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Abstract 9 

Division of labour, where cooperating individuals specialise to perform complementary 10 

tasks, plays a fundamental role at all levels of biological complexity, from genes to 11 

complex animal societies. Different labour-dividing species employ different mechanisms 12 

to determine how tasks are allocated between individuals, including coordinated, random, 13 

and genetic determination of phenotype (caste). It is not clear if this diversity is adaptive—14 

arising because different mechanisms are favoured in different environments—or is 15 

merely the result of non-adaptive, historical artifacts of evolution. We analyse theoretically 16 

the relative advantages of the two dominant mechanisms employed for reproductive 17 

division of labour in social microogranisms: coordinated and random specialisation. We 18 

show that coordinated specialisation is more likely to evolve over random specialisation 19 

when: (i) social groups are small; (ii) cooperation has a greater relative impact on fitness 20 

(i.e., it is more “essential”); and (iii) there is a low cost to coordination. We also show how 21 

a fully coordinated group of cells can evolve step-wise from less precise forms of 22 
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 2 

coordination. Our predictions are in broad qualitative agreement with empirical patterns 23 

across microorganism species that divide labour. More generally, our results show how 24 

evolutionary theory can help explain both why between-individual coordination evolves, 25 

and why there is mechanistic variation between species. 26 

 27 

Key words: division of labour, random specialisation, phenotypic noise, cellular 28 

differentiation, coordination, signaling, social microbes, adaptation, evolutionary theory 29 

 30 

Introduction 31 

Different species use different mechanisms to divide labour, with specialised phenotypes 32 

(castes) arising either randomly, through between-individual coordination, or by genetic 33 

control (Figure 1). Examples of between-individual coordination include workers feeding 34 

royal jelly to larvae to produce honey bee queens (Figure 1A), and how a lack of nitrogen 35 

fixation by neighbours causes cells of the bacteria Anabaena cylindrica to differentiate 36 

into sterile nitrogen-fixing heterocysts (Figure 1B) [1–3]. In contrast, in some ant societies 37 

whether individuals develop into queens, major, or minor workers has been found to have 38 

a strong genetic component (Figure 1C) [4–7]. Finally, in some bacteria, cell phenotype 39 

is determined randomly [8–13]. For example, in Salmonella enterica co-infections, 40 

random biochemical fluctuations in the cytoplasm determine whether a cell will infect the 41 

gut tissue and trigger an inflammatory response that eliminates competitors (and itself) 42 

(Figure 1D) [14,15]. Across the tree of life some species employ one mechanism to divide 43 

labour whereas in other species mixed forms exist with a combination of coordinated, 44 

genetic, or random specialisation [4,6,16]. 45 
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 46 

 47 

Figure 1. Different mechanisms for division of labour in nature. A) In honey bee hives (Apis 48 
mellifera), larvae develop as sterile workers unless they are fed large amounts of royal jelly by 49 
workers (coordinated specialisation) [1]. (Photo by Wausberg via the Wikimedia Commons.) B) 50 
In A. cylindrica filaments (cyanobacteria), some individuals develop into sterile nitrogen fixers 51 
(larger, round cells) if the amount of nitrogen fixed by their neighbours is insufficient (coordinated 52 
specialisation). This leads to a precise allocation of labour, with nitrogen-fixing cells distributed at 53 
fixed intervals along the filament [2]. (Picture taken by Robert Calentine.) C) In the army ant 54 
(Eciton Burchelli), whether individual ants become a major or minor worker has a genetic 55 
component (genetic control) [7]. (Photo by Alex Wild via the Wikimedia Commons, cropped.) D) 56 
In S. enterica infections (serovar Typhymurium), each cell amplifies intra-cellular noise to 57 
determine whether it will self-sacrifice and trigger an inflammatory response that eliminates 58 
competing strains (random specialisation). [15] (Photo by Rocky Mountain Laboratories, NIAID, 59 
NIH via Wikimedia Commons.) 60 

 61 

We lack evolutionary explanations for why this diversity of labour-dividing mechanisms 62 

exists in the natural world [4,17–19]. Wahl analysed the relative advantage of genetic 63 

versus phenotypic control of division of labour, showing how genetic control can 64 

sometimes lead to groups in which not all complementary tasks are performed [18]. Wahl 65 

A) B)

C) D)

Coordinated specialisation Coordinated specialisation

Random specialisation
Coordinated specialisation 

+ genetic control
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focused on non-reproductive division of labour, such as that found between different 66 

worker castes within some social insect colonies. The other form of division of labour is 67 

that between helpers, who perform some costly cooperative behaviour, and pure 68 

reproductives, who do not perform the behavior [19–21]. It is this ‘reproductive division of 69 

labour’, common across the natural world from bacteria to insects, where the most 70 

variation in labour dividing mechanisms has been observed [19,20]. 71 

 72 

We focus our analysis on reproductive division of labour in social microbes, where two 73 

different mechanisms have been found: coordinated and random specialisation (Figure 74 

2). Our aim is to examine whether the relative advantage of these two mechanisms can 75 

depend upon social or environmental conditions. Specifically, we use microbes as a ‘test 76 

system’ to determine whether evolutionary theory can explain diversity in the mechanisms 77 

underlying division of labour. We begin by assuming that coordinated specialisation leads 78 

to social groups containing the optimal allocation of helpers and reproductives. While this 79 

assumption is useful as a conceptual overview, such ‘full coordination’ may require a 80 

complex system of mechanisms and could be difficult to evolve from scratch. 81 

Consequently, in a secondary analysis we relax the assumption of full coordination and 82 

allow the level of coordination to co-evolve along with the extent to which labour is divided. 83 

This scenario is more biologically realistic and allows us to examine both whether 84 

coordination can initially arise and the extent of coordination favoured. 85 

 86 
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 87 

Figure 2. Mechanisms to divide labour in social microorganisms. We seek to determine the 88 
relative advantages and disadvantages of the two key mechanisms for reproductive division of 89 
labour in social microorganisms. (A) Random specialisation occurs when cells randomly 90 
specialise into helpers or reproductives independently of one another. This can occur when a 91 
genetic feedback circuit is used to amplify small molecular fluctuations in the cytoplasm 92 
(phenotypic noise) [8–10,12,14,22]. While potentially cheaper as a mechanism, random 93 
specialisation can lead to groups that deviate significantly from the optimal proportion of helpers 94 
and reproductives. (B) Coordinated specialisation occurs when cells interact with one another, 95 
and so share (or gain) phenotypic information while they are differentiating. This can arise through 96 
the secretion and detection of extracellular molecules (signals or cues), via the intermediary of 97 
parental control (epigenetics) or through relative condition dependence (signals or cues) [19,23]. 98 
While this mechanism can be metabolically costly, it produces precise groups with the optimal 99 
proportion of helpers and reproductives.  100 

 101 

Results and Discussion 102 

Random specialisation vs fully coordinated specialisation 103 

We assume that a single individual arrives on an empty patch and, through a fixed series 104 

of replications, spawns a clonal group of 𝑛 individuals consisting of 𝑘 sterile helpers and 105 

𝑛 − 𝑘 pure reproductives (𝑘 ∈ {0,1,2,… , 𝑛}). The reproductive success (fitness) of a 106 

particular group (that we denote by 𝑔-,.), as measured by the per capita number of 107 

dispersing offspring at the end of the group life cycle is given by 108 

 𝑔-,. =
0
.
(𝑛 − 𝑘)𝑓-,., (1) 

A) Random specialisation B) Fully coordinated specialisation

Helper

Reproductive

Cell-to-cell interactions
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where 𝑛 − 𝑘 is the number of reproductives in the group, and 𝑓-,. is the fecundity of each 109 

reproductive, which we assume is increasing in 𝑘. 110 

 111 

Expression (1) highlights the trade-off between the number of reproductives in the group 112 

(𝑛 − 𝑘), which is higher when there are fewer helpers (lower 𝑘), and the amount of help 113 

that those reproductives obtain (𝑓-,.), which is higher when there are more helpers (higher 114 

𝑘). The balance of this trade-off often results in an optimal number of helpers, 𝑘∗, that is 115 

intermediate (i.e., 0 < 𝑘∗ < 𝑛). 116 

 117 

In species that divide labour by coordination, we assume that group members share 118 

phenotypic information via signalling between cells, parental control, or some cue of 119 

relative condition (Figure 2B). Our model is deliberately agnostic to the details of how 120 

phenotypic information is shared so as to facilitate broad predictions across different 121 

systems. Coordination allows the outcome of individual specialisation to depend on the 122 

phenotypes of social group neighbours. In our first analysis, we make the simplifying 123 

assumption that individuals coordinate fully, so that groups always form with the optimal 124 

number of helpers, 𝑘∗. The disadvantage of coordinated specialisation is that the 125 

mechanism of coordination can incur metabolic costs (e.g., from the production of 126 

extracellular signalling molecules). We posit that the fitness of a group of coordinated 127 

specialisers is given by: 128 

 𝑤7 = (1 − 𝑐.)𝑔-∗,. , (2) 

where 𝑔-∗,. is the fecundity of a group with the optimal number of helpers (i.e., 𝑔-∗,. =129 

max
𝑘 𝑔-,.) and 0 ≤ 𝑐. ≤ 1 is a multiplicative cost of coordination that we assume is 130 
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increasing in group size, 𝑛. A number of different models have examined the particular 131 

mechanisms that could be used to coordinate division of labour in specific systems [24–132 

27].  133 

 134 

In species that divide labour by random specialisation, each individual in the group 135 

independently becomes a helper with a given probability and a reproductive otherwise 136 

(Figure 2A). Hence, the final number of helpers in the group is a random binomial variable. 137 

Assuming that the probability of adopting a helper role is equal to the optimal proportion 138 

of helpers (𝑝∗ = 𝑘∗ 𝑛⁄ ), the expected fitness of a group of random specialisers is given by:  139 

 𝑤< = ∑ >𝑛𝑘?
.
-@A 𝑝∗-(1 − 𝑝∗).B-𝑔-,.. (3) 

The potential advantage of random specialisation is that there are no upfront metabolic 140 

costs from, for example, between cell signalling. The downside of random specialisation 141 

is that groups sometimes form with fewer or more helpers than is optimal (demographic 142 

stochasticity). Wahl has discussed an analogous but mechanistically different cost that 143 

arises when division of labour is determined genetically: groups may sometimes form that 144 

do not contain all of the genotypes required to produce all of the necessary phenotypes 145 

(castes) [18]. 146 

 147 

Before proceeding, we must specify how reproductive fecundity depends on the amount 148 

of help in the group. We focus here on one of the most common forms of cooperation in 149 

microbes, where individuals secrete factors that provide a benefit to the local population 150 

of cells (“public goods”) [28]. We assume that the amount of public good in the social 151 

group depends linearly on the number of helpers in the group and is “consumed” by all 152 
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group members equally [29,30]. An example of such a public good is found in Bacilus 153 

subtilis populations, where helper cells produce and secrete proteases that degrade 154 

proteins into smaller peptides, which are then re-absorbed as a nutrient source by all cells 155 

[13].  156 

 157 

We consider the possibility that the importance of producing public goods may vary. 158 

Accordingly, the fecundity of a reproductive is modelled as the sum of a baseline 159 

reproduction (1 − 𝜖) and of benefits derived from the production of public goods by 160 

helpers (scaled by 𝜖). The parameter 𝜖, which we call the essentiality of cooperation, 161 

quantifies the degree to which reproductives are reliant on helpers in the group [21]. As 𝜖 162 

varies from zero to one, the production of public goods goes from being completely 163 

unimportant to entirely essential. These assumptions lead to the following expression for 164 

the fecundity of a reproductive: 165 

 𝑓-,. = (1 − 𝜖) + 𝜖 -
.
. (4) 

Substituting Equation 4 into Equations 1-3 and solving for the condition for fully 166 

coordinated specialisation to be favoured over random specialisation (i.e., 𝑤7 > 𝑤<), 167 

gives the simplified expression (see supplementary section C): 168 

 𝑐. <
FGB0
.

, (5) 

where division of labour is favoured to evolve only when 𝜖 > 1/2, which we will assume 169 

henceforth. Condition (5) gives three key predictions for how the metabolic cost of 170 

coordination (𝑐.), the size of the group (𝑛), and the essentiality of cooperation (𝜖) affect 171 

which labour-dividing mechanism is optimal (Figure 3).  172 
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 173 

  174 

Figure 3. Random specialisation versus fully coordinated specialisation. We find that small 175 
group sizes (lower 𝑛), more essential cooperation (higher 𝜖), and low costs to coordination (lower 176 
𝑐.) favour division of labour by fully coordinated specialisation (dark) over division of labour by 177 
random specialisation (white). We modelled the cost of coordination as the increasing and 178 
decelerating function 𝑐. = 𝛼J1 − 𝑒BL.(.B0) F⁄ M, where 𝑛 (𝑛 − 1) 2⁄  is the number of cell-to-cell 179 
interactions in a coordinated group and 0 < 𝛼 < 1 and 𝛽 > 0 are parameters affecting the scale 180 
and the shape of the cost of coordination, respectively. Here, 𝛽 = 0.01, and 𝛼 = 0.1 (solid 181 
boundary) or 𝛼 = 0.025 (dashed boundary).  182 
 183 

If division of labour is favoured (𝜖 > 1 2⁄ ) and there is no coordination cost for all 𝑛 then 184 

coordinated specialisation is trivially always the preferred strategy (i.e., 𝑤7 > 𝑤< always 185 

holds). For positive coordination costs, condition (5) predicts: 186 

 187 

Prediction 1: Smaller costs of coordination favour coordinated specialisation.  188 
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The relative costs of coordination will depend on the specific mechanism by which 189 

individuals ensure that the optimal allocation of labour is achieved. For example, 190 

signalling between social partners (as occurs in the formation of Dictyostelium discoideum 191 

fruiting bodies) could have higher costs than parental control (as occurs in Volvocine 192 

algae) or than using the products of cooperation as a cue (as occurs in A. cylindrica) [31–193 

35]. 194 

 195 

If there is a cost to coordination, then the optimal mechanism to divide labour depends 196 

on how this cost balances against the hidden costs of random specialisation (i.e., the right 197 

hand side of inequality (5)). Theses hidden costs are determined by: (i) the likelihood that 198 

random groups deviate from the optimal proportion of helpers, and (ii) the degree to which 199 

those deviations from the optimal proportion of helpers leads to a reduced fecundity for 200 

the group (see supplementary section C). As captured by condition (5), the importance of 201 

these two factors depends upon the size of the group (n) and the essentiality of 202 

cooperation (𝜖).  203 

 204 
Prediction 2. Smaller social groups favour coordinated specialisation. 205 

Smaller groups favour coordinated specialisation for two reasons. First, the hidden costs 206 

of random specialisation are greater in smaller groups. In smaller groups, there are fewer 207 

possible outcomes for the proportion of helpers (𝑛 + 1 possible allocations of labour for 208 

groups of size 𝑛). Consequently, random specialisation can more easily lead to the 209 

formation of groups with a realized proportion of helpers that deviates significantly from 210 

the optimum (𝑝 ≪ 𝑝∗	or 𝑝 ≫ 𝑝∗). In contrast, in larger groups there are more possible 211 

.CC-BY-NC-ND 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.02.25.964643doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.964643
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

outcomes and the resulting proportion of helpers will be more clustered about the optimal 212 

composition with highest fitness (with 𝑝 ≈ 𝑝∗ for very large group sizes).  213 

 214 

This effect of group size on the cost of random specialisation is a consequence of  the 215 

law of large numbers (e.g., one is much more likely have outcomes close to 50% heads 216 

when tossing 100 coins in a row compared to tossing 4 coins in a row, in which no heads 217 

or all heads may frequently occur). Our prediction here is also analogous to how, when 218 

mating occurs in small groups, small brood sizes select for less female biased sex ratios 219 

to decrease the probability of producing a group containing no males [36]. Similarly, in 220 

some cases random specialisation in a small group may strategically favour a lower (or 221 

higher) proportion of helpers than might otherwise be optimal, to decrease the chances 222 

of having zero or insufficient reproductives (or helpers; see supplementary section F and 223 

Figure S4). 224 

 225 

The second reason why smaller groups favour coordinated specialisation is that in smaller 226 

groups there are fewer individuals with whom to coordinate and thus a smaller cost of 227 

coordination, given our assumption that 𝑐.	is increasing in 𝑛. The importance of this 228 

influence of group size depends upon mechanistic details about how specialisation is 229 

coordinated. 230 

 231 

Prediction 3: More essential public goods favour coordinated specialisation 232 

When cooperation is more essential (larger 𝜖), the hidden costs of random specialisation 233 

increase, and so coordinated specialisation is more likely to be favoured. As the 234 
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essentiality of cooperation increases, the fitness costs incurred from producing too few 235 

helpers also increases (i.e., there are larger costs to deviating from optimum). In addition, 236 

as cooperation becomes more essential (larger 𝜖), the fraction of helpers favoured 237 

increases towards 50% helpers (𝑝∗ ≈ 0
F
). This increases the variance in the proportion of 238 

helpers, and so sub-optimal groups may arise more frequently (see supplementary 239 

section C). Both of these effects increase the hidden costs of random specialisation, and 240 

thus favour the evolution of fully coordinated specialisation (Figure 3).  241 

 242 

Alternative forms of cooperation 243 

The above analysis employs a deliberately simple public goods model, focusing on 244 

factors that are expected to be broadly relevant across many microbial systems. This 245 

facilitates the interpretation of our results, and generates broadly applicable predictions 246 

that are less reliant on the specifics of any particular biological species. 247 

 248 

In order to test the robustness of our results (predictions 1-3) we also developed a number 249 

of alternate models for different biological scenarios (see supplementary sections D and 250 

E, and Figures S1-S3). In particular, we examined the possibility that the collective good 251 

provided by helpers: (i) is not consumed by its beneficiaries, as may occur when self-252 

sacrificing S. enterica cells enter the gut to trigger an immune response that eliminates 253 

competitors (i.e., a non-rivalrous or non-congestible collective good); or (ii) is only 254 

consumed by the reproductives in the group, as may occur for the fixed nitrogen produced 255 

by heterocyst cells in A. cylindrica filaments (i.e., a kind of excludible good) [14,37,38]. 256 

We also examined the possibility that the fecundity of reproductives depend non-linearly 257 
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on the proportion of helpers in the group. In all of these alternative biological scenarios, 258 

we found qualitative agreement with the predictions of the linear public goods model.  259 

 260 

That said, we made a number of assumptions that it would be useful to investigate 261 

theoretically. We assumed that social groups are always clonal, such that natural 262 

selection would act to maximise group fitness [39,40]. Relaxing this assumption of 263 

clonality would both decrease the optimal level of cooperation and increase the potential 264 

for conflict within groups, which could for example undermine the stability and honesty of 265 

inter-cellular signalling, making coordination less likely to be favoured [21,32,41]. 266 

Analogously, increasing within-group conflict could favour a genetic predisposition to 267 

adopting a reproductive role in addition to the coordinated or random mechanism that 268 

already exists [4,6]. 269 

 270 

The optimal level of coordination 271 

Finally, we relax our assumption that individuals coordinate fully, and allow for 272 

intermediate forms of coordination (Figure 4A). This allows us to examine whether costly 273 

coordination can evolve from an ancestral state where there is no coordination. We 274 

assume that coordination is achieved by one-to-one interactions between specialising 275 

cells whereby phenotypic information is shared. We let 𝑠 be the level of coordination, 276 

which is equal to the probability that any two cells interact with one another. Once again, 277 

our model is agnostic to the specific mode of interaction (whether it be via an extracellular 278 

signal, or the intermediary of parental control, or otherwise) so as to generate predictions 279 

that are not anchored to the specifics of a particular system. Cells randomly take turns 280 
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specialising, and adopt a helper role if the proportion of helpers amongst the cells with 281 

which they interact falls below a critical threshold, 𝑡 (see supplementary section G.1 for 282 

more details on this model). We assume that higher levels of coordination (higher 𝑠) entail 283 

a larger cost of coordination 𝑐.. Overall, this leads to a trade-off between more costly and 284 

precise forms of coordination on the one hand (higher 𝑠) and cheaper and less precise 285 

forms of coordination on the other hand (lower 𝑠). At the two extremes of 𝑠, we have either 286 

individual random specialisation with no coordination (𝑠 = 0), or full coordination between 287 

all cells (𝑠 = 1)	(Figure 4A). 288 

 289 

We used individual based simulations to determine the optimal level of coordination, 𝑠∗, 290 

and target proportion of helpers, 𝑡∗, that co-evolve in different scenarios (see 291 

supplementary section G.1, Figure 4B-D and Figure S5). The evolutionary outcomes, 292 

𝑠∗and 𝑡∗,		are estimated by the average trait values that evolved across the entire 293 

population, in the last 3,000 generations of the simulation, and over 10 independent 294 

simulation repetitions. The results of our simulations are in broad qualitative agreement 295 

with our previous predictions: small groups (low 𝑛) and more essential cooperation (high 296 

𝜖) favour the evolution of coordinated specialisation (𝑠∗ > 0; Figure 4D). Additionally, we 297 

found that both intermediate forms of coordination (0 < 𝑠∗ < 1)	and fully coordinated 298 

specialisation (𝑠∗ ≈ 1)	 can be favoured to evolve, the latter occurring when group size is 299 

particularly small and cooperation is particularly essential (lower 𝑛 and higher 𝜖; Figure 300 

4D). We find the same qualitative results with a simple analytical model (see 301 

supplementary section G.3). As well as potentially explaining variation across systems, 302 
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these results also suggest that individual cells could be selected to conditionally adjust 303 

their level of coordination in response to factors such as changing group size. 304 

 305 

 306 
 307 
Figure 4. The optimal level of coordination. (A) If the level of coordination may evolve, then a 308 
spectrum of possible mechanisms could arise. At one extreme (𝑠 = 0), individuals may not 309 
coordinate at all (random specialisation). At the other extreme (𝑠 = 1), all individuals coordinate 310 
with one another and the variance in the realised proportion of helpers is minimised (fully 311 
coordinated specialisation). In between (0 < 𝑠 < 1), intermediate forms of coordination may 312 
arise in which not all individuals coordinate with one another and sub-optimal proportions of 313 
helpers can occur. (B & C) We present the across-simulation average level of coordination (�̅�, 314 
solid line) and target proportion of helpers (𝑡̅, dashed line) over 30,000 simulation generations 315 
and where we have performed 10 independent simulation repetitions. We also plot individual 316 
simulation time series for the trait values (grey lines), where each line corresponds to a 317 
population average. We find that the traits converge stably within hundreds of generations. 318 
Moreover, the evolutionary outcomes (estimated by 𝑠∗	and 𝑡∗, see supplementary section G.1 319 
for more details), depend on demographic and environmental conditions: panel B corresponds 320 
to the middle red box in panel D, whereas panel C red box at the lower right corner. (D) Smaller 321 
groups (lower 𝑛) and more essential cooperation (higher 𝜖) favour the evolution of fully 322 
coordinated specialisation (𝑠∗ ≈ 1). Intermediate coordination (0 < 𝑠∗ < 1) may evolve in more 323 
moderate conditions. (See figure S5 for the optimal target proportion of helpers, 𝑡∗). We 324 
modelled the cost of coordination as the increasing and decelerating function 𝑐. =325 
𝛼J1 − 𝑒BLX.(.B0) F⁄ M, where s𝑛 (𝑛 − 1) 2⁄  is the expected number of cell-to-cell interactions in 326 
a coordinated group with level of coordination 𝑠, and 0 < 𝛼 < 1 and 𝛽 > 0 are parameters that 327 

Across-simulation average, "̅
Across-simulation average, ̅#
Independent simulations 
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affect the scale and the shape of the cost of coordination curve, respectively. Here, 𝛽 = 0.01 328 
and 𝛼 = 0.1. 329 
 330 

Overall, these predictions highlight that the level of coordination within a labour-dividing 331 

species is a trait that can be shaped by natural selection, and that fully coordinated 332 

specialisation is a mechanism that can be expected to evolve via intermediate forms in 333 

many cases. We also found that the degree to which intermediate levels of coordination 334 

may arise depends on the shape of the costs of coordination (see supplementary section 335 

G.2 and Figure S6). In particular, if there is a large up-front cost to coordination, then 336 

intermediate coordination (0 < 𝑠∗ < 1) is less likely to arise—random specialisation will 337 

either be favoured (no coordination; 𝑠∗ ≈ 0)	or systems will tend to evolve to fully 338 

coordinated specialisation (𝑠∗ ≈ 1). In microorganisms that divide labour by coordinated 339 

specialisation, both cyanobacterial filaments and Volvox carteri colonies have fully 340 

coordinated groups [42,43]. In contrast, the exact level of coordination in fruiting bodies 341 

such as D. discoideum and Myxococcus xanthus is less well known [44–46]. This 342 

highlights the need for further empirical work to determine the extent to which groups are 343 

“fully” coordinated in specific species.  344 

 345 

Distribution of labour dividing mechanisms in the natural world 346 

Most previous work on division of labour has tended to be either mechanistic, focusing 347 

on how different phenotypes are produced (caste determination), or evolutionary, 348 

focusing on why division of labour is favoured in the first place [1,4,17–21,24–349 

26,33,34,47–53]. We have shown how evolutionary theory can also be used to explain 350 

why different mechanisms are used in different species [4,14,17–19]. In particular, we 351 
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have shown that coordinated specialisation is more likely to be favoured over random 352 

specialisation in small groups, when coordination costs are low, and when there are larger 353 

fitness costs to deviating from optimal caste ratios. Our results can help explain the 354 

distribution of mechanisms for division of labour that have been observed in bacteria and 355 

other microbes. Indeed, coordination appears to be more prevalent in species where 356 

group sizes are small, cooperation is more essential, and the cost of coordination is lower 357 

(Table 1; see also supplementary section H). However, this is speculative, as more data 358 

is required for a formal comparative study across species. Our results also suggest a 359 

hypothesis for why random caste determination has not been widely observed in animal 360 

societies: during the initial evolution of complex animal societies, group sizes were likely 361 

to be small and costs of coordination might have been minor compared to each 362 

individual’s day-to-day organismal metabolic expenditure. 363 

  364 
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 365 

Species Group size Essentiality of 
cooperation 

Cost of 
coordination 

Type of 
specialisation 

Salmonella 
enterica Large Low High Random 

Bacilus subtilis Medium Medium High Random 

Myxococcus 
xanthus Large Medium/High Medium/High Coordinated 

Dictyostelium 
discoideum Large Medium/High Medium Coordinated 

Volvox carteri Large High Low Coordinated 

Anabaena 
cylindrica Small Medium/High Low Coordinated 

Table 1: Division of labour in microbes. Examples of division of labour in bacteria 366 

and other microbes where the mechanism of specialisation has been identified [13–367 

15,31,33,37,45,54,55]. For illustrative purposes, we provide approximate categorical 368 

estimates of relative group size, essentiality of cooperation, and the cost of 369 

coordination. This suggests roughly that coordinated specialisation has evolved most 370 

frequently in species with small groups, low coordination costs, and more essential 371 

cooperation. An across-species phylogeny-based comparative study, with a larger 372 

species sampling, would be required to formally test the predictions of our models [56]. 373 

This emphasizes the need for more data on the mechanisms underlying division of 374 

labour in these and other social microbe species (see supplementary section H). For 375 

example, persistence specialisation occurs randomly in large groups, and it has been 376 

suggested that this is cooperative [57]. 377 

 378 
  379 
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A Overview
This manuscript is organized as follows. Section B defines the strategies of fully coordinated specialisation and
random specialisation, and characterises their fitness. Section C derives the main analytical result of the main text3

(Equation 5), that is, the condition for fully coordinated specialisation to be favoured over random specialisation
when the underlying division of labour is modelled as a linear public goods game. Section D re-examines key
assumptions and approximations that simplified the analysis of the public goods model. Section E considers6

several models for alternative biological systems leading to different kinds of public goods. Both sections D and
E demonstrate the robustness and generality of our results when relaxing our assumptions and approximations.
Section F presents a numerical investigation on the impact of asymmetry in the fitness functions on the optimal9

probability of becoming a helper, and how this can mitigate some of the costs of random specialisation. Section
G examines the optimal level of coordination using individual based simulations as well as an analytical model
(as presented in Fig. 4 of the main text). Finally, section H presents details on how we categorised the relative12

group size, essentiality of cooperation, and cost of coordination for the different labour-dividing microbial species
presented in Table 1 of the main text.

B Labour dividers and their fitness15

We assume that a single individual arrives on an empty patch and, through a fixed series of replications, forms a
clonal group of n individuals that is composed of k sterile helpers and n− k pure reproductives, where k ∈ N =
{0, 1, 2, . . . , n}. The reproductive success (fitness) of the group, gk,n, as measured by the per capita number of18

dispersing offspring at the end of the group life cycle, is given by

gk,n =
1

n
(n− k)fk,n, (S1)

where fk,n is the fecundity of each reproductive in the group. We assume that fk,n depends only on the proportion
of helpers in the group, p = k/n with p ∈ P = {0, 1/n, 2/n, . . . , (n− 1)/n, 1}, so that we can write fk,n =21

F (p), where F is a real function that is increasing on the interval [0, 1]. This assumption allows us to rewrite (S1)
as

gk,n = (1− k/n)F (k/n) = G(k/n), (S2)

where we have defined24

G(p) = (1− p)F (p). (S3)

B.1 Fully coordinated specialisation
With fully coordinated specialisation (C), we assume that some mechanism, such as signalling between cells,
ensures that groups always form with the optimal proportion of helpers, p∗, where27

p∗ =
k∗

n
, with k∗ = arg max

k∈N
gk,n. (S4)

We posit that the fitness of a group of coordinated specialisers is given by:

wC(p∗) = (1− cn) max
k∈N

gk,n = (1− cn)G(p∗), (S5)

where cn ∈ [0, 1] is the cost of coordination, which we assume is a non-decreasing function of the group size, n.
A parsimonious choice, that we use to illustrate all of our results, is to set30

cn = α(1− e−βn(n−1)/2), (S6)

where n(n − 1)/2 is the number of cell-to-cell interactions in a fully coordinated group, α ∈ [0, 1] controls the
scale of the cost, and β > 0 determines how diminishing the cost is (as presented in Fig. 3 of the main text). Note,
however, that our main result (Equation 5 in the main text, to be derived below) is independent of the particular33

functional form of the cost of coordination.
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B.2 Random specialisation
With random specialisation (R), each individual in the group independently becomes a helper with a given prob-36

ability q, and a reproductive otherwise. Hence, the number of helpers in the group, that we denote by K, is a
binomial random variable with parameters n and q (i.e., K ∼ Binomial(n, q)). In the following it will also be
convenient to write Q = K/n for the random variable giving the proportion of helpers in the group. Within this39

framework, the expected fitness of a group of random specialisers is simply given by

wR(q) =

n∑
k=0

(
n

k

)
qk (1− q)n−k gk,n. (S7)

C Linear public goods
Our main model assumes that the fecundity function F is linear in p and given by42

F (p) = 1− ε+ εp, (S8)

where ε ∈ [0, 1] is a parameter measuring the “essentiality of cooperation”. For ε = 0, cooperation by helpers is
totally unessential, as the fecundity of reproductives is constant and equal to 1. For ε = 1, cooperation by helpers
is totally essential and (S8) reduces to F = p, so that the fecundity of reproductives equals the proportion of45

helpers in the group. For 0 < ε < 1, the fecundity of reproductives is the sum of a constant term (i.e., 1− ε) and
a term proportional to the proportion of helpers in the group (i.e., εp).

Replacing (S8) into (S3) and simplifying we obtain48

G(p) = (1− ε)(1− p) + εp(1− p). (S9)

To find the fitness of coordinated specialisers, we first assume that p is a continuous variable, and calculate the
derivative

G′(p) = 2ε− 1− 2εp.

This derivative is decreasing in p (i.e., G(p) is concave), and has a single root, p̂, given by51

p̂ = 1− 1

2ε
. (S10)

Such a root lies in the interval (0, 1) if and only if 1/2 < ε ≤ 1. Otherwise the maximiser of G(p) (and hence
the optimal allocation of helpers) is given by p̂ = 0 (i.e., it is optimal to have no helpers). To avoid this trivial
scenario without division of labour, henceforth we assume that 1/2 < ε ≤ 1 holds. Further, to make progress we54

approximate the optimal allocation of helpers, p∗, by p̂. The actual optimal value p∗ will be a value near p̂ but
constrained by the permissible group compositions, since p∗ ∈ P (cf. section D.1). Note that the approximate
optimal proportion (S10) is independent of n, and that it is an increasing function of ε such that p̂ = 1/2 when57

ε = 1. An approximation to the fitness of fully coordinated specialisers can then be obtained by letting p∗ ≈ p̂ in
equation (S5), that is, by letting

wC(p∗) ≈ (1− cn)G(p̂). (S11)

To find the fitness of random specialisers, we replace (S9) into (S7) and simplify to obtain60

wR(q) =

n∑
k=0

(
n

k

)
qk (1− q)n−k (1− k/n) (1− ε+ εk/n)

= (1− ε)E [(1−K/n)] + εE [(1−K/n)K/n]

= (1− ε) (1− q) + εq (1− q)− εq(1− q)
n

(S12)

= G(q)− εVar(Q), (S13)

where we have made use of the first two moments of the binomial distribution, E[K] = nq, E[K2] = nq(1− q) +
(nq)2, of expression (S9), and of the fact that Var(Q) = q(1− q)/n.
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In order to determine the condition under which coordinated specialisation is favoured over random special-63

isation, we assume in a first step that random specialisers play the strategy q = p∗, so that their fitness is given
by

wR(p∗) = G(p∗)− εVar(P ∗), (S14)

where P ∗ = K∗/n andK∗ ∼ Binomial(n, p∗) (and hence Var(P ∗) = p∗(1−p∗)/n). This assumption simplifies66

our calculations and leads to results that are qualitatively similar to those that arise from the more parsimonious
assumption that random specialisers play the strategy that maximises their fitness (cf. section D.2). Comparing
expressions (S5) and (S14), it follows that the condition wC(p∗) > wR(p∗) can be written as69

cn < c∗, (S15)

where the critical coordination cost, c∗, is given by

c∗ =
ε

G(p∗)
Var (P ∗) . (S16)

Equation (S16) makes it explicit the fact that the critical cost of coordination may be decomposed into a measure
of the deviation from the optimal allocation of labour, Var (P ∗), and a quantity that captures the relative cost of72

deviating from the optimal proportion of helpers, ε/G(p∗). Furthermore, since G(p∗) is (approximately) indepen-
dent of n, we can say that the effect of increasing the group size acts primarily on the deviation of groups from the
optimal proportion of helpers, Var (P ∗). In contrast, a larger essentiality of cooperation both (i) pushes p∗ closer75

to 1/2 (which in turns increases the variance Var(P ∗) = (2ε− 1)/(4nε2)) and (ii) increases the cost of deviation
(larger ε/G(p∗) = 4ε2) and thus acts via both factors.

To obtain a simple expression of c∗ in terms of our parameters n and ε, we approximate p∗ by p̂ as given in78

(S10) to obtain

c∗ ≈ 2ε− 1

n
, (S17)

which is increasing in the essentiality of cooperation ε and decreasing in group size n. Expression (S15) together
with the approximation yields expression 5 in the main text.81

D Alternative modelling assumptions

D.1 Discrete proportions of helpers
In section C, we approximated the optimal proportion of helpers in coordinated groups as a continuous variable84

p∗ ≈ p̂ ∈ [0, 1]. In reality this quantity is discrete as it is given by p∗ = k∗/n and there can only be an integer
number of helpers in the group (k∗ ∈ N , so that p∗ ∈ P).

Here, we show that this assumption is relatively innocuous. First, it is clear that p∗ tends to p̂ as n grows large87

(Fig. S1A). Second, even for relatively small group size n the predictions of the model are relatively independent
of this assumption. To show this, we repeat our analysis without making the continuous approximation. That
is, we evaluate the conditions cn < c∗ (coordinated specialisation favoured) and cn > c∗ (random specialisation90

favoured), where c∗ is given by (S16) and where p∗ is not approximated as p̂ but is calculated numerically for each
combination of parameters considered, so that p∗ ∈ P . The results of this analysis are shown in Fig. S1B. As
expected, we find that the parameter space boundary is more jagged but that the broad results are similar to those93

of the continuous treatment.

D.2 Optimal random specialisers
In section C, we assumed that the probability of becoming a helper, q, was approximately equal to the optimal96

proportion of helpers (i.e., we let q = p̂ ≈ p∗) (Fig. S1A). A more realistic assumption is that the probability
of being a helper in random specialisers is the one optimising fitness, so that random specialisers play strategy
q = q∗, with99

q∗ = arg max
0≤q≤1

wR(q). (S18)

This alternative modelling assumption makes the fitness of random specialisers be larger (as wR(q∗) ≥ wR(p∗)
necessarily holds) and thus will make, all else being equal, random specialisation more likely to be favoured over
coordinated specialisation.102
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Figure S1: Alternative modelling assumptions. A) In the model presented in the main text, we assumed that the
probability that random specialisers adopt a helper role was equal to the optimal proportion of helpers in the group
(p∗) as opposed to the probability that optimises fitness for random specialisers (q∗). In turn, we approximated this
optimal proportion of helpers by a continuous variable p̂. Here we show that all three of these quantities, p∗ (open
circles), p̂ (dashed line), and q∗ (solid line) converge to the same value as group size (n) increases. Here, ε = 3/4,
leading to p̂ = (1 − 2ε)/(2ε). B) We evaluate the conditions cn < c∗ (coordinated specialisation favoured)
or cn > c∗ (random specialisation favoured), without approximating p∗ by p̂ (as in the main text). Instead,
we evaluate the optimal value p∗ numerically for each parameter combination considered. C) We evaluate the
condition wC(p∗) > wR (q∗) (coordinated specialisation favoured) or wC(p∗) > wR (q∗) (random specialisation
favoured), while allowing for the probability that random specialisers adopt a helper role to evolve to the value
that maximises the fitness of random specialisers (q∗). In both scenarios B) and C), we find that smaller group
sizes (smaller n) and more essential cooperation (higher ε) favour coordinated specialisation, in agreement with
the results presented in the main text. The cost of coordination is given by (S6) with α = 0.1 and β = 0.01. The
red area occurs where division of labour is not favoured, that is when the optimal proportion of helpers is zero.
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To find q∗ for the linear public goods model, we take the derivative of (S12) with respect to q:

w′R(q) = 2ε− 1− ε/n− 2ε(n− 1)q/n. (S19)

This derivative is decreasing in q (hence wR(q) is concave) and has a single root q∗ given by

q∗ = 1 +
1

2(n− 1)
− n

2ε(n− 1)
. (S20)

Such root lies in the interval (0, 1) if w′R(0) = (2nε − n − ε)/n > 0 holds, or equivalently, if ε > n/(2n − 1)105

holds, which we assume in the following. Expression (S20) is increasing in both n and ε. We also note that

p̂− q∗ =
1− ε

2(n− 1)ε
> 0, (S21)

and hence (i) p̂ always overestimates q∗, but that (ii) the difference between the two values is inversely proportional
to n and goes to zero as n grows large. Thus, p̂ approximates q∗ relatively well for relatively large n, which justifies108

our use of p̂ as an approximation in section C (see Fig. S1A).
We further note that the derivative (S19) can be understood as a selection gradient on q. As such selection

gradient is decreasing in q, the point q∗ is not only a fitness maximum, but also the value to which evolution by111

small-step mutations would eventually approach. In other words, q∗ is a convergence stable strategy [1, 2].
We present numerical results in Fig. S1C, solving for the optimal mechanism by determining the conditions

under which either wC(p∗) > wR (q∗) (coordinated specialisation favoured) or wC(p∗) > wR (q∗) (random114

specialisation favoured) holds. Overall, we find similar qualitative results hold as in the simplified model.

D.3 Non-linear benefits to cooperation
In the main model, we assumed that reproductive fecundity depends linearly on the proportion of helpers in the117

group. Here, we consider the possibility that there exists a non-linear dependence on the proportion of helpers by
modelling reproductive fecundity with the following sequence:

fk,n = 1− ε+ ε (k/n)
λ
, (S22)

where λ > 0 is a parameter controlling the shape of the return from an increasing proportion of helpers. When120

λ < 1, there is a large initial return from the addition of the first helper, followed by a decelerating rate of return
as the proportion of helpers increases (i.e., fk,n is concave; see Fig. S2A). When λ > 1 there is a negligible initial
return from the addition of the first helper followed by an accelerating rate of return as the proportion of helpers123

increases (i.e., fk,n is convex; see Fig. S2B). In all cases (S22) is monotonically increasing from zero to one.
We considered the parameter discretisation, n ∈ {2, 4, . . . , 38, 40} and ε ∈ {0.1, 0.1 + 1× 0.9/39, . . . , 0.1 +

38 × 0.9/39, 1} and for each combination of parameters, we solved numerically for the optimal proportion of126

helpers, p∗, that maximises G(p). For each combination of parameters, we determined the optimal mechanism
(i.e., whether wC(p∗) > wR(p∗) or wC(p∗) < wR(p∗) holds), to ascertain whether accelerating (λ > 1), or
decelerating (λ < 1) returns affect the predictions of our analysis. We find that the same broad results hold129

as in the linear public goods game (see Fig. S2C and S2D). We further find that decelerating benefits can lead
to fully coordinated specialisation being favoured even for relatively low essentiality of cooperation (Fig. S2C)
but that accelerating benefits leads to fully coordinated specialisation being somewhat more advantageous than132

decelerating benefits at higher group sizes (Fig. S2D).

E Alternative forms of cooperation
In the main model, we assumed that the fecundity of reproductives depends on the proportion of helpers in the135

group, k/n. Here, we consider the conceptual underpinnings of this assumption (section E.1) and analyse alterna-
tive scenarios where reproductive fecundity depends on the number of helpers in the group, k (section E.2), or on
the ratio of helpers to reproductives, k/(n− k) (section E.3).138

E.1 Reproductives benefit from the proportion of helpers
There are two key scenarios where reproductive fecundity can be modelled as depending on the proportion of
helpers in the group, k/n.141

6



0 1/2 1
0

1/2

1

0 1/2 1
0

1/2

1

Essentiality of 
cooperation, ε

More 
essential

Less
essential

Essentiality of 
cooperation, ε

More 
essential

Less
essential

G
ro

up
 s

iz
e,

 n

G
ro

up
 s

iz
e,

 n

Fe
cu

nd
ity

, f
k,
n

Fe
cu

nd
ity

, f
k,
n

Essential 
cooperation

Fully coordinated
specialisation

Random 
specialisation

Fully coordinated
specialisation

Random 
specialisation

Non-essential 
cooperation

Proportion of helpers, p Proportion of helpers, p

Non-essential 
cooperation

Essential 
cooperation

Decelerating returns Accelerating returns

No division 
of labour

No division 
of labour

A) B)

C) D)

Figure S2: Non-linear public goods. We consider an extension of the model allowing the fecundity of reproduc-
tives to depend non-linearly on the proportion of helpers in the group. A) If λ < 1, then the presence of helpers
provides an initially large increase in the fecundity of reproductives but then only provides benefits at a decreasing
rate as the proportion of helpers goes up (decelerating cooperation; here λ = 2/3). B) If λ > 1, then the presence
of helpers provides no initial increase in the fecundity of reproductives but then provides benefits at an increasing
rate as the proportion of helpers goes up (accelerating cooperation; here λ = 3/2). In both A) and B) we have
set ε = 1/2 (non-essential cooperation) and ε = 1 (essential cooperation). C) and D) We numerically evaluate
the conditions in which wC(p∗) > wR(p∗) (coordinated specialisation favoured) or wC(p∗) < wR(p∗) (random
specialisation favoured) holds while assuming either that λ = 2/3 (decelerating cooperation; panel C). or λ = 3/2
(accelerating cooperation; panel D). The cost of coordination is given by (S6) with α = 0.1 and β = 0.01. In both
scenarios, we find that small group sizes (lower n) and more essential cooperation (higher ε) favour coordinated
specialisation. The red area occurs where division of labour is not favoured, that is when the optimal proportion
of helpers is zero.
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First, the benefits provided by helpers may constitute a good that is consumed by its beneficiaries (sometimes
termed a congestible or rivalrous good), wherein the benefit experienced by one individual proportionally de-
creases the amount of good that may benefit its neighbours [3, 4]. For instance, the secretion of an extracellular144

product that must be absorbed and digested in order to provide benefits (as happens in populations of B. subtilis
and A. cylindrica) can be conceptualised as such a good [5, 6, 7]. In particular, if the good is non-excludible
(i.e., all individuals use the benefits) then the benefits conferred to each reproductive is the total amount of help147

(in the linear case, approximated as the number of helpers, k) divided by the number of individuals in the group
(n; reproductives and helpers alike) [3]. That helpers also partake in the consumption of the public good may be
considered a type of soaking [8].150

Second, the amount of good that each helper provides may depend on the number of individuals in the group
such that, all else being equal, larger groups entail less of a benefit to the group. For instance, helpers in V. carteri
beat their flagella to keep the colony afloat at the optimal height in the water column for photosynthesis [9, 10]. In153

this case, the contribution of each helper (the degree to which it helps keep the colony at the right height) depends
inversely on the size of the group as larger colonies are more difficult to keep afloat.

E.2 Reproductives benefit from the number of helpers156

An alternative assumption is that the fecundity of reproductives depends on the number of helpers in the group, k.
This would imply that the contribution of each helper to the total good does not depend on the size of the group
and that the benefit conferred to one individual does not decrease the benefits available for another. The benefits159

provided by helpers in S. enterica infections is an example of such a good (a non-congestible or non-rivalrous
good) [3, 4]. In this case, helpers trigger a host immune response that wipes out competing microbial strains so
that reproductives may then proliferate without competition [11, 12]. Thus, the competitive advantage afforded162

by the host immune response is not used up or depleted by any of its beneficiaries, unless there are so few niches
vacated that reproductives then compete with one another.

We would like to know whether we recover similar results as the ones we obtained assuming that reproductives165

benefit from the proportion of helpers in an alternative biological model in which the fecundity of reproductives
depends on the number of helpers in the group, k. To this end we posit the following specific sequence for
reproductive fecundity:168

fk,n = 1− ε+ εk.

Replacing this expression into (S3) and by a slight abuse of notation (as G now depends explicitly on the group
size n) we obtain

G(p) = (1− p)(1− ε+ εnp). (S23)

Treating p as a continuous variable, we calculate the first derivative of G with respect to p as171

G′(p) = nε− (1− ε)− 2εnp.

This derivative is decreasing in p (i.e., G(p) is concave), and has a single root p̂ given by

p̂ =
1

2
− 1− ε

2nε
. (S24)

Such root lies in the interval (0, 1) if ε > 1/(n+ 1), which we assume henceforth.
Using arguments similar to the ones we used in section C, it follows that we can approximate the fitness of a174

coordinated group as

wC(p∗) ≈ (1− cn)G(p̂),

while the fitness of a randomly specialising group randomising with probability q can be written as

wR(q) =

n∑
k=0

(
n

k

)
qk (1− q)n−k (1− k/n) (1− ε+ εk)

= G(q)− εq(1− q)
= G(q)− εnVar(Q).
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Figure S3: Alternative biological scenarios. A) We consider a scenario where the fecundity of reproductives
depends on the number of helpers in the group, evaluating when cn < c∗ (coordinated specialisation favoured)
or cn > c∗ (random specialisation favoured) holds, and where c∗ is calculated according to equation (S25). B)
We consider a scenario where the fecundity of reproductives depends on the ratio of helpers to reproductives,
evaluating when cn < c∗ (coordinated specialisation favoured) or cn > c∗ (random specialisation favoured)
holds, and where c∗ is calculated with equation (S31). The cost of coordination is given by equation (S6) with
α = 0.1 and β = 0.01. In both cases, we find the same qualitative results as in the main analysis. That is, smaller
group sizes (smaller n) and more essential cooperation (higher ε) favour coordinated specialisation. The red area
occurs where division of labour is not favoured, that is when the optimal proportion of helpers is zero.

Assuming that random specialisers play q = p∗, division of labour by coordinated specialisation is favoured over177

random specialisation if wC(p∗) > wR(p∗) holds. This condition can be written as cn < c∗, where the critical
cost c∗ is given by

c∗ =
εnVar(P ∗)

G(p∗)
=

εp∗

1− ε+ εnp∗
≈ nε− (1− ε)
n[(n− 1)ε+ 1]

, (S25)

where the approximation follows from assuming p∗ ≈ p̂ with p̂ given by (S24).180

The critical cost c∗ is increasing in ε, and decreasing in n for relatively large n. This can be easily seen by
taking the first forward difference of c∗(n),

∆nc
∗ = c∗(n+ 1)− c∗(n) =

1− ε+ 2nε− 3nε2 − n2ε2

n(n+ 1)(nε+ 1)(1− ε+ nε)
,

and realizing that this expression is negative for large n.183

We present some numerical results in Fig. S3A, evaluating when cn < c∗ (i.e., coordinated specialisation is
favoured) or cn > c∗ (i.e., random specialisation is favoured), where c∗ is given by (S25). As in the main model
where reproductives benefit from the proportion of helpers, we find that smaller group sizes (small n) and more186

essential cooperation (higher ε) favour coordinated specialisation.

E.3 Reproductives benefit from the ratio of helpers to reproductives
In a second alternative scenario, only reproductive individuals benefit from the collective good. In this case,189

reproductive fecundity is determined by the number of helpers (approximate amount of collective good) divided
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by the number of reproductives (the number of beneficiaries of the good). This gives the following expression for
the fecundity of a reproductive in a group of size n with k helpers:192

fk,n =

(
1− ε+ ε

k

n− k

)
[k < n], (S26)

where [k < n] is an Iverson bracket indicating that fk,n = 0 if k = n.
Replacing this expression into (S1) and simplifying, we obtain the following formula for the fitness of a group

of size n with k helpers:195

gk,n =

(
1− ε+

(2ε− 1)k

n

)
[k < n]. (S27)

This sequence is unimodal (first increasing, then decreasing) in k if ε > 1/2 holds, which we assume henceforth.
In this case, k∗ = n − 1 maximises gk,n for all n, so that the optimal proportion of helpers is given by p∗ =
(n− 1)/n. It follows that the fitness for coordinated specialisers is given by198

wC(p∗) = (1− cn)gk∗,n = (1− cn)gn−1,n = (1− cn)
(n− 2)ε+ 1

n
. (S28)

Contrastingly, the expected fitness for random specialisers is given by:

wR(q) =
n−1∑
k=0

(
n

k

)
qk (1− q)n−k [1− ε+ (2ε− 1)k/n]

= (1− ε)(1− qn) + (2ε− 1)(q − qn)

= 1− ε+ (2ε− 1)q − εqn. (S29)

At this point we deviate from our previous approximations and compare the fitness of coordinated specialisers
and the fitness of random specialisers by evaluating the condition wC(p∗) > wR(q∗), where q∗ is the optimal201

probability of becoming a helper for random specialisers. We do this because this model leads to highly asymmet-
ric group fitness gk,n, which select for random specialisers to strongly under-weight the probability of becoming
a helper (q∗ � p∗; see section F) and therefore the approximation q∗ ≈ p∗ is less accurate.204

The derivative of wR(q) (S29) with respect to q is given by w′R(q) = 2ε − 1 − nεqn−1. For ε > 1/2, this
expression has a single root in the interval (0, 1), given by

q∗ =

(
2ε− 1

nε

) 1
n−1

, (S30)

which maximises wR(q). Evaluating (S29) at q = q∗ and simplifying, we obtain that coordinated specialisation is
favoured over random specialisation (i.e., wC(p∗) > wR(q∗) holds) if cn < c∗, where

c∗ = 1− wR(q∗)

gn−1,n
= 1−

1− ε+ (2ε− 1)
(
2ε−1
nε

) 1
n−1 − ε

(
2ε−1
nε

) n
n−1

1− ε+ (2ε− 1)(n− 1)/n
. (S31)

We present some numerical results in Fig. S3B, where we graphically show whether cn < c∗ (i.e., coordinated
specialisation is favoured) or cn > c∗ (i.e., random specialisation favoured) holds, and where c∗ is calculated
according to (S31). We find that that smaller group sizes (small n) and more essential cooperation (higher ε)207

favour coordinated specialisation.
We also find that, when benefits depend on the number of helpers (Fig S3A) and group size is sufficiently

small (small n), then less essential forms of cooperation (small ε) may still favour fully coordinated specialisation.210

In contrast, when the benefits depend on the ratio of helpers to reproductives (Fig S3B) and the essentiality of
cooperation is high (high ε), then larger group sizes (large n) may still favour fully coordinated specialisation.
Furthermore, when benefits depend on the number of helpers (Fig S3A) there seems to be little interaction between213

ε and n. That is, for any ε greater than a certain value (less than 1/2), the threshold value of n seems to be the
same. This is not the case when benefits depend on the ratio of helpers to reproductives (Fig S3B), where larger ε
implies that a larger group size (higher n) is required to favour random specialisation.216
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F Risk and insurance for random specialisers
Here, we show that more asymmetric fitness functions favour random specialisers to differentially weight their
probability of adopting a helper role by making q∗ considerably different from p∗. This represents a form of219

insurance lessening the probability of forming particularly “risky” (low fitness) group compositions (Fig. S4A)
[13, 14]. For such asymmetric fitness functions, the approximation that the optimal probability of adopting a
helper role is equal to the optimal proportion of helpers is less accurate, and results using the approximation might222

be biased.
We use numerical simulations to generate random fitness functions without having to make many assumptions

about their particular form. We generate 100,000 such fitness functions, some of which, by chance, will be more or225

less asymmetric than others. For a group size of n, we generate a fecundity sequence fk,n = (f0,n, f1,n, . . . , fn,n)
as follows. First, we sample ε from a uniform distribution (i.e., ε ∼ U(0, 1)) and set the fecundity of a reproductive
in a group with no helpers to f0,n = 1 − ε. Then, we draw n numbers h1, . . . , hn from an uniform distribution228

(i.e., hi ∼ U(0, 1), for i = 1, . . . , n), and set the fecundity of a group with k > 0 helpers to

fk,n = f0,n + ε

∑k
i=1 hi∑n
i=1 hi

. (S32)

This creates a random fecundity sequence that monotonically increases from 1− ε to 1. Finally, we obtain the
fitness sequence, gk,n, by substituting S32 into S1 (Fig. S4B).231

For each fitness sequence gk,n, we numerically determine the optimal proportion of helpers, p∗ (S4), and the
optimal probability of adopting a helper role for random specialisers, q∗ (S18). We reject any fitness function for
which division of labour is not favoured (i.e., for which either p∗ = 0 or q∗ = 0 holds).234

We measure the asymmetry of the fitness function as follows. We begin by setting

γ =

k∗−1∑
k=0

(
n

k

)
p∗k (1− p∗)n−k gk,n,

and

γ =

n∑
k=k∗+1

(
n

k

)
p∗k (1− p∗)n−k gk,n,

which respectively quantify the expected fitnesses of a random specialising group if it undershoots (k < k∗) or237

overshoots (k > k∗) the optimal proportion of helpers, under the assumption that the probability of becoming a
helper is equal to the optimal proportion of helpers (q = p∗). We then use the ratio

γ =
γ

γ + γ
.

as a measure of the asymmetry in the fitness function, with γ > 1/2 indicating fitness functions where more is240

to be gained by undershooting p∗ and with γ < 1/2 indicating the reverse. Accordingly, an asymmetry ratio of
γ = 1/2 indicates that the fitness function is symmetric.

The results of this analysis are shown in Figs. S4C and S4D. We find that on average the more asymmetric a243

fitness function is, the more that random specialisers are favoured to underweight or overweight their probability
of becoming a helper, that is, the larger the distance between q∗ and p∗, q∗ − p∗ (Fig. S4C). In turn, the larger
the optimal deviation in the probability of becoming a helper (the larger |q∗ − p∗|), the more significantly random246

specialisers stand to gain fitness advantages by evolving to this optimised allocation of labour (q = q∗) (Fig. S4D).
This numerical exercise illustrates that in some cases, groups of random specialisers are strongly favoured

to underweight or overweight the individual probability of becoming a helper, even though this means that they249

are less likely to produce groups with the optimal allocation of labour. This occurs so as to minimise the risk
of producing groups with a particularly poor allocation of labour and so may be considered a type of insurance
strategy akin to the fertility insurance observed in the biased sex ratio of some blood parasites [13, 14]. The model252

in the main text can produce asymmetric fitness functions. However, we find in section D that this phenomenon
does not change the qualitative predictions of the model (Fig. S1C). That is, smaller group sizes (small n) and
more essential cooperation (higher ε) still favour fully coordinated specialisation.255

11



1/4 1/2 3/4
0

1/20

2/20

1/4 1/2 3/4 1

-1/4

0

1/4

1/2

3/4

A) B)

C) D)

0 1/2 1
0

1/2

1

De
via

tio
n 

in
 o

pt
im

al
 

Pr
ob

ab
ilit

y, 
(p
*-
q*

)

Fi
tn

es
s 

in
cr

ea
se

 fo
r 

op
tim

ise
d

ra
nd

om
 g

ro
up

s

Asymmetry of fitness 
sequence, !

Proportion of helpers, p Proportion of helpers, p

Fi
tn

es
s,

 g
k,
n

Fi
tn

es
s,

 g
k,
n

Absolute deviation in 
optimal probability, |p*-q*|

More symmetric

More asymmetricOptimal proportion 
of helpers, p*

Optimal weighting for 
random specialisers, q*

Figure S4: Risk and insurance for random specialisers. A) With asymmetric fitness functions, a group of
random specialisers faces a different expected fitness cost from undershooting than from overshooting the optimal
proportion of helpers, p∗. This can favour random specialisers to differentially weight the optimal probability of
becoming a helper, q∗, as a form of insurance. Here we plot an arbitrary asymmetric fitness function, gk,n =
(1 − k/n)k1/4, in which cooperation is essential. B) We randomly simulated 100,000 fitness sequences gk,n
for a fixed group size of n = 6, some of which are more asymmetric than others. The 99% confidence interval
over our simulations for each permissible proportion of helpers is shown in light grey. C) Across the 100,000
simulations, we found that the more asymmetric a fitness sequence is (i.e., the larger the γ ratio) the more the
optimal probability of adopting a helper role, q∗, is favoured to deviate from the optimal proportion of helpers,
p∗. We plotted the best fit line through these data to illustrate the positive dependence (slope = 1.0, intercept =
−0.50). D) Across the 100,000 simulations, we found that more significant departures in the optimal probability
of adopting the helper role (larger |q∗ − p∗|) led to a larger fitness increase for random groups that employ the
optimal strategy (q = q∗). We plotted the best fit line through this data to illustrate the positive dependence
(slope = 0.13, intercept = −0.003). This demonstrates selection for such an insurance strategy as a means to
avoid “risky” group compositions.
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G The optimal level of coordination
In the first analysis of the main text, we assumed that all individuals in a coordinated group interact with one
another and so have complete information about the phenotypes of their social partners when specialising. Con-258

sequently, coordinated groups are fully coordinated and always contain the optimal proportion of helpers to re-
productives, p∗. Here we relax this assumption and solve for the optimal level of coordination in two separate
analyses, based on different assumptions and using different methodologies.261

G.1 Individual based model
Here we model explicitly how increasing the number of cell-to-cell interactions within the group can lead incre-
mentally to a more precise allocation of labour. We consider a costly trait s ∈ [0, 1] (the level of coordination)264

that is equal to the independent probability that any two cells in the group interact with each other. When a focal
individual specialises, it adopts a helper role depending on how the proportion of helpers amongst cells that it in-
teracts with compares to a critical threshold, t ∈ [0, 1]. Variables s and t are co-evolving traits in our simulations;267

they influence both the degree to which groups are coordinated and the degree to which labour is divided (i.e.,
the realised proportion of helpers, p). As the expected connectivity of the group increases (i.e., higher s, more
one-to-one interactions), there is a higher cost of coordination paid by the group. However, this higher cost of270

coordination may be offset by the increased amount of information afforded to each individual when specialising
and thus an increased chance that the group ends up with the optimal proportion of helpers, p∗. This trade-off
means that in some cases the optimal strength of coordination may in fact be intermediate (0 < s < 1), rather than273

the full coordination considered in the main analysis (s = 1).
In the following, we outline our individual-based model. First, we show how the simulations are initialised.

Second, given a group with a particular level of coordination (s), we show how we determine which individuals276

interact with one another. Third, given a group with an interaction network and target proportion of helpers (t), we
show how the allocation of labour within the group is determined. Fourth, given the allocation of labour, we show
how the fitness of each group is determined. Finally, we describe how the individuals in the population compete279

globally from one generation to the next, and how mutation may affect the trait values of s and t. Results for the
evolved level of coordination and target proportion of helpers are depicted in Fig. 4 in the main text and in Fig.
S6.282

G.1.1 Simulation initialisation

We create a population of approximately NT cells, sorted into groups of n cells. Specifically, we set the number
of groups in the population as Ng = dNT/ne, that is, the least integer larger than or equal to NT/n. Thus, the285

population size, Ngn, is relatively constant while the number of groups increases as the group size decreases.
This reduces the effect of demographic stochasticity across simulations. All individuals in the population are
characterised by their trait values s and t. We assume that all groups are founded by a single asexual individual,288

and thus that groups are clonal and that all individuals in the same group have the same trait values. At the
beginning of the simulation, we assume that all individuals in the population have no propensity for either division
of labour or coordination (i.e., s = 0, t = 0).291

G.1.2 Coordination network

Given a group with a particular level of coordination, s, we determine the between-cell coordination network by
constructing a random graph G(n, s) where the n nodes correspond to the n cells in the group and where each294

possible edge (representing the interaction between a given pair of cells) occurs independently with probability s
[15]. Thus, for a given s, the expected number of interacting pairs is sn(n−1)/2. If s = 0, there are no interacting
pairs and individuals do not know the phenotypes of any other group members. If s = 1, all individuals interact297

with all other individuals in the group and know whether they are helpers or reproductives. In between these
extremes, individuals may only interact with a subset of the cells in the group (or indeed none at all) and know
only partial information about the proportion of helpers in the group.300

G.1.3 Individual specialisation

Before we can show how individuals within the group specialise in this framework, we need to establish a few
definitions. For a given interaction network, G, let V = {v1, . . . , vn} be the set of nodes (individuals or cells)303

and E be the set of edges, such that eij ∈ E if individuals vi and vj interact. We define an allocation of labour
as the map a : V → {0, 1} such that a(vi) = 1 if individual vi is a helper and a(vi) = 0 if vi is a reproductive.
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The realised proportion of helpers to reproductives in the group is then given by p =
∑n
i=1 a(vi)/n. We denote306

by NG(vi) and NG[vi] the open and closed neighbourhoods of individual vi, respectively. The degree of vi, di,
is the number of cells in its open neighborhood, that is, di = |NG(vi)|. Using these definitions we can calculate
the open proportion of helpers in the neighbourhood of individual vi as poi =

∑
vj∈N(vi)

a(vj)/di, that is, the309

fraction of its neighbours that are helpers. Similarly, the closed proportion of helpers in the neighbourhood of
individual vi is pci =

∑
vj∈NG[vi]

a(vj)/(di + 1), that is, the fraction of its closed neighbours that are helpers. If
an individual has no neighbours (di = 0), then the open proportion of helpers is not defined and the allocation of312

labour proceeds differently.
For a particular group (given a set of cells V and an interaction network E), we determine the allocation

of labour, a, using a threshold model. First, we assume that the group begins with an initial allocation of all315

reproductives (a(v) = 0,∀v ∈ V ). This implicitly presupposes that reproduction is the default phenotype of cells.
Then for τ ≥ n time steps, we randomly sample with replacement one cell vi ∈ V at a time from the group. We
sample with replacement and set τ ≥ n so that a cell that has “committed” to a particular phenotype may still318

switch if too many of its neighbours have adopted the same choice. This emphasises that the allocation of labour
process is continuous in time and that developmental trajectories are plastic/responsive to their environment. Each
chosen cell, vi, considers the open proportion of cells in its neighbourhood poi and chooses to adopt a helper or321

reproductive phenotype depending on its target proportion of helpers, t. If poi < t, then the cell adopts a helper
phenotype (a(vi) = 1) as there are fewer helpers in its neighbourhood than its target proportion of helpers. If
poi > t, then the cell adopts a reproductive phenotype (a(vi) = 0) as there are more helpers in its neighbourhood324

than its target proportion of helpers. If the open proportion of helpers is equal to the target proportion of helpers
(poi = t), then the cell adopts either phenotype with equal probability. If the individual has no neighbours (di = 0),
then the individual behaves as a random specialist with helper probability equal to the target proportion of helpers327

(q = t).

G.1.4 Fitness calculation

Once labour is allocated within the group, we calculate the fitness of the group using the fitness equation of330

the linear public goods model (S11), with the cost of coordination given by equation (S6), where the cost of
coordination depends directly on the expected number of cell-to-cell interactions (sn(n − 1)/2) rather than the
realised number of cell-to-cell interactions because the former captures the effort that each individual puts into333

coordination instead of how successful its efforts actually were, and so is under evolutionary control. We consider
alternate formulations for the cost of coordination in the subsequent subsection (G.2).

G.1.5 Creating a new generation336

Each generation, we create the new population by sampling group founders from individuals of the previous
generation. That is, we randomly pick individuals with a weighting equal to the relative fitness of each group.
The process repeats Ng times with replacement. Each sampled individual forms a group of n individuals with339

inherited trait values s and t. When the founder individual is sampled, we assume that there is a chance µ of
having a mutation in one of the traits. If a mutation happens, the trait value is perturbed by adding a normally-
distributed random number, δ ∼ Normal(0, σ2), where σ2 is the variance in the size of the mutation, truncated342

between zero and one. Over time, the trait values of s and t across the population evolve towards an evolutionarily
stable state.

G.1.6 Simulation results345

We perform simulations for each combination of group size n ∈ {2, 4, . . . , 38, 40} and essentiality of cooperation
ε ∈ {1/2, 1/2 + 1/38, . . . , 1/2 + 18/38, 1}. For each simulation we determine the number of groups as Ng =
dNT/ne, where NT = 10, 000. All individuals are initialised with no coordination or no propensity for division348

of labour (i.e., s = t = 0). Next, we proceed in each generation by determining the interaction network of each
group (given its strength of coordination, s), and then each group’s allocation of allocation of labour (given its
target proportion of helpers, t). We then calculate the fitness of each group and sample individuals for the next351

generation with a probability proportional to fitness. We assume that mutations occur with probability µ = 0.001
and that the expected variance in the mutation size is σ2 = 0.1. We set α = 0.1 and β = 0.01 (parameters of the
cost of coordination).354

The results of the simulations are shown in Fig. 4D in the main text and in Fig. S5, where we examined 400
combinations of group size and essentiality and we ran the simulation 10 times for each parameter combination,
and where each simulation lasted 30,000 generations. For each simulation, we denoted ŝ and t̂ as the average trait357

values across the population for a given generation. We denote s̄ and t̄ as the across-simulation average of ŝ and
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Figure S5: Optimal target proportion of helpers. We present the target proportion of helpers, t∗, that evolves
in the same simulations used to produce Fig. 4D in the main text. We find that higher essentiality of cooperation
(higher ε) leads to a higher proportion of helpers but that group size (n) has little effect on the target proportion of
helpers.

t̂ for each generation (See Fig. 4B-C in main text). Finally, the evolutionary outcomes, s∗ and t∗, are estimated
as the average s̄ and t̄ in the last 3,000 generations of the simulations. We show the evolutionary outcome s∗360

as the main results (Fig. 4D in the main text) but also plot 10 individual time series of ŝ and t̂ and the across-
simulation average s̄ and t̄ (Fig. 4B-C in the main text). To account for simulation stochasticity, we categorised
random specialisation as any strategy for which s∗ < 0.1, fully coordinated specialisation as any strategy for363

which s∗ > 0.9 and intermediate specialisation as any strategy for which 0.1 < s∗ < 0.9. In Fig. S5, we show
the results for t∗ in these simulations as well, finding that higher essentiality of cooperation (higher ε) favours a
higher proportion of helpers (higher t∗).366

G.1.7 A note on our assumptions

There are several assumptions in this analysis that are worth expanding upon. First, we assumed that individuals
specialise in a random order with replacement. This means that an individual may potentially change its phenotype369

several times during the course of the labour allocation. It may seem at first that this sort of phenotypic switching
is not something that is observed in the natural world during the development of a social group. However, we do
not envision here that individuals are actually differentiated until the end of the allocation of labour stage. Instead,372

while the allocation of labour is ongoing, the individuals are only committing to a developmental pathway and
“signalling” to their partners which phenotype they “intend” to adopt. As the individuals in their neighbourhood
do the same, it may be that an overabundance of one phenotype or the other is sufficiently strong to push the focal375
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individual into an alternate pathway. If we were to choose individuals in a random order without replacement,
such that each individual only had one opportunity to adopt a helper role, this would introduce a systematic bias
towards more helpers in the allocation of labour.378

G.2 Alternate costs of coordination
Throughout the presentation of our results, we have used the particular function for the cost of coordination given
by (S6), with α = 0.1 and β = 0.01. As it has been pointed out, the qualitative predictions (1-3) in the main text381

do not depend on the specific form that cn takes (so long as it is increasing in n). However, the optimal level of
coordination that evolves might be sensitive to the form of the coordination cost (Fig. 4 in the main text). Here, we
test the robustness of our results in Fig. 4 of the main text and section G.1 by repeating the simulations of section384

G.1 with alternate forms of coordination cost, cn, to determine how the optimal level of coordination is affected.
We consider four functional forms for the costs of coordination cn that are each increasing in the expected

number of cell-to-cell interactions y = sn(n − 1)/2. Function I is a Type I functional response characterised by387

a linear increase in cost up to a maximum group size beyond wich the cost is equal to one, cn(y) = min(1, χy).
Second, we consider three functional forms characterised by an increasing but decelerating increase in cost, pos-
sibly up to maximum group size beyond which the cost is equal to one. Function IIa is the exponential form390

cn(y) = α(1 − eβy), which we have employed in the analysis thus far (Fig. S6A). We set function IIb as
cn(y) = min(1, ψ(ξy)ψ) (Fig. S6A). Finally, function IIc is a particular kind of type II response function:
cn(y) = min(1, θy/(1 + φy)) (Fig. S6A).393

For each functional form, we ran simulations to determine the optimal level of coordination, s∗. The results of
these simulations are shown in Fig. S6B-E. Throughout we find that smaller groups (small n) and high essentiality
of cooperation (high ε) favour coordinated specialisation over random specialisation, with intermediate forms of396

specialisation (0 < s∗ < 1) favoured to evolve at the interface between random specialisation (s∗ = 0) and fully
coordinated specialisation (s∗ = 1). This is all in qualitative agreement with the findings of the main text.

We also find that the effect of the shape of coordination costs on the optimal mechanism depends on the399

functional form of the costs. When costs are set by function IIc, we found little effect on whether coordinated spe-
cialisation is favoured and the level of coordination that evolves (Fig. S6E), relative to linear costs. In constrast,
when costs were determined by function IIa or IIb, we found both (i) a smaller likelihood of coordinated speciali-402

sation (s∗ > 0) evolving and (ii) a relatively smaller chance that coordination will be intermediate (0 < s∗ < 1),
relative to full coordination (s∗ = 1) (Fig. S6C and D).

The principal difference between function IIc and functions IIa and IIb is on the up-front costs of coordination.405

For both functions IIa and IIb, there is a large up-front cost to coordination before any coordination can evolve
(Fig. S6A). In contrast, function IIc only has an initially linear cost of coordination (Fig. S6A). One consequence
of a large up-front cost of coordination is that it is harder to evolve any coordination at all (s∗ > 0). Another408

consequence is that intermediate coordination (0 < s∗ < 1) may be less stable. Indeed, if coordination costs
saturate quickly after a large up-front cost (as is particularly the case for function IIb, Fig. S6A), then it can be
more advantageous for coordinating individuals (s > 0) to adopt full coordination (s∗ = 1), having already paid411

a bulk of the costs associated with the mechanism. This can make the evolution of intermediate coordination
comparatively rarer (Fig. S6C and D). The degree to which there are large up-front costs to coordination or how
quickly costs saturate in the natural world will depend on the biology of specific species and the particular way414

that they might coordinate.

G.3 Heuristic analytical model
In the main analysis (section C), we found that the fitness of a group of random specialisers with probability417

q = p∗ of producing helpers may be calculated as wR(p∗) = G(p∗) − εVar(P ∗) (equation S13). That is, the
fitness of a group of random specialisers is equal to the maximum possible fitness, G(p∗), reduced by the hidden
cost of random specialisation, which is proportional to the variance in the proportion of helpers across randomly420

specialising groups, Var(P ∗) = p∗(1−p∗)/n. Here, we sketch a simple, heuristic extension of this model with an
evolving level of coordination z ∈ [0, 1] that we assume has two opposing effects: (i) on the one hand, an increase
in z increases the total cost of coordination, and (ii) an increase in z leads to a linear reduction in the hidden cost423

of random specialisation. To this end, we posit the fitness function

w(z) = (1− cnz) (G(p∗)− (1− z)εVar(P ∗)) , (S33)

where cn is the proportional cost of increased coordination. Notice that z = 0 recovers the fitness function of the
random specialisation mechanism, and z = 1 recovers the fitness function of the fully coordinated mechanism,426

where all groups have the optimal proportion of helpers, p∗. We deliberately do not specify how increasing
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Figure S6: The shape of the cost of coordination. We show how the optimal level of coordination, s∗, depends
on the form of the coordination costs, cn(y) as a function of y = sn(n− 1)/2, the expected level of coordination.
A) The four functional forms for the cost of coordination we explore. Function I is given by cn = min(1, χy)
(χ = 0.0002); function IIa is given by cn = α(1 − eβy) (α = 0.1 and β = 0.01); function IIb is given by
cn = min(1, ψ(ξy)ψ) (ξ = 0.0002 and ψ = 0.1); function IIc is given by cn = min(1, θy/(1 +φy)) (θ = 0.0002
and φ = 0.001). B) The evolved level of coordination, s∗, when the cost of coordination is given by function I. C)
The evolved level of coordination, s∗, when the cost of coordination follows function IIa. D) The evolved level
of coordination, s∗, when the cost of coordination follows function IIb. E) The evolved level of coordination, s∗,
when the cost of coordination follows function IIIc. Across all functional forms, we find that smaller groups (lower
n) and more essential cooperation (higher ε) favours coordinated specialisation. The degree to which intermediate
forms of coordination (0 < s∗ < 1) can evolve depends on the shape of the coordination cost.
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z decreases the hidden cost of random specialisation (i.e., the effective variance in the proportion of helpers),
whether it be by increased cell-to-cell signalling, parental control or some other mechanism. The key feature of429

this heuristic model is the assumption of a simple tradeoff between producing potentially fitter but less precise
groups on the one hand (lower z) and producing more precise groups at a larger coordination cost on the other
hand (higher z).432

Directional selection in z is found by calculating the selection gradient S(z), which in this case is simply
obtianed by taking the derivative of (S33) with respect to z:

S(z) = w′(z) = −cnG(p∗) + (1 + cn)εVar(P ∗)− 2εcnVar(P ∗)z (S34)

Since G(p∗) and Var(P ∗) are independent of z, the selection gradient S(z) is linear and decreasing in z. The435

evolutionary dynamics are then fully specified by the sign of the selection gradient S(z) at the extreme points
z = 0 and z = 1. To characterise the evolutionary dynamics, we start by writing conditions S(0) > 0 and
S(1) > 0 respectively as cn < c and cn < c, where the critical cost values c and c are given by438

c =
εVar(P ∗)

G(p∗)− εVar(P ∗)
, (S35)

c =
εVar(P ∗)

G(p∗)− εVar(P ∗)
. (S36)

Using G(p∗) = (1− p∗)(1− ε+ εp∗), Var(P ∗) = p∗(1− p∗)/n, and approximating p∗ by p̂ = 1− 1/(2ε) (see
section C), c and c can be written as

c =
2ε− 1

n+ 1− 2ε
, (S37)

c =
2ε− 1

n− 1 + 2ε
. (S38)

For ε > 1/2 these critical values satisfy c < c and we arrive to the following characterisation of the evolutionary441

dynamics:

1. If cn ≤ c (low coordination costs), then z = 1 is the only convergence stable equilibrium, and full coordi-
nation evolves.444

2. If cn ≥ c (high coordination costs), then z = 0 is the only convergence stable equilibrium, and no coordi-
nation evolves.

3. If c < cn < c (intermediate coordination costs), an intermediate level of coordination z∗ ∈ (0, 1) is the447

only convergence stable equilibrium. Solving S(z∗) = 0, we find that the intermediate convergence stable
level of coordination is given by

z∗ =
1

2

(
1 +

1

cn
− n

2ε− 1

)
. (S39)

Both critical costs are increasing functions of ε and decreasing functions of n. Likewise, z∗ is an increasing450

function of the essentiality of cooperation ε, a decreasing function of the cost of coordination cn, and, if cn
is increasing with group size n (which we assume), then z∗ is decreasing in n. It follows that lower costs of
coordination (lower cn), smaller groups (lower n), and more essential cooperation (higher ε) all lead to (i) a453

higher likelihood that some coordination is favoured (i.e., that cn < c holds), and (ii) a higher likelihood that full
coordination is favoured (i.e., that cn ≤ c holds), and (iii) a higher evolved level of coordination (larger z∗) if
intermediate coordination is favoured (i.e., c < cn < c holds). These results are in broad qualitative agreement456

with the results of the analysis in the main text where only perfect coordination and full random specialisation
were considered, and with the individual-based model presented in section G.1.

H Estimating the characteristics of social microbes459

In Table 1 of the main text, we provided rough qualitative (verbal) estimates of relative group size, essentiality
of cooperation, and the cost of coordination for labour dividing microbe species in which the mechanism of
specialisation has been identified. This is not a quantitative, rigourous analysis. An across-species phylogeny-462

based comparative study with a larger species sampling would be required to formally test the predictions of our
models. Here we provide further details on the reasoning behind some of our estimates in Table 1 of the main text.
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We estimate relative group size by considering two key factors: how many individuals occupy a colony or465

aggregate of the species being considered, and how the benefits of cooperation are conferred to social partners.
Fruiting bodies of D. discoideum and M. xanthus, populations of B. subtilis, V. carteri colonies, S. enterica co-
infections and A. cylindrica filaments are potentially composed of hundreds to thousands of cells [5, 6, 7, 9, 10,468

11, 12, 16, 17, 18, 19]. However, in some cases the benefits of cooperation are diffusive and so the effective radius
of cooperation might be much smaller. For instance, protein degrading proteases diffuse locally in B. subtilis
populations and fixed nitrogen must diffuse along the filament in A. cylindrica [5, 6]. Due to the geometry of471

the populations, this may lead to a medium sized effective social group in the former case (diffusion in multiple
axes) and a small one in the latter (diffusion along one axis). In the other cases, the benefits of cooperation might
be conferred directly to beneficiary cells, such as in S. enterica, V. Carteri and in the fruiting bodies, and so the474

effective size of the social group could be very large [7, 9, 10, 11, 12, 16, 17, 18, 19].
We approximate the relative essentiality of a trait by estimating whether reproductive cells would survive and

proliferate in the absence of helpers. In S. enterica co-infections, the action of suicidal helpers only provides a477

competitive advantage and so might not be ‘essential’ [11, 12, 16]. In B. subtilis and A. cylindrica, the amount of
degraded protein or fixed nitrogen in the environment is growth rate-limiting and so helpers might only provide
an advantage to the replication rate of reproductive cells (non-essential cooperation) [5, 6]. Fruiting bodies of M.480

xanthus, and D. discoideum form when there are insufficient nutrients locally and so cells that do not partake in
the complex cannot disperse to more favourable environments (more essential cooperation) [17, 18, 19]. Finally,
V. carteri colonies that cannot stay afloat at the proper height in the water column may not receive enough light483

for photosynthesis, leading to cell death (essential cooperation) [9, 10].
We estimate the relative cost of coordination by considering two key factors: how close are cells to each other

(attached or not attached), and how complex are the cells (how metabolically taxing would coordination be). For486

example, populations of S. enterica and B. subtilis are free-floating and so a signalling system would require a
dispersed product [5, 11, 12]. Furthermore, they are both bacteria and so the relative metabolic costs could be quite
high. In contrast, M. xanthus and D. discoideum form a multicellular slug before fruiting body formation and so489

coordination between cells would occur over a shorten distance [17, 18, 19]. Further, D. discoideum is a eukaryote
and so the metabolic costs of signalling may be reasonably low relative to the higher costs of operating as a
complex cell. Some special cases would lead to even lower costs of coordination. In V. carteri, offspring colonies492

form within the mother germ cell and so parental influence on cell fate means that no intercellular signalling
system is necessary [9, 10]. In A. cylindrica, cells are attached to each other and the amount of fixed nitrogen
in the environment serves as a cue for whether a cell should differentiate as a helper cell. Thus, the cost of495

coordination might only be due to the cost of detecting the amount of fixed nitrogen in the environment [6].
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