper’s phenotype on the candidate helper’s personal fitness
(=c¢) weighted by how much a random actor values the reproduction of arandom candidate helper (w 4 f7) plus
the marginal effect of a candidate helper’s phenotype on the fitness of payees (b;) weighted by how much a
random actor values the reproduction of a random payee (w4 p).
Therefore, for all the model cases we consider, a trait { affecting helping is favored by selection if and only
if
ij,Hc(+wA,pb( > 0. (83.5.3)

C,G
H,
Condition (S3.5.3) constitutes a Hamilton’s rule for the model cases we consider [46, 48, 52, 62]. Resistance is
thus a selfish trait (both ¢, <0 and b, < 0) according to the terminology of West et al. [64].

Dividing by w 4, i (which is strictly positive), a trait { affecting helping is favored by selection if and only if

—Cr +pA'H'pb( >0,
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where p4 g p is the relative worth for a random actor in A relative to a random candidate helper in H of a
random payee in P. Specifically, if the trait is the helping probability { = p, helping is favored by selection if

and only if
—C+pA,H,pB > 0. (83.5.4)

Then, for all the model cases we consider, the critical benefit-cost ratio (S2.8.10) can be alternatively written as

B\* 1
(—) = . (S3.5.5)
Cc PAH,P

3.6 Inclusive-fitness effect for reproductive effort

We have obtained the selection gradient of reproductive effort z for all the model cases we study in terms of the
structure coefficient KS’G (52.9.6). We have shown how this structure coefficient translates into an inclusive-
fitness measure of reproductive valuation; specifically, it equals w0, (Fig. S7). We can define the individual
benefit for a mother of increasing her reproductive effort z as

_oW,_omdfs s

= . S3.6.1
“T 0z 0fy dz dz ( )

Using these results, it follows that the selection gradient of reproductive effort z for all the model cases we
study is

1
CG _ CG
S = vTuHZ , (83.6.2)
where we define the inclusive-fitness effect of reproductive effort z as

HES = wpr,0,bs. (53.6.3)
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4 Conflict dissolution and benefit-cost ratio zones

In this section, we define conflict dissolution and show that it can also be understood in terms of benefit-
cost ratios zones. To do this, we proceed in three steps. First, we define zones for the benefit-cost ratio in
which a party (i.e., the mother or the offspring) favors or disfavors increasing helping (Benefit-cost ratio zones
considering the interest of a single party; section 4.1). Second, we define benefit-cost ratio zones considering
simultaneously the interests of both mother and offspring, and define the zone of parent-offspring conflict
over helping (Benefit-cost ratio zones simultaneously considering the interest of mother and offspring; section
4.2). Third, we define conflict dissolution and show how it can be understood in terms of benefit-cost ratio

zones (Conflict dissolution; section 4.3).

4.1 Benefit-cost ratio zones considering the interest of a single party

To define the benefit-cost ratio zones, recall the following. We have obtained that an increasing helping prob-
ability p is favored by selection if and only if
B (B

I > (E) (54.1.1)

(equations (S2.8.8) and (S2.8.9a) since x > 0 for { = p). We have also obtained that the critical benefit-cost ratio

(B/C)* can be written in inclusive-fitness terms as

e =
C PAH,P

for all the model cases we consider (equation (S3.5.4)). Finally, we have seen that the critical benefit-cost ratio

depends on the model case, which when useful we highlight by writing (B/C)* = (B/ C);‘,C'G for the helping
probability p (Fig. S9A).
When helping is under the control of a single party, that is, when helping is under offspring or maternal

control, we have the following benefit-cost ratio zones (Fig. S9B):

1. Low benefit-cost ratio (B/C < (B/C)*). In this zone, the selection gradient of helping, S, (z), is negative,
so helping is disfavored by selection. As the helping trait is either under maternal or offspring control,

we say that helping is disfavored by the party controlling helping.

2. High benefit-cost ratio (B/C > (B/C)*). In this zone, the selection gradient of helping, S, (z), is positive,

so helping is favored by selection. We say that helping is favored by the party controlling helping.

We can show that if the genetic system is diploid, if only females help, or if brood sex proportions are

unbiased, that is, if at least one of the following conditions is satisfied:

P=D, (S4.1.2a)
G=F, (S4.1.2b)
o1=02=1/2, (S4.1.2¢)
then
B MG B +0G
— <|— (54.1.3)
Clp Clp
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Figure S9: Benefit-cost ratio zones. (A) Critical benefit-cost ratio for helping for all model cases and its cor-
responding inclusive-fitness interpretation (equations (S3.5.5), (83.1.1), and (S3.1.2)). (B) Benefit-cost ratio
zones considering helping control by a single party. Who controls help is given by C (for C € {O,M}, where
O stands for offspring control and M stands for maternal control). (C-E) Benefit-cost ratio zones simultane-
ously considering helping control by mother and offspring, (D) when condition (S4.1.3) holds and (E) when

the reverse of condition (S4.1.3) holds. Throughout, we consider only the case when (S4.1.3) holds (D).

A 1.0 / 1.00 -v

B

8] Rebel helping 098]
zone Rebel helping

0.6 0.96 zone

0.4 1 0.94 1

0.2 1 0.92 1

Female proportion
in second brood, 02,0

0.0 T T T T 0.90 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.5 0.6 0.7 0.8 0.9 1.0

Female proportion
in first brood, 04 Q

Figure S10: Rebel helping zone. In the case of haplodiploids where both sexes help, the reverse of inequality
(54.1.3) holds in the red zone. (A) In full brood-sex-proportion space. (B) In “zoomed” brood-sex-proportion

space. Parameter values are: f; =30, f, =60, s; =0.2, s, = 0.5, spy = 0.9, and p = 0.5.

holds, in which case the helping zone is greater when helping is under maternal control than under offspring
control. Note that at least one out of the three assumptions listed in (S4.1.2) holds in all of our model cases,
except for the case of haplodiploids where both sexes help (HD-C-B) with biased sex proportions (o, # 02). In
such a case, the reverse of inequality (S4.1.3) can hold in a thin band of extremely female biased sex proportions
(Fig. S10). Yet, such a case might be of limited biological interest as known real populations of haplodiploids
where both sexes help are characterized by unbiased sex proportions [43, 61].

We now show that if any of the assumptions listed in (S4.1.2) holds, then (S4.1.3) holds. First, let us consider

case (S4.1.2b) (i.e., only females help), for which (S4.1.3) takes the form

MF OF
B

2 <(3) - (54.1.4)
cl, “\cl,
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Via the expressions in Fig. S9A, and using (S3.3.8) and (S3.3.9), inequality (S4.1.4) simplifies to

Te(M),0(0,0) 1
9 (S4.1.5)

Z[e{g,d}C’Mn(M)@(Ozz) Uy Z[e{Q,cﬁ}UZv[r'(Olg)v°(021) Ve ’
For both diploids and haplodiploids, we have that r.(p00,,) = 1/2 for all £ € {,d"} and all a € {1,2} (from
equation (S3.2.5)), so (S4.1.5) simplifies to

1 1
< )
L1edy 02000 Xye19.q) 02.0T(0,0)0(020) Ve

which rearranging yields

2. O (1 - r-(019>,o(02g)) ve>0.
0e{Q,d"}

This holds true since r.(0,5),0(0,,) < 1 always holds (from equations (S3.2.8) and (S3.2.9)). We conclude that

19
(S4.1.4) is true for both diploids and haplodiploids.

Now, let us consider case (S4.1.2a) (i.e., the genetic system is diploid). Since (S4.1.4) has been established
irrespectively of the genetic system, we only need to consider the case where both sexes help (G = B), that is

B «MB B «OB
@ <3 - (54.16)
¢ p ¢ p

for diploids. This inequality follows by substituting from (S3.3.3) and (S3.3.6).
Finally, let us assume that (S4.1.2c) holds (i.e., brood sex proportions are unbiased). Since (S4.1.4) has
been established irrespectively of the brood sex proportions, we only need to consider the case where both

sexes help (G = B). Then, via equations (S3.3.4) and (S3.3.7), we have that

M,B

B *

— =1, .1.7a
1 (S4.1.7a)

Clp

0,B

B *

2 =2 (S4.1.7b)

Clp

holds, and (S4.1.3) is satisfied.

4.2 Benefit-cost ratio zones simultaneously considering the interest of mother and off-
spring
Considering the interests of both mother and offspring simultaneously, we have two critical benefit-cost ratios:

one corresponding to helping under maternal control ((B/ C);‘,M'G) and one corresponding to helping under

offspring control ((B/C) ;‘,O'G). Defining the minimum critical benefit-cost ratio,

0,G M,G
B\* . B\* B\*
(—) Emln((—) ,(—) ), (S4.2.1)
C Clp Clp
and the maximum critical benefit-cost ratio,
> 0,G M,G
B\* B\* B\*
(—) = max (—) ,(—) s (S4.2.2)
C Clp Clp

we have the following three benefit-cost ratios zones (Fig. S9C-E):
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1. Low benefit-cost ratio (B/C < (B/C)*). In this zone, the selection gradients of helping under maternal
control and under offspring control, S,IXI'G(Z) and SS’G(Z), are both negative. Hence, we say that helping

is disfavored from both the mother’s and offspring’s perspective.

2. Intermediate benefit-cost-ratio ((B/C)* < B/C < (B/C)*). In this zone, the selection gradients of helping
under maternal control and under offspring control, S%G(z) and S,?’G(z), have opposite sign. Thus,
helping is favored (resp. disfavored) from the mother’s perspective and disfavored (resp. favored) from
the offspring’s perspective. Hence, we say that there is parent-offspring conflict over helping. There are

two possibilities:

(a) If (B/C) ;M'G < (B/O) ;O'G holds, so that M = (B/O) ;‘,M'G and (B/C)* = (B/C) ;O'G, the selection
gradient of helping under maternal control, SQ/I’G(Z), is positive and the selection gradient of help-
ing under offspring control, SS'G(Z), is negative. Hence, helping is favored from the mother’s per-
spective but is disfavored from the offspring’s perspective. We call “manipulated helping” the help-
ing that is in this zone.

(b) If (B/C); " < (B/C)}" holds, so that (B/C)* = (BIC), " and (BIC)* = (B/C)},"", the selection
gradient of helping under maternal control, S %G (z), is negative and the selection gradient of help-
ing under offspring control, SS'G(Z), is positive. Hence, helping is disfavored from the mother’s
perspective but is favored from the offspring’s perspective. We call “rebel helping” the helping that
is in this zone. As shown above, this case only occurs for haplodiploids where both sexes help and

with extremely female biased sex proportions (Fig. S10). We do not study this case.

3. High benefit-cost ratio (B/C > (B/C)*). In this zone, the selection gradients of helping under maternal
and under offspring control, S?,A‘G (z) and S;,)'G(z), are both positive. Hence, helping is favored from both

the mother’s and the offspring’s perspective. We call “voluntary helping” the helping that is in this zone.

4.3 Conflict dissolution
We say that conflict dissolution occurs if there are evolutionary times 7, < 72 such that
S@r)) >0, SPC@r)) <0, SyC@2)>0, and S)C((12)>0, (84.3.1)

that is, helping is favored by the mother and disfavored by offspring at time 7, and helping is favored by both

mother and offspring at time 7,. Given equation (S3.5.1), conditions (S4.3.1) are equivalent to
HyC@@) >0, Hp®@@)) <0, HpC@2))>0, and HyC@rz)>0. (54.3.2)

Provided that Hg'G(Z(T)) is everywhere differentiable with respect to 7, conditions (S4.3.2) imply that the
inclusive-fitness effect for offspring-controlled helping satisfies the following: there exists an interval [7},7}] c

[71,72] such that

1. HS'G(Z(T)) increases with evolutionary time during [T’l,‘r’z], that is,

0,G
p

T

(z(r)) >0 (persuasion condition) (54.3.3a)

forall 7 € [7],75], and
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2. HS'G(Z(T)) is null at some evolutionary time within [7],7}], that is,
’Hg'G(z(r)) =0 (conversion condition) (S4.3.3b)
for some 7 € (7}, 75).

Conditions (S4.3.3) state that ’Hg’c(z(ﬂ) changes sign from negative to positive for some 7 € [71,72]. We call
(S4.3.3a) the persuasion condition and (S4.3.3b) the conversion condition for conflict dissolution.
Since Hg'G(Z(T)) = ’HS’G(p(T), z(71)) and from the chain rule, the persuasion condition (S4.3.3a) is equiva-
lent to
dHp®  oHy O dp 0O da

—+
dr Op dr 0z dr

forallt e [T’l, T’Z]. Following Brown and Taylor [36], we say that the derivative

(54.3.4)

oHgC

K

measures the evolutionary synergy of { on ¢: if the derivative is positive, there is evolutionary synergy; if it is

negative, there is evolutionary interference. Motivated by (S4.3.4), we say that there is conflict dissolution via
maternal reproductive specialization if there exist 7; < 7, such that (S4.3.1) hold and (S4.3.4) implies that

OHYC dz

0z drt

>0 (54.3.5)

forall 7 € [7,7}]. Thus, by material implication [i.e., (A = B) <= (7 AV B)], to establish that there is conflict
dissolution via maternal reproductive specialization, it is sufficient that there is conflict dissolution ((S4.3.1)
hold) and that (S4.3.5) holds for all 7 € [1’1,1’2]. From (S4.3.4) and (S4.3.5), if reproductive effort increases over
evolutionary time (i.e., dz/dt > 0), a necessary condition for conflict dissolution via maternal reproductive
specialization is that there is evolutionary synergy of reproductive effort on helping, that is
oHyC
0z

> 0. (54.3.6)

Conflict dissolution can also be understood in terms of the benefit-cost ratio zones. If (B/C) ;M'G < (B/C) ;‘,O'G
(condition (S4.1.3)) holds, conditions (S4.3.1) imply that conflict dissolution occurs if the system makes a tran-

sition from the conflict zone to the zone where both mother and offspring favor offspring helping, that is, if
there are evolutionary times 7, < 7, such that
MG

¢ (2, (e,
_ < |— <|—=
Clp ) \Clp Clp

There are two basic pathways whereby conflict dissolution could happen in models related to ours. First,

0,G 0,G

B

C (54.3.7)

z(11) z(11) z(13) z(72)

hold.

holding constant the benefit-cost ratio B/C, conflict dissolution requires that (B/C);;O'G decreases (equiva-
lently, that its associated relative reproductive worth increases) over evolutionary time. This might occur, for
instance, if brood sex proportions evolve in a model with a partially bivoltine life cycle [as in 60]. Second,
holding constant the critical benefit-cost ratios (B/C) ZM'G and (B/C) ;O'G (e.g., if sex brood proportions are un-
biased so (S4.1.2c¢) and hence (S4.1.7) hold), conflict dissolution requires the increase of the benefit-cost ratio
B/C over evolutionary time. In general, conflict dissolution might occur by a combination of the two pathways.

We focus our analysis and results on the second pathway.
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5 Evolutionary synergy and trade-off alleviation

We showed in the previous section that a necessary condition for conflict dissolution via maternal reproductive
specialization is that there is evolutionary synergy of reproductive effort z on helping p (equation (S4.3.6)) as
increasing z evolves. In this section, we show that evolutionary synergy of reproductive effort z on helping
p is equivalent to trade-off alleviation by helpers if reproductive effort is optimal. This yields the conclusion
that, at an optimal reproductive effort, conflict dissolution via maternal reproductive specialization requires
trade-off alleviation by helpers.

To do this, we proceed in four steps. First, we rewrite the selection gradient of reproductive effort in terms
of elasticities, which quantify the assumed trade-offs (Selection gradient of reproductive effort in terms of
elasticities; section 5.1). Second, we show that, if reproductive effort is optimal, evolutionary synergy of repro-
ductive effort z on helping p is equivalent to a positive marginal effect of late fertility on the benefit of helping,
B; we also show that, if reproductive effort is optimal, evolutionary synergy of helping p on reproductive effort
z is equivalent to a positive marginal effect of helpers on the marginal productivity of late fertility, D (Synergy
of reproductive effort on helping and vice-versa; section 5.2). Third, we show that, if reproductive effort is
optimal, such synergy is symmetric (evolutionary synergy of reproductive effort z on helping p is equivalent
to evolutionary synergy of helping p on reproductive effort z) and equivalent to late productivity being super-
modular (Synergy as supermodularity of late productivity; section 5.3). Finally, we use these results to express
the supermodularity of late productivity at an optimal reproductive effort in terms of trade-off alleviation by

helpers (Synergy as trade-off alleviation; section 5.4).

5.1 Selection gradient of reproductive effort in terms of elasticities

We begin by rewriting the selection gradient of reproductive effort in terms of elasticities, which offer a conve-
nient way to quantify the trade-offs we have assumed. We have shown in section 2.4 that reproductive effort z
is under positive directional selection if the selection gradient of reproductive effort S, (x) is positive, that is, if

S,(x) > 0. We saw in section 2.9 that this condition is satisfied if and only if

D>0, (S5.1.1)
where
oI,
D=——(f>,h S5.1.2
o (f2, ) ( )

is the marginal productivity of late fertility. Hence, holding the helping probability p constant, selection leads

to a (locally) optimal reproductive effort z*, and corresponding (locally) optimal late fertility
o = falz") (85.1.3)
that locally maximizes late productivity IT,. Such an optimal z* satisfies the first-order condition
Dl = Dlgy = 2—“5(]3*,}1) =0. (S5.1.4)

f:
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Now, writing the late productivity IT, explicitly in terms of the vital rates (equation (S1.6.15)) and using the

product rule of derivatives, we can rewrite equation (S5.1.2) as

D= a(j”g (smfos2)

oSy
= Ff282+SMSZ+SMf26f
f2 asM +1+ é%

sm 0fs S 0f>
=sms2 (€, (sp) + 1 +€p,(52)), (S5.1.5)

=SMS$2

where we have identified

fg OsM GlnsM

= and S5.1.6
€p(spm) = o oIy ( a)
f2 652 01nsz
= , S5.1.6b
S Ty ( )

as, respectively, the (partial) elasticities of sj; and s, with respect to f,. The elasticity ex(Y) is the percent
change in Y caused by a marginal percent increase in X holding all other variables constant. From our as-
sumptions on the trade-offs between the vital rates (S1.4.6), at least one of the elasticities (S5.1.6) is negative
but neither is positive. Thus, the elasticities (55.1.6) quantify the trade-offs that we have assumed between
vital rates.

From (§5.1.5) and since syss2 > 0 (equation (S1.4.5)), a necessary and sufficient condition for D > 0 is that
€psp)+ep,(s2) > -1 (S5.1.7)
Together with (S5.1.4), this implies that the optimal reproductive effort z* is implicitly given by
(ep,(san) +ep(52)) |, = =1 (85.1.8)

An elasticity equal to —1 means that a percent increase in the input variable leads to an exactly equal per-
cent decrease in the output variable. Hence, condition (S5.1.7) states that a necessary and sufficient condition
for reproductive effort to be favored to increase over evolutionary time is that a percent increase in late fertility
f> caused by a marginal increase in reproductive effort leads to a weaker percent decrease in the total effect on

maternal survival sp; and second-brood survival s, (see also Charnov [41]).

5.2 Synergy of reproductive effort on helping and vice-versa

We now show that, if reproductive effort is optimal, the evolutionary synergy of reproductive effort z on helping
p can be equivalently expressed as either the marginal effect of f, on B (section 5.2.1) or as the marginal effect

of h on D (section 5.2.2).

5.2.1 Synergy of reproductive effort on helping as late-fertility effects on benefit

At an optimal reproductive effort z*, there is evolutionary synergy of reproductive effort z on helping p if

0,G
oH,
0z

> 0. (85.2.1)
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Noting that the set of actors is the set of candidate helpers (A = H) when helping is under offspring control
(C = 0), taking the partial derivative, and by the product rule and the chain rule of derivatives, condition

(S5.2.1) can be written as

d d
(_ wnn dfo “’H'P%BMHPG_B%) 0,
of, dz of, dz Pof dz ) ,_,.

which, since df,/dz > 0, is equivalent to

( awH,H awH,p 63)
- C+ WP~
ofs fs 3fs) gy

Now, for all C € {M, O} and all G € {B, F}, reproductive worth w 4,z depends on late fertility f> only through

>0. (§5.2.2)

the reproductive value of females, vo. More specifically, the partial derivative of w s r with respect to f, is

proportional to the partial derivative of vo with respect to f, which can be readily calculated as

61}9 0
of,  df
411 o — | 22 Mo p | TT
0f; 'S rar) o T\ 5 R | MG pr

2
1_IQ,r,rr

l_[O",r,rr
1_[Q,r,rr

0 0
(0'2‘07' a_fZHZ,rr) HQ,r,rr - (0'2,9 a_fZHZ,rr) Hoz,r,rr

2
HQ,r,rr

_ (0-2,07' Vg =029 UQ) anz,rr
HQ,r,rr afZ

0y Va —02,0VQ) 41
=( 2 )—z(fz,h)
HQ,r,rr afZ

o ,O7I Udl —(72, v
=( 2 ? 9) D, (S5.2.3)
l_[SB,r,rr

where the first line follows from substituting equation (52.6.12b), the second line applies the quotient rule
of derivatives, the third line uses the derivatives of expression (S1.6.2) with respect to f>, the fourth line uses
the expressions for reproductive values (S2.6.12), the fifth line uses (S1.6.16), and the last line identifies the

marginal productivity of late fertility D (52.9.3) and rearranges. Evaluating (S5.2.3) we then obtain, via (§5.1.4),

(aﬂ _ (Uz,o” Uoz—UZQ”Q)

0f )fzzfz* HQ,r,rr

X D|f2:f2* = 0, (85.2.4)
fZ:fz*

so that the partial derivative of the reproductive value of females with respect to late fertility vanishes at an

optimal late fertility. It follows that

(GwH,H) :(de,p) -0
0fs Jpegy \ Of2 Jppy
and, since wpy,p > 0, condition (S5.2.2) simplifies to
( O_B ) > 0.
0fa f=f

Summarizing, we have

oMy 0B

e B >0 (E)fg_f* >0, (85.2.5)
2=z 2
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which states that, at an optimal reproductive effort, there is evolutionary synergy of reproductive effort z on

helping p if and only if the marginal benefit of helping is increasing in late fertility, f>.

5.2.2 Synergy of helping on reproductive effort as helper effects on marginal productivity

Likewise, at an optimal reproductive effort z*, there is evolutionary synergy of helping p on reproductive effort
zif
HSC

0. S5.2.6
op > ( )

z=z*

Taking the derivative of the inclusive-fitness effect ’HE’G with respect to p, this condition can be written as

a oD oh
( WM.z 1y ) >0, (S5.2.7)
Z=Z

+(1)M,02ﬁ%

where w0, is the reproductive worth for a mother of a second-brood offspring. Since D vanishes at z = z*,

and since wy;,0, > 0 and dh/dp = h > 0, this condition simplifies to

(OD) >0
ah fZ :fz* '
Summarizing, we have that
OHSE oD
a2 (—) >0, (S5.2.8)
Op - oh 12 :fz*

which states that, at an optimal reproductive effort, there is evolutionary synergy of helping p on reproductive
effort z if and only if the marginal productivity of late fertility is increasing in the expected number of helpers,

h.

5.3 Synergy as supermodularity of late productivity

We now show that, at an optimal reproductive effort, the conditions for evolutionary synergy of helping on re-
productive effort (§5.2.1) and for evolutionary synergy of reproductive effort on helping (S5.2.6) are equivalent,
and that both are equivalent to the condition that late productivity is supermodular.

This observation is immediate from the fact that the right-hand inequalities in (S5.2.5) and (S5.2.8) are
equivalent. Indeed, it follows both from our definitions of marginal benefit of helping B (S2.8.5) and marginal

productivity of late fertility D (S2.9.3), and from the symmetry of second derivatives, that

0B 0, 4°l, 0D
95 _ = - (85.3.1)
0fs 0f0h Ohof, Oh
and hence that
021'[2 >O(:>6B>O<:>6D>O (S5.3.2)
0f20h 0fa oh "~ -
Since this identity also holds at an optimal level of late fertility f,", we have
0°Tl, 0B
(f*,h)>0<=>(—) >0<=>(—) > 0. (S5.3.3)
0f>0h * 0f2) p- s On ) py=
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Expression (S5.3.1) reminds us of the connection between the partial derivatives of the marginal productivity
of one input (e.g., expected number of helpers, /) with respect to the other (e.g., the late fertility f>). Expression
(§5.3.2) reminds us of the fact that the condition for the marginal productivity of one variable to be increasing
in the other is equal to the condition that the cross partial derivatives of the late productivity function [T, (f>, )
are positive, that is, that the late productivity I, is supermodular. Supermodularity formalizes a classic way
of interpreting the notion of complementarity in economics; namely that having more of one input increases
the marginal returns to having more of another input [33]. In our case, supermodularity of IT, means that
having more helpers increases the marginal productivity of late fertility, and that having more late fertility
(via increased reproductive effort) increases the marginal productivity of helping, that is, that helping and
reproductive effort act as strategic complements.
In conclusion, we have, via expressions (55.3.3), (S5.2.5) and (S5.2.8), that

P, e
W(fz ,h) >0

oHSC

>0

z=z*

> 0. (55.3.4)

Expression (S5.3.4) states that the supermodularity of the late productivity I1, (i.e., the complementarity be-
tween helping and reproductive effort) at an optimal reproductive effort is a necessary and sufficient condi-
tion for evolutionary synergy between helping and reproductive effort. Such evolutionary synergy means that
helping and reproductive effort are in positive feedback whereby the evolution of reproductive effort increases

selection for helping, and the evolution of helping increases selection for reproductive effort.

5.4 Synergy as trade-off alleviation

Trade-off alleviation. The condition on the supermodularity of the late productivity function IT, appearing
on the left hand side of (S5.3.4) can be given a demographically meaningful interpretation in terms of the way
helping by offspring alleviates life-history trade-offs faced by mothers. To do so, note that we can write the
cross partial derivative as

0°11,
df>0h

0D
(]C*y ’l) = (____)
2 ah f2:f2*

0
= {—6h [SM82 (GfZ(SM) +1 t€p, (52))] }
f2=f2*

0(ep, (sm) +1+€p,(52))

6h f2:f2*

0 (sp82)
oh

(€5, (sm) +1+€p,(52)) + sps2 (S5.4.1)

where we made use of (§5.3.1) in the first line, of (S5.1.5) in the second line, and of the product rule of deriva-
tives in the third line.

Since at an optimal reproductive effort, e, (sp) + 1+ €, (s2) = 0 holds (see (55.1.8)), equation (S5.4.1) sim-

plifies to
411, 0 (ep, (sp) +1+€p,(52)
y h) = . $5.4.2
afon 2= | Sus oh - (5542
Given that sp;s2 > 0 (see (S1.4.5)), it follows that
0211, Ocf,(sp)  Oep,(s2)
S h) >0 0. S5.4.3
apont2 "> ( on ' on ) e (5549
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As previously stated, €y, (sp) and €y, (s,) measure the percent life-history trade-offs faced by a mother by in-
creasing her late fertility f>. Hence, condition (S5.4.3) states that, at an optimal reproductive effort, the condi-
tion for I, to be supermodular is equivalent to the condition that helpers alleviate the proportional life-history
trade-offs. Therefore, together with (54.3.4) and (S5.3.4), condition (S5.4.3) yields the conclusion that conflict
dissolution via maternal reproductive specialization requires that helpers alleviate trade-offs as optimal repro-

ductive effort evolves.

Comparative statics of optimal reproductive effort with respect to the expected number of helpers. A con-
sequence of the supermodularity of the late productivity function is that a given (locally) optimal reproductive
effort z* is increasing in the expected number of helpers (see, e.g., 33). That is,

621_[2 % 0z*
afon2 M>0= 5,

> 0. (55.4.4)

For our purposes, this can be proven using the implicit function theorem as follows. A locally optimal late

fertility value f, is implicitly given by (see equation (S5.1.4))

oI,
—(fy,m=0. (S5.4.5)
o
Differentiating with respect to h, we have
011, of,  0°Il
Y L * h)=0, S5.4.6
of? SRS ahafz(f2 ) ( )
so that solving for df, /0h we get
0%,
—<(f*h
ofy 0hof, (7, 1)
—_— = >0, (S5.4.7)
oh 0%11, o h)
afZZ 2
. . T, ., . .
from which (S5.4.4) follows by the chain rule, because 6_2( f5»h) <0holds (as z* is a local maximum) and
2

f2(z) is an increasing function.

Examples of late productivity functions that do not allow for evolutionary synergy. There are at least two
important classes of possible late productivity functions that do not allow for evolutionary synergy: additively
separable functions, and multiplicatively separable functions.

First, consider late productivity functions that are additively separable, that is, late productivity functions

that could be written as
I (f2, h) =1 (f2) + 2 2(R) (S5.4.8)

with [T ; : R} — R} and Iz : [0, fi] — R%. A function of the form of (S5.4.8) is not supermodular in any point
of its domain, as the cross partial derivative is zero at all points. It then follows that the condition in the left
hand side of (S5.3.4) is never satisfied.

Second, consider late productivity functions that are multiplicatively separable, that is, one could find

functions Il ; : R} — R} and 122 : [0, fi] — R} so that

2(f2, ) =21 (f2) x II22(h) (S5.4.9)
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1230 holds. To show that for functions of the form (S5.4.9) there is no evolutionary synergy between helping and
fertility at an optimal late fertility level, note first that in the case of a multiplicatively separable II, function,

the first order condition for an optimal reproductive effort (§5.1.4) implies

dHZ 1 *
~(f,)=0. (55.4.10)
T
1222 Note second that evaluating the cross partial derivative of I, at an optimal fertility level, we obtain
O 0 (o)
0f20h fo=f; 0h \0f2 =1
0 ( dlly
= Hz,z(h)—')
oh dfs Pt
dIly, dIl 0 (dII
- (T G et | dzyl))'
f2 f2 f2:f2*
dllzp  dllp;
= 2% (h)—==
ah (h) a5 (2)
=0

where the third line applies the product rule of derivatives, the fourth line follows because dII ;/df, is inde-

pendent of & (and hence 6(dI1y2/df>)/0h = 0), and the last line follows from (55.4.10).
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6 Evolutionary dynamics

In this section, we write equations describing the evolutionary dynamics of the evolving traits. To do this, we
proceed in two steps. First, in section 6.1 (Canonical equation) we write the evolutionary dynamic equations
by postulating that our evolving traits satisfy a form of the canonical equation of adaptive dynamics [44, 45, 53].
Second, in section 6.2 (Resulting evolutionary dynamic equations when traits are genetically uncorrelated) we

write the evolutionary dynamic equations that result when traits are genetically uncorrelated.

6.1 Canonical equation

We follow the evolutionary dynamics of the phenotypic vector z. Given our assumptions of §-weak selection
and rare mutation, we expect that, in our model, invasion implies fixation [58] and that the deterministic
evolutionary dynamics are to first order approximately given by a form of the canonical equation of adaptive
dynamics [44, 45, 53]. Thus, we conjecture that the evolutionary dynamics of z over evolutionary time 7 are to
first order given by

g =G@S(2), (86.1.1)
dr

with a covariance matrix G(z) given by

G(2) = gpp gpz
gzp Gzz

for model cases of offspring or maternal control, and by

Gxx Gx y Oxz
G(z) = gyx gyy gyz
Gzx G2 y Gzz

for model cases of shared control. The {¢-th entry G¢(z) of G is proportional to the covariance of mutational
effects Cov[Zy —(,Em —&] = Cov[Zny, Em], where Z;, and Z;,, are random variables with small variation around
their respective expected values E[Zy] = ¢ and E[E,] = ¢. The diagonal entries Gy (z) are non-negative, and

we also denote them as G; (z). G is symmetric. If traits are genetically uncorrelated, then G is diagonal.

6.2 Resulting evolutionary dynamic equations when traits are genetically uncorrelated

When traits are genetically uncorrelated, the resulting evolutionary dynamic equations are

d¢ h
T = e grg@an (et pampby) (86.2.1a)
dz 1
e gsz_uwM,Oz b, (S6.2.1b)

for { affecting helping (i.e., { € {p} for model cases of offspring or maternal control and ¢ € {x, y} for model
cases of shared control; using equations (S6.1.1), (§3.5.1), (S3.5.2), (§3.3.1), (§3.6.2), and (S3.6.3)). We now list

the resulting dynamic equations for each model case.
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Offspring control, both sexes help. When helping is under offspring control and both sexes help, and from
equations (56.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations are

dp fi

= g”vTu‘“Ol 01 (~C+00,,0,0,B%), (56.2.2)
dz d
== gz WM,0, d—fDO'B. (S6.2.2b)

For the particular case of unbiased sex proportions in both broods (i.e., 010=0,5 =020=0,4 = 1/2)

using Fig. S7 and (S3.3.4), equations (56.2.2) further simplify for both diploids and haplodiploids to
g g q p p plodip

d 1 1
d—p = Qpéi ( Y uve (—C+ EBO'B), (S6.2.3a)
T viu (10,5
dz 1 1 dfs _opB
- = — - . o —D"". 2.
dr G viu %2 ( L T W) dz (86.2.3b)
0e{Q,d'}

For diploids, each of the sums over ¢ in parentheses in equations (56.2.3) equals 1.

Offspring control, only females help. When helping is under offspring control and only females help, and
from equations (S6.2.1), (S1.1.5), (S3.4.3), (S§3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations

are
dp fioio OF
FE gpv— 0,0.0,0 (—C+p019,019,023 ), (S6.2.4a)
dz 1 dfs
5 = e omo: df DO, (56.2.4b)

Maternal control, both sexes help. When helping is under maternal control and both sexes help, and from

equations (S6.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S§3.1.1), and (S3.1.2), the evolutionary dynamics equations are

dp h
T =9 @Mo: (=C+pr,0,,0,BM5), (S6.2.52)
d 1 d

£ 4% pus, (S6.2.5b)

— = w
dr viu Mgz
For the particular case of unbiased sex proportions in both broods (i.e., 01,0 =0, 3 =020 =0, 5 =1/2)

using Fig. S7 and (S3.3.7), equations (S6.2.5) further simplify for both diploids and haplodiploids to

d 1
d_p = gv% ugs | X romeove | (~C+ B ($6.2.6a)
T viu te19.)
1 dfa M
- gz— | X raneco,nve | =DM (S6.2.6b)
viu 2 (9. dz

For diploids, each of the sums over ¢ in parentheses in equations (S6.2.6) equals 1.

Maternal control, only females help. When helping is under maternal control and only females help, and

from equations (56.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations

are
dp f 101,Q MF
Qp L OMO (—C+pM,019,ozB ’ ) (S6.2.7a)
dz d
= Qz WM,0, d—];ZDM'F. (S6.2.7b)
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12ea Shared control, both sexes help. When helping is under shared control and both sexes help, and from equa-

tions (586.2.1), (S1.1.5), (S3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations are

dx ap
= Qxi OM,0, 5= 0 P, 1) (=C+ pr,0,,0,B5F) (S6.2.8a)
dJ’ f1
_gva—u o1, 01 3y Px, 9) (=C+po,,0,,0,B%") (S6.2.8b)
d d
=Gz OzﬁDS'B- (S6.2.8¢)
viu 7" dz

For the particular case of unbiased sex proportions in both broods (i.e., 019=0,5 =020=0,5 = 1/2)

1287 using Fig. S7, (83.3.7), and (S3.3.4), equations (S6.2.8) further simplify for both diploids and haplodiploids to

dx . A 1 op SB
= _ngTu U3 (k{%&}r.(m,o(ow) U[) 5 y) (=C+ B>P) (S6.2.9a)
d 0 1
y gy fi L > Z Ugvy a—p(x, y) (—C+ EBS'B) (56.2.9b)
viu 0e{Q,d"} y
L df2 s
—gz_ Py Z Te(M),0(02) Ve | = D™ (56.2.9¢)
viu %2 (fe{Q,O”} dz

For diploids, each of the sums over ¢ in parentheses in equations (56.2.9) equals 1.

Shared control, only females help. When helping is under shared control and only females help, and from

1200 equations (S6.2.1), (S1.1.5), (§3.4.3), (S3.6.1), (S3.1.1), and (S3.1.2), the evolutionary dynamics equations are

dx fioy,

Fr xTuQ 196 e y)( C+pmo, ozBSF) (S6.2.10a)
dy hoy,

P va e @o,0, 190 e y)( C+polg,019,ozBS’F] (S6.2.10b)
d d

—Z=9zv ©M,0, deDSF (86.2.100)
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7 Specific functional forms

In this section, we specify the functional forms for the vital rates composing late productivity I, (k, z) (Vital
rates composing late productivity; section 7.1) and for the joint phenotype p(x,y) for helping under shared

control (Joint helping phenotype; section 7.2) that we use to illustrate our results in the main text.

7.1 Vital rates composing late productivity

We consider the following effects of helping and of reproductive effort. We let helpers increase only the mated
pair survival sy;(f2, h). In turn, reproductive effort increases the late fertility f>(z) and decreases only the mated
pair survival sp;(f2, h). We let second-brood survival sy (f>, h) be constant. Specifically, we use the following

functional forms for the vital rates composing late productivity:

fo(2) = foz", (S7.1.1a)
_— f2
sm(fo, W) =spy(h) |1 - = , (S7.1.1b)
fo(h)
s2(fo, 1) = s2, (§7.1.1¢)

where s, denotes a real-valued constant in the interval (0, 1], sp;7(h) and E(h) are positive increasing functions

of h, with 537(h) < 1, and where the domain S = Sy x [0, &] of s (see (S1.4.5a)) is given by
S={(fs ) eRLx10,11: o < o)},

so that the image of s, is the interval (0, 1). Thus, for a given h, sp;(f2, h) is a linear function of f, with negative
slope equal to —sp;(h) /E(h) and intercept equal to sps(h). It follows that, for a given £, sp7(h) is the maximum
mated pair survival that can be achieved (as late fertility f> — 0) and E(h) is the maximum late fertility that
can be achieved with a positive mated pair survival (as sp; — 0). Eq. (S7.1.1b) thus specifies the simplest kind
of trade-off between sy/(f2, h) and f>: a linear trade-off.

Late productivity is given by the product of the three vital rates, hence
2 (f2, B) = sm(fz, h) fos2. (S7.1.2)

The benefit of helping is then

ot dsy(h dfo(h
p= O _ | dsml )(1__f2 )+m(h)_fz fa )]fzsg, (57.1.3)
oh dh f(h) f (h) dh
which is positive since sp7(/) and E(h) are increasing in h.
The marginal productivity of late fertility is given by
oIl 2
D=—2 =s2m(h)(1—_i). (S7.1.4)
of2 fo(h)

D has a single sign change from positive to negative as f> increases. This happens at the optimal late fertility

rate

AW

fr ()= = (S7.1.5)

67



1314

1317

1320

1323

1326

1329

1332

1335

obtained at an optimal level of reproductive effort equal to

— 1«
M) . (§7.1.6)

*(h) =
‘ ( 2fo

Hence, for each value of h, the optimal late fertility is half the maximum late fertility. As E(h) is increasing in

h, sois f,"(h). This is to be expected as there is synergy of optimal reproductive effort on helping, since

_ 1 dfs(h
=$ysp(h) = J2(h)

>0
h=1; fotny dh

holds. Further note that s3,(h) = sy (f5, h) =sp(h) /2.

We have assumed that E(h) is strictly increasing. Suppose for a moment that E(h) = f,, where f> is a
constant. This is an example where the resulting late productivity function I, is multiplicatively separable (cf.
equation (S5.4.9)). Hence, f,' = f> is independent of & and there is not synergy of optimal reproductive effort

on helping, as

oIl
ohdf;

f2:f2*

To complete the specification of the vital rates composing late productivity, we use the functions

Shi(h) = su+ (Su1 - s % (57.1.7a)

— — h
h=f+(f-h) = (S7.1.7b)

where the constant SME (0,1) gives the smallest possible intercept for mated pair survival attained at i = 0, the
constant sy; € [sm, 1) gives the largest possible intercept for mated pair survival attained at h = h, the constant
fe R gives the smallest possible value of E(h) attained at i = 0, and the constant E € [f2,00) gives the largest
possible value of E(h) attained at k = h (the resulting sp;(f2, h) with the parameter values used is plotted in

Fig. S11).

7.2 Joint helping phenotype

Here we specify the function for the joint helping phenotype p(x, y) for model cases of shared control. We
suppose that maternal influence x and offspring resistance y engage in a contest to achieve the expression of
the helping phenotype p. We consider two different kinds of contests. First, we consider simultaneous con-
tests, where maternal influence x and offspring resistance y contest simultaneously to determine the helping
probability. For this kind of contest, we assume that the helping probability is given by the probability that the
mother wins an imperfectly discriminating contest within the class of contest success functions proposed and
axiomatized by Blavatskyy [34]. Specifically, we assume

em(x;x)

, (87.2.1)
1+gms 1) +go(y;w)

plx,y) =

where gm(x; y) and go(y;v) are “impact functions” to be specified below, with parameters y > 0 and ¥ > 0

measuring the “power” of mother and offspring, respectively.
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Figure S11: Helping-fertility synergy as trade-off alleviation. Analogous plot to Fig. 3, but here the scale is
linear. Mated pair survival decreases with late fertility due to the assumed trade-off (blue lines; linear trade-
off in linear scale). Late productivity II, is constant along each of its indifference curves (gray). Mated pair
survival at an optimal late fertility occurs when a blue line is tangent to a gray line (where 0II»/0f, = 0 is
equivalent to € 1, (sm) +€p,(s2) = —1; see also [41]). Mated pair survival at optimal late fertility increases as the
number of helpers increases (i.e., the red line has positive slope), meaning that helpers alleviate the trade-off
(i.e., the inequalities in (S5.4.3) hold). Consequently, helping-fertility synergy occurs and the benefit of helping

increases with increasing optimal late fertility. Functional forms and parameter values are as in Fig. 2.
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Second, we also consider sequential contests, where the mother acts first (engaging in a contest “against
1338 hature”; e.g., secreting molecules that alter offspring development) and the offspring acts second (e.g., by sub-

sequently readjusting its own development). For these contests we assume the following general form:

sy (8w
1+ gm(xx) 1+ go(y;w)
_ gm(x; x)
T 1+ guls ) + 8oy + Mm% Y 8o (1Y)

plx,y) =

(§7.2.2)

for impact functions gm(x; x) and go (y; v).

1381 We assume that the impact functions gy (x; x) and go(y; ¥) satisfy the following properties:

1. gm(x;y) and go(y; ) are non-negative strictly increasing functions g; : Ry — Ry, i € {M, O}. This can be

interpreted as the impact functions measuring the absolute effort devoted to the contest.

1384 2. gm(x;x) and go (y; w) are strictly increasing in their parameters, thatis dgm (x; ) /0y > 0 and 0gm (x; w) /Oy >

0. This can be interpreted as power increasing the ability of the effort to succeed in the contest.

3. gm(0;y) = 0. This can be interpreted as stating that without maternal influence, the mother devotes no

1347 effort to contest offspring helping.
It follows that p(x, y) satisfies:
1. p(x,y)€[0,1] forall x =0, y =0 (i.e., the helping probability is well defined).

1350 2. p(x,y) is strictly increasing in x and strictly decreasing in y (i.e., maternal influence and offspring resis-

tance affect the helping probability as required by (S1.2.3)).
3. p(0,y) =0 (i.e., there is no helping in the absence of maternal influence).

1353 4. For given x =20 and y =0, p(x, y) is strictly increasing in y and strictly decreasing in v (i.e., the “power”
of maternal influence can be increased by increasing y and the “power” of offspring resistance can be

increased by increasing ).

1356 It remains to specify the impact function. We consider an exponential function of the kind
gmx;x) =et* -1, (S7.2.3)
goy;p) =e’V -1, (57.2.3b)

which satisfies the required properties and has been used in contest models [51] (we add the —1 in the expo-

nential impact function to satisfy gy (0; x) = 0). The resulting joint phenotype is illustrated in Fig. S12.
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Figure S12: Joint helping phenotype. The helping probability p(x, y) under (A) sequential or (B) simultaneous

contests. Parameter values are as in Fig. 2; in particular, mother and offspring have the same power in both

panels (y =vw =1).

8 Specification of Fig. 2, and additional figures

The specification of Fig. 2 is the following. The genetic system is diploid, both sexes help, and the determina-

tion of the joint helping phenotype is sequential. Functions:

fa(2) = foz", (S8.0.1a)

sM(ﬁ,h)=(s_M+(ﬁ—s_M)2) 1—:f—2h ) (S8.0.1b)
L+ (fe- £}

plx,y) =e W7V (er* 1), (S8.0.1c)

Gr =Gy (1 - e_ﬁ() for { € {x,y}. (S8.0.1d)

Parametervalues: fo=1,a=1, sy = 0.2,5m =1, h=8f= 36,E= 72,51=5=01,y=v=1,0190=020=05,
Gx = Gy =1, and B = 100. Traits are genetically uncorrelated: Gy, = Gy, = Gy, = 0. Initial conditions for
z(1) = (x(1), y(1), z(1))7 are x(0) = y(0) = 10> and z(0) = z*(0). For Fig. 2A-E, z is constant. For Fig. 2F-], z is
equal to z* (h).

Promoters of conflict dissolution are described in Fig. S13. Conflict dissolution in haplodiploids is shown
in Fig. S14. Promoters of conflict dissolution in haplodiploids are described in Fig. S15. Conflict dissolution
with low genetic variance for reproductive effort is shown in Fig. S16. In all cases, G, follows the functional

form given in eq. (58.0.1d) with § = 100.

71



No helping Conflict Voluntary helping

A Y B C D
ngh} genetic variance ngh} genetic variance H|gh} maternal power Slmultan.eous} contest
=== | ow | for reprod. effort == ow | for mat.influence === Low == Sequential

’/
w30 o=
':GC:, 20
_g_.)
810

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Helping probability, p

Figure S13: Promoters of conflict dissolution. Resistance wins (trajectory ending at the purple circle) or con-
flict dissolution occurs (trajectory ending at yellow circle), respectively for (A) low or high genetic variance in
reproductive effort, (B) low or high genetic variance in maternal influence, (C) low or high maternal power, and
(D) sequential or simultaneous determination of the joint helping phenotype. The genetic system is diploid
and both sexes help. Functional forms and parameter values are as in Fig. 2 except as follows. For A, G, = 225
for low genetic variance of z and G, = 250 for high genetic variance of z. For B, Gy = 0.9 for low genetic vari-
ance of x and Gy = 1 for high genetic variance of x (and G, = 250 for both). For C, y = 0.9 for low maternal
power and y = 1 for high maternal power (and G, = 250 for both). For D, sequential contest and simultaneous

contest (and G, = 225 for both).
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Figure S14: Conflict dissolution via maternal reproductive specialization (evolutionary model) in hap-
lodiploids. Analogous plots to Fig. 2. Same parameter values except that here the genetic system is hap-

lodiploid, only females help, f, = 16, and E =40.
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Figure S15: Promoters of conflict dissolution in haplodiploids. Analogous plots to Fig. S13 except that here the
genetic system is haplodiploid, only females help, and parameter values are as in Fig. S14 with the following
genetic variances. For A, G, = 70 for low genetic variance of z and G, = 80 for high genetic variance of z. For
B, G, = 0.9 for low genetic variance of x and G, = 1 for high genetic variance of x (and G, = 80 for both). For

C, x = 0.9 for low maternal power and y = 1 for high maternal power (and G, = 80 for both). For D, sequential

contest and simultaneous contest (and G, = 70 for both).
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Figure S16: Conflict dissolution with low genetic variance for reproductive effort. The genetic system is hap-

lodiploid and only females help. Analogous plots to Fig. S14F,H,I,J. Same parameter values except that here

fi=6,/2=12, fo=60,and G, =G, =G, = 1.
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