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Abstract

How the size of social groups affects the evolution of cooperative behaviors is
a classic question in evolutionary biology. Here we investigate group size effects
in evolutionary games in which individuals choose whether to cooperate or defect.
We find that increasing the group size decreases the proportion of cooperators at
both stable and unstable rest points of the replicator dynamics. This implies that
larger group sizes can have negative effects (by reducing the amount of cooperation
at stable polymorphisms) and positive effects (by enlarging the basin of attraction
of more cooperative outcomes) on the evolution of cooperation. These two effects
can be simultaneously present in games whose evolutionary dynamics features both
stable and unstable rest points, such as public goods games with participation
thresholds. Our theory recovers and generalizes previous results and is applicable
to a broad variety of social interactions that have been studied in the literature.
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1 Introduction

Cooperative behaviors increase the fitness of other individuals, possibly at the expense
of a personal fitness cost (Sachs et al., 2004). Biological examples include the produc-
tion of extracellular public goods in microbes (e.g., iron-scavenging molecules, West
and Buckling 2003, bacteriocins that eliminate competition, Bucci et al. 2011, and
factors that contribute to biofilm formation, Rainey and Rainey 2003), vigilance and
sentinel behavior in meerkats (Clutton-Brock et al., 1999), group hunting in social
carnivores (Packer and Ruttan, 1988), and the costly punishment of free-riders in hu-
mans (Raihani and Bshary, 2011). Identifying the different pathways that allow coop-
erative behavior to be favored by natural selection (Lehmann and Keller, 2006; Nowak,
2006; West et al., 2007; Van Cleve and Akçay, 2014) is important for understanding
the origin of social groups (Krause and Ruxton, 2002) and the major transitions in
evolution (Maynard Smith and Szathmáry, 1995; Bourke, 2011).

Group size is a crucial variable of social life. Therefore, how an increase or decrease
in group size affects individual incentives to cooperate is a recurrent question across
the behavioral sciences. In economics and political science, the “group-size paradox”
refers to cases where larger groups are less successful than smaller groups in pursuing
their common goals because individuals have a greater incentive to shirk when group
size is large (Olson, 1965; Esteban and Ray, 2001). In behavioral ecology, one of the
most replicated findings is the negative relationship between group size and level of
vigilance in social foragers due to increased predator detection and dilution of preda-
tor risk (Elgar, 1989; Roberts, 1996; Beauchamp, 2008). Increasing group size has also
been shown to reduce voluntary contributions to public goods (Isaac and Walker, 1988)
and reciprocity-based cooperation in multi-person interactions (Boyd and Richerson,
1988). More generally, however, whether or not larger groups are less conducive to
cooperation might depend on specific assumptions about group interactions. In par-
ticular, instances of positive group size effects have also been reported in the empirical
literature (Isaac et al., 1994; Yip et al., 2008; Powers and Lehmann, 2017) and are of
significant theoretical interest (Dugatkin, 1990; Shen et al., 2014; Powers and Lehmann,
2017; Cheikbossian and Fayat, 2018).

To study how the size of social groups affects the evolution of cooperation we fol-
low the standard approach of modelling social interactions as symmetric games with
two strategies (“cooperate” and “defect”) between several players, i.e., as symmetric
multiplayer matrix games (Broom et al., 1997; Gokhale and Traulsen, 2014). Payoffs
depend on the own strategy and on the number of co-players choosing to cooperate,
possibly in a nonlinear way. Strategies are genetically or culturally transmitted, and
populations are large enough that the replicator dynamics (Weibull, 1995; Hofbauer
and Sigmund, 1998) provides a reasonable model of the evolutionary dynamics. Within
this framework, the stable rest points of the replicator dynamics correspond to the end-
points of the evolutionary dynamics, while the unstable rest points signpost the basins
of attraction of such evolutionary attractors. Many social dilemmas for which coopera-
tion can be maintained without repeated interactions or genetic assortment have been
theoretically studied using this or related formalisms during the last decades (Taylor
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and Ward, 1982; Palfrey and Rosenthal, 1984; Diekmann, 1985; Boyd and Richerson,
1988; Motro and Eshel, 1988; Dugatkin, 1990; Dixit and Olson, 2000; Goeree and Holt,
2005; Bach et al., 2006; Hauert et al., 2006; Archetti, 2009; Pacheco et al., 2009; Souza
et al., 2009; Archetti and Scheuring, 2011; Chen et al., 2013; Van Cleve and Lehmann,
2013; Sasaki and Uchida, 2014; Chen et al., 2015; Peña et al., 2015; Chen et al., 2017;
De Jaegher, 2017; dos Santos and Peña, 2017; Kaznatcheev et al., 2017).

To obtain our results, we make use of the fact that the gain function determin-
ing the direction of selection in the replicator dynamics is a polynomial in Bernstein
form (Farouki, 2012). The coefficients of this polynomial are given by the gains from
switching (Peña et al., 2014), i.e., the differences in payoff a focal player obtains by
switching from defection to cooperation as a function of the number of other coop-
erators in the group. Our analysis makes essential use of the structure of the gain
sequence of the game, which collects such gains from switching. We illustrate our re-
sults with examples and discuss how previous results in the literature (either proven
using alternative arguments or hinted at by numerical analysis) can be recovered using
our approach.

Under the condition that the number of interior rest points of the replicator dy-
namics does not change as group size increases, we establish that the proportion of
cooperators at both stable and unstable interior rest points decreases with group size.
This finding, summarized in Proposition 1 in Section 3.1, is our main result. Proposi-
tion 1 implies that two kinds of group size effects are possible in the games we analyze.
First, a negative group size effect, as the levels of cooperation at stable polymorphisms
decrease with increasing group size. Second, a positive group size effect, as the size
of the basin of attraction of the stable rest point with the largest level of cooperation
increases as well. Proposition 2 identifies general conditions under which the number
of rest points is independent of group size.

Sections 3.2 and 3.3 explore the consequences of these general results for two im-
portant particular cases subsuming many of the multiplayer matrix games appearing
in the literature studying the evolution of cooperation (e.g., Dugatkin 1990; Weesie
and Franzen 1998; Bach et al. 2006; Pacheco et al. 2009; Souza et al. 2009; Archetti
and Scheuring 2011). Section 3.2 considers games with gain sequences having a single
sign change. For such games the replicator dynamics has a unique interior rest point
that is decreasing in group size (Proposition 3). If the sign change is from positive to
negative, the interior rest point is stable and the group size effect is negative, as the
proportion of cooperators at the interior rest point decreases. Conversely, if the sign
change is from negative to positive, the interior rest point is unstable and the group size
effect is positive, as the basin of attraction of full defection decreases while the basin
of attraction of full cooperation increases. In Section 3.3, we focus on games charac-
terized by “bistable coexistence” (Gokhale and Traulsen, 2014; Peña et al., 2015), i.e.,
a phase portrait where the unstable interior rest point divides the basins of attraction
of the stable interior rest point and full defection. Such a phase portrait is typical of
many nonlinear social dilemmas, including those featuring participation thresholds or
public goods games with sigmoid production functions (Dugatkin, 1990; Bach et al.,
2006; Pacheco et al., 2009; Souza et al., 2009; Archetti and Scheuring, 2011; Peña et al.,
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2014; Archetti, 2018). For these games there is both a negative group size effect (as
the proportion of cooperators at the stable interior rest point decreases) and a positive
group size effect (as the basin of attraction of full defection decreases). This result
is stated in Proposition 4. Alternatively, an increase in group size can lead to a loss
of both interior rest points. This makes the group size effect negative as increasing
the group size results in full defection being the only attracting point of the replicator
dynamics.

Some models in the literature consider a more complicated dependence of payoffs
on group size than the one we consider in our main result. For instance, if the total
benefit from cooperating has to be shared among group members, then the gains from
switching themselves depend on group size. This introduces an additional effect, which
might either reinforce or countervail the fundamental group size effect investigated in
Section 3. We investigate this additional effect in Section 4 and state counterparts of
Propositions 3 and 4 as Propositions 5 and 6. Section 5 discusses and concludes.

2 Model

2.1 Social interactions

Social interactions take place in groups of equal size n, where n ≤ n ≤ n̄ holds for
some given numbers n < n̄. Individuals within each group participate in a symmetric
n-player game, playing either strategy A (“cooperate”) or strategy B (“defect”). The
payoff for an individual is determined by its own strategy and the number of other
individuals in the group who cooperate but is otherwise independent of group size.
Let ak denote the payoff to an A-player (“cooperator”) and bk denote the payoff to a
B-player (“defector”) when k = 0, 1, . . . , n−1 co-players play A (and hence n−1−k co-
players play B). Irrespective of their own strategy, players prefer other group members
to cooperate, i.e., ak+1 ≥ ak and bk+1 ≥ bk hold for all k = 0, 1, . . . , n− 2 (Uyenoyama
and Feldman, 1980; Kerr et al., 2004).

The gain in payoff an individual makes from cooperating rather than defecting when
k co-players cooperate is dk = ak− bk. We refer to this as the k-th gain from switching
(to cooperation). In all of the games we consider in the following, dk will be negative
for some k, indicating the presence of a social dilemma in which individuals increase
their own payoff by defecting but thereby lower the payoffs of all other group members
(Matessi and Karlin, 1984; Kerr et al., 2004).

While our results apply more generally, we will consider a variety of public goods
games to motivate and illustrate our results. In these games, cooperators make a
costly contribution to the provision of a public good, whereas defectors free ride on
the contribution of cooperators. Unless indicated otherwise, we will suppose that the
cost c > 0 incurred by each contributor is independent of the the number of other
contributors and that all group members obtain the same benefit uj , which is increasing
in the number of cooperators j. As the number of contributors includes the focal
player, we have j = k if the focal player defects, but j = k + 1 if the focal player
cooperates. Therefore, in such a public goods game payoffs are given by ak = uk+1 − c
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and bk = uk, and the k-th gain from switching is dk = ∆uk − c, where ∆uk = uk+1 −
uk ≥ 0. Perhaps the simplest example of such a public goods game is the volunteer’s
dilemma (Diekmann, 1985) in which at least one cooperator is required for a benefit
v > c to be enjoyed by all group members. This corresponds to the case θ = 1 of a
threshold public goods game, in which a minimum number θ of cooperators is required
for a benefit v > c to be enjoyed by all group members, so that uj = v if j ≥ θ and
uj = 0 otherwise (Taylor and Ward, 1982; Palfrey and Rosenthal, 1984; Bach et al.,
2006; Archetti, 2009).

2.2 Evolutionary dynamics

Evolution occurs in a large, well-mixed population with groups of identical size n ran-
domly formed by binomial sampling. Hence, if there is a proportion x of A-players
and a proportion 1 − x of B-players in the population, then the expected payoffs to
A-players and B-players are respectively given by

πA
n (x) =

n−1∑
k=0

(
n− 1

k

)
xk(1− x)n−1−kak,

and

πB
n (x) =

n−1∑
k=0

(
n− 1

k

)
xk(1− x)n−1−kbk.

We assume that the change in the proportion of A-players over evolutionary time
is given by the continuous-time replicator dynamics (Weibull, 1995; Hofbauer and Sig-
mund, 1998)

ẋ = x(1− x)gn(x), (1)

where

gn(x) = πA
n (x)− πB

n (x) =
n−1∑
k=0

(
n− 1

k

)
xk(1− x)n−1−kdk, (2)

i.e., the difference in expected payoffs between the two strategies, is the “gain function”
(Bach et al., 2006), which can also be interpreted as the selection gradient on a contin-
uously varying mixed strategy x (Peña et al., 2015). Since the factor x(1−x) is always
nonnegative, the sign of the gain function gn(x) indicates the sign of ẋ in Eq. (1) and
hence the direction of selection, that is, whether or not the proportion of A-players will
increase for a given population composition x and group size n.

The replicator dynamics has two trivial (or “pure”) rest points at x = 0 (where
the whole population consists of defectors) and at x = 1 (where the whole population
consists of cooperators). Interior (or “mixed”) rest points are given by the values
x∗ ∈ (0, 1) satisfying

gn(x∗) = 0.

To simplify the exposition, we impose the regularity condition that dgn(x∗)/dx 6= 0
holds at all interior rest points. An interior rest point is then stable (i.e., evolution-
arily attracting) if and only if dgn(x∗)/dx < 0 holds, and unstable (i.e., evolutionarily
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repelling) otherwise. We further suppose that the number of sign changes s of the gain
sequence (d0, d1, . . . , dn−1) is independent of group size n, indicating that the funda-
mental structure of the social dilemma under consideration is independent of group
size. We suppose that s ≥ 1 holds as otherwise either full defection (x = 0) or full
cooperation (x = 1) is the unique stable rest point of the replicator dynamics for all
group sizes n.

3 Results

3.1 General results

Our first result shows that if the number of interior rest points is independent of group
size, then the proportion of cooperators at all interior rest points decreases when group
size increases.

Proposition 1. Suppose that the replicator dynamics (1)–(2) has the same number of
interior rest points ` ≥ 1 for all group sizes n and denote these rest points by 0 < x∗n,1 <
. . . < x∗n,` < 1 for group size n. Then x∗n+1,r < x∗n,r holds for all n = n, . . . , n̄ − 1 and
r = 1, · · · , `.

The full proof of Proposition 1 is in Appendix A.1. The key step towards obtain-
ing this result is the following identity, which links the gain functions (and thus the
replicator dynamics) for adjacent group sizes:

gn(x) = gn+1(x)− x

n

dgn+1

dx
(x). (3)

Eq. (3) is a simple consequence of properties of the gain functions gn(x), previously
observed by Motro (1991), which stem from the fact that the gain functions are poly-
nomials in Bernstein form (Peña et al., 2014) with coefficients (given by the gains from
switching dk) that do not depend on group size.

To see how Eq. (3) yields Proposition 1, observe that this equation implies that at
the interior rest points of the dynamics with group size n+ 1 (where the gain function
gn+1(x) vanishes), the gain function gn(x) will have the opposite sign of the derivative
dgn+1(x)/dx. This ensures that between any two interior rest points of the dynamics
for group size n+ 1 the replicator dynamics for group size n has exactly one rest point.
The result then follows upon establishing that the remaining interior rest point for the
replicator dynamics with group size n must have a higher proportion of cooperators
than the largest interior rest point x∗n+1,` for group size n+ 1.

The decrease in the proportion of cooperators at all interior rest points as group
size increases asserted in Proposition 1 leads to contrasting effects of group size on the
evolution of cooperation. First, there is an obvious negative group size effect, as the
proportion of cooperators at stable polymorphisms decreases with group size. Second,
the proportion of cooperators at unstable rest points decreases as well. As the rest
points of the replicator dynamics alternate between being stable and unstable, this
implies an increase in the size of the basin of attraction of the stable rest point with
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Figure 1: Group size effects in the threshold public good game with an additional
reward δ > 0 shared among cooperators considered by Chen et al. (2013). Payoffs are
given by ak = uk+1 + δ/(k + 1) − c and bk = uk, where uj = v if j ≥ θ and uj = 0
otherwise. In all panels, c = 1, v = 5, θ = 7, δ = 1.5. Left panel: Gain functions
(blue lines) with corresponding rest points (red symbols), and direction of selection
(black arrows) for two group sizes: n = 10, and n = 11. Full circles represent stable
rest points and empty circles represent unstable rest points. Right panel: Proportion
of cooperators at the interior rest points as function of group size for 10 ≤ n ≤ 40.
The direction of selection (black arrows) is also shown. As group size increases, the
proportion of cooperators at interior rest points decreases.

the largest proportion of cooperators. Hence, there is also a positive group size effect.
These two effects are illustrated in Fig. 1 for the relatively complex case of a game with
three interior rest points: x∗n,1 (stable), x∗n,2 (unstable), and x∗n,3 (stable). In line with
Proposition 1, larger group sizes lead to smaller proportions of cooperators at the two
stable interior rest points x∗n,1 and x∗n,3 but also, via a decrease in the value of x∗n,2,
to a larger basin of attraction for x∗n,3 and a smaller basin of attraction for x∗n,1. As
x∗n,3 sustains a higher level of cooperation than x∗n,1, this latter effect can be said to
promote the evolution of cooperation.

Proposition 1 is predicated on the assumption that the number of interior rest points
for the different group sizes under consideration is the same. This does not have to be
the case. In particular, it is possible that an increase in group size leads to a decrease
in the number of rest points. Fig. 2 illustrates this possibility for the case of a threshold
public goods game. On the other hand, the arguments establishing Proposition 1 show
that an increase in group size can never lead to an increase in the number of rest points.
Further, it is known that the number of interior rest points of the replicator dynamics
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Figure 2: An increase in group size can lead to a reduction in the number of rest points.
Here we illustrate this effect for a threshold public goods game with c = 1, v = 2.8,
θ = 4, which has two interior rest points for group size n = 5 but no interior rest points
for group size n = 6.

cannot exceed the number of sign changes s in the gain sequences (Peña et al., 2014,
Property 2). Therefore, if the number of interior rest points of the replicator dynamics
for group size n̄ is equal to s, then the number of interior rest points of the replicator
dynamics is independent of group size. The proof of the following result in Appendix
A.2 demonstrates that, in addition, if an increase in group size causes a reduction in
the number of interior rest points, then the number of rest points is reduced by an even
amount.

Proposition 2. Suppose that the number of interior rest points of the replicator dy-
namics (1)–(2) for group size n̄ is equal to the number of sign changes s of the gain
sequences. Then for all group sizes n the number of interior rest points of the replicator
dynamics is equal to s. More generally, if n > m then the number of interior rest points
with group size n is either equal to the number of rest points for the replicator dynamics
with group size m or lower by an even amount.

3.2 Games with a unique interior rest point

Suppose that for all group sizes in the relevant range the replicator dynamics has a
unique interior rest point that, for simplicity, we denote by x∗n. It is then immediate
from Proposition 1 that the proportion of cooperators at this rest point is decreasing in
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group size. Combining this observation with the sufficient condition for the existence
of a unique interior rest point from Result 3 in Peña et al. (2014) immediately yields:

Proposition 3. Suppose that the gain sequences have a single sign change for all group
sizes n. Then the replicator dynamics (1)–(2) has a unique interior rest point for all
n and the proportion of cooperators x∗n at this interior rest point is decreasing in group
size n.

Proposition 3 encompasses two cases. First, the gains from switching can be positive
for a small number of cooperators (up to some threshold k̂ < n) and negative for a
large number of cooperators (beyond the threshold k̂). In this case there exists a
unique interior rest point x∗n that is also the unique stable rest point of the replicator
dynamics (Peña et al., 2014, Result 3.2). For this case, Proposition 3 indicates that the
group size effect is negative in the sense that an increase in group size causes a decrease
in the proportion of cooperators at equilibrium. This finding generalizes a result due
to Motro (1991), who showed that there is a unique stable interior rest point and a
negative group size effect for public goods games with concave benefits and intermediate
costs (for which ∆uk, and therefore dk, is decreasing in k, and ∆u0 > c > ∆un). It also
generalizes the well-known result that the proportion of cooperators at the unique stable
rest point of the volunteer’s dilemma is decreasing in group size (cf., e.g., Archetti 2009)
and corresponding results for the volunteer’s dilemma with cost sharing (Dugatkin,
1990; Weesie and Franzen, 1998). This last example, which differs from the other two
in that the gains from switching are not monotonically decreasing in k, is illustrated in
Fig. 3.

The second case encompassed by Proposition 3 is the one in which the gains from
switching are negative for a small number of cooperators (up to some threshold k̂ < n)
and positive for a large number of cooperators (beyond the threshold k̂). In this case
the two trivial rest points x = 0 and x = 1 are stable and the unique interior rest
point x∗n, which separates the basins of attraction of the two stable rest points, is
unstable (Peña et al., 2014, Result 3.2). For this case, Proposition 3 indicates that
the group size effect is positive in the sense that with an increase in group size the
basin of attraction of full defection (x = 0) shrinks while the basin of attraction of
full cooperation (x = 1) increases. For public goods games with convex benefits and
intermediate cost (for which ∆uk, and therefore dk, is increasing with ∆u0 < c < ∆un)
this effect has been previously noted in Motro (1991).

3.3 Games with two interior rest points

Many social dilemmas have the structure that defection is individually advantageous if
the number of cooperating co-players is either sufficiently small or sufficiently high and
that cooperation is individually advantageous in between, i.e., the gains from switching
satisfy d0 < 0 and the gain sequence (d0, d1, . . . , dn−1) has two sign changes for all
relevant group sizes n. This scenario arises in the threshold public goods game when
the minimum number θ of cooperators required for the benefit v > c to be enjoyed
by all group members satisfies 2 ≤ θ < n. More generally, public goods games in
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Figure 3: Group size effects in the volunteer’s dilemma with cost sharing considered
by Weesie and Franzen (1998). Payoffs are given by ak = v − c/(k + 1), b0 = 0, and
bk = v for k ≥ 1. In all panels, c = 1. Left panel: Gain functions (blue lines) with
corresponding rest points (red symbols), and direction of selection (black arrows) for
v = 2, and two group sizes: n = 3, and n = 4. Full circles represent stable rest
points and empty circles represent unstable rest points. Right panel: Proportion of
cooperators at the interior rest point as function of group size for different parameter
values. The direction of selection (black arrows) is also shown. As group size increases,
the proportion of cooperators at the unique stable interior rest point decreases, i.e., the
group size effect is negative.

10



which the benefits from the provision of the public good are sigmoid in the number of
contributors and the costs of provision are intermediate (Archetti and Scheuring, 2011;
Archetti, 2018) have this structure. Peña et al. (2014) provide further examples and
discussion.

Assuming that the gains from switching have the structure described above ensures
that the rest point at x = 0 is stable and the rest point at x = 1 is unstable for all
n in the relevant range (Peña et al., 2014, Result 1). Further, there are at most two
interior rest points satisfying 0 < x∗n,1 < x∗n,2 < 1, with the smaller of these rest points
x∗n,1 being unstable and the larger interior rest point x∗n,2 being stable. The existence
of these rest points is guaranteed if ḡn = max0≤x≤1 gn(x) > 0 holds (Peña et al., 2014,
Result 4.1). Combining these observations with the arguments yielding the results in
Section 3.1, Appendix A.3 proves:

Proposition 4. Suppose that the gain sequences have two sign changes, their initial
signs are negative, and that ḡn̄ > 0 holds. Then, the replicator dynamics (1)–(2) has
two interior rest points for all group sizes n. Further, at both the unstable rest point
x∗n,1 and the stable rest point x∗n,2 the proportion of cooperators is decreasing in group
size and we have

x∗n+1,1 < x∗n,1 < x∗n+1,2 < x∗n,2 (4)

for all n satisfying n ≤ n < n̄.

Proposition 4 indicates that there are two different effects of group size on cooper-
ation in games with two interior rest points. First, there is a negative group size effect,
as the proportion of cooperators at the stable interior rest point decreases as group
size increases, i.e., x∗n+1,2 < x∗n,2 holds. Second, there is a positive group size effect,
as the proportion of cooperators at the unstable interior rest point also decreases as
group size increases, i.e., x∗n+1,1 < x∗n,1 holds, implying that the basin of attraction of
full defection (x = 0) shrinks while the basin of attraction of the stable rightmost rest
point increases. These effects are in line with what happens in games with a unique
interior rest point that we have discussed in Section 3.2. The additional twist is that
rather than having the group size effect being negative or positive depending on the
structure of the game, both the negative and the positive group size effects co-occur in
the same game.

Fig. 4 illustrates Proposition 4 for the case of a threshold public goods game. As
noted above, the result is applicable more generally. For instance, the observations
(obtained via numerical calculations) that both interior rest points decrease with group
size for the n-person tit-for-tat model of Dugatkin (1990) (his “Model II”) and the n-
person snowdrift game discussed by Souza et al. (2009), are implied by Proposition
4.

The role of the condition ḡn̄ > 0 in the statement of Proposition 4 is to ensure that
the replicator dynamics has two interior rest points for group size n̄ and, therefore, has
these two rest points for all group sizes (Proposition 2). If the reverse inequality ḡn̄ < 0
holds, then for large groups there are no interior rest points, whereas (provided that
the inequality ḡn > 0 holds) for small group sizes there exists two interior rest points.
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Figure 4: Group size effects in a threshold public good game. Payoffs are given by
ak = uk+1 − c and bk = uk, where uj = v if j ≥ θ and uj = 0 otherwise. In all panels,
c = 1, v = 5, and θ = 3. Left panel: Gain functions (blue lines) with corresponding
rest points (red symbols), and direction of selection (black arrows) for two group sizes:
n = 5, and n = 6. Full circles represent stable rest points and empty circles represent
unstable rest points. Right panel: Proportion of cooperators at the interior rest points
as function of group size for 5 ≤ n ≤ 30. The direction of selection (black arrows)
is also shown. As group size increases, the proportion of cooperators at both interior
rest points decreases. This leads to both a negative group size effect (the proportion of
cooperators at the interior stable rest point decreases) and a positive group size effect
(the basin of attraction of the interior stable rest point increases).
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In such a situation there is (as illustrated in Fig. 2) a critical group size such that for
lower group sizes the rest point x = 0 is the only stable rest point, whereas for higher
group sizes there is a stable polymorphism at which some proportion of the population
cooperates. Hence, this describes a case in which the group size effect is unambiguously
negative.

4 Extension: games with gain sequences depending on
group size

Our analysis so far has assumed that the payoffs ak and bk, and therefore the gains
from switching dk, depend only on the number of other cooperators a focal player
interacts with and not directly on the size of the group. This assumption is not always
warranted. For instance, Hauert et al. (2006) and Pacheco et al. (2009) consider variants
of a public goods game in which the benefits uk from cooperation are shared among
all group members rather than accruing to each individual. The payoffs to cooperators
and defectors are then ank = uk+1/n − c and bnk = uk/n. The resulting gains from
switching

dnk =
∆uk
n
− c, (5)

depend not only on k but also on group size n.
If the gains from switching are, as in Eq. (5), decreasing in group size, then the

proportion of cooperators at an unstable interior rest point may increase with group
size. In particular, as illustrated for the case of a threshold public goods game in Fig. 6
below, Propositions 3 and 4 are no longer applicable to describe the group size effect
on unstable interior rest points. Further, there is no hope to obtain a counterpart to
Proposition 1. In the following we therefore focus on stable interior rest points and
show that for these the conclusions from Propositions 3 and 4 remain intact.

Consider, first, the case in which the gain sequences (dn0 , d
n
1 , . . . , d

n
n−1) have a single

sign change from positive to negative for all group sizes n. This ensures that the
replicator dynamics, given by Eq. (1) with

gn(x) =
n−1∑
k=0

(
n− 1

k

)
xk(1− x)n−1−kdnk , (6)

has a unique interior rest point x∗n for all group sizes n and that this rest point is stable.
Appendix A.4 shows the following result, and Fig. 5 illustrates it for the model with
discounted benefits proposed by Hauert et al. (2006).

Proposition 5. Suppose that the gain sequences (dn0 , d
n
1 , . . . , d

n
n−1) have a single sign

change from positive to negative. Then the replicator dynamics defined by Eq. (1) and
Eq. (6) has a unique stable interior rest point x∗n for all n. Further, if dn+1

k ≤ dnk
holds for all k = 0, 1, . . . , n − 1 and all n satisfying n ≤ n < n̄, then the proportion of
cooperators x∗n at this interior rest point is decreasing in group size n.
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Figure 5: Group size effect in the model with discounted benefits from Hauert et al.
(2006). Payoffs are given by ak = uk+1/n−c and bk = uk/n, where uk = v(1−wk)/(1−
w) with 0 < w < 1. For intermediate values of c (wn−1/n < c/v < 1/n̄) the gains from
switching dnk = vwk/n− c satisfy the assumptions in the statement of Proposition 5. In
all panels, c = 1. Left panel: Gain functions (blue lines) with corresponding rest points
(red symbols), and direction of selection (black arrows) for v = 50, w = 0.7, and two
group sizes: n = 10, and n = 11. Full circles represent stable rest points and empty
circles represent unstable rest points. Right panel: Proportion of cooperators at the
interior rest point as function of group size for different parameter combinations. The
direction of selection (black arrows) is also shown.
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The intuition for Proposition 5 is that a decrease in the gains from switching de-
creases the gain function and that such a decrease in the gain function reduces the
proportion of cooperators at the stable interior rest point. Therefore, the negative de-
pendence of the gains from switching on group size considered here reinforces the group
size effect observed in Proposition 3 by further reducing the proportion of cooperators
at the stable interior rest point. The same intuition applies to the following counterpart
to Proposition 4 that we prove in Appendix A.5:

Proposition 6. Suppose that the gain sequences (dn0 , d
n
1 , . . . , d

n
n−1) have two sign changes,

their initial signs are negative, and that ḡn > 0 holds for all n. Then the replicator
dynamics defined by Eq. (1) and Eq. (6) has two interior rest points x∗n,1 < x∗n,2 for all

group sizes n with the first of these unstable and the second stable. Further, if dn+1
k ≤ dnk

holds for all k = 0, 1, . . . , n − 1 and all n satisfying n ≤ n < n̄, then the proportion of
cooperators at the stable rest point x∗n,2 is decreasing in group size n.

Fig. 6 illustrates the conclusions from Proposition 6 for a game having the same
structure as a threshold public goods game, except that the benefits uk are shared
among all group members as in Eq. 5. Fig. 6 also illustrates that sharing the benefits
among more group members decreases the gain function and thereby increases the
proportion of cooperators at the unstable interior rest point compared to the benchmark
case considered in Proposition 4. Depending on parameter values, this effect may or
may not be large enough to overturn the conclusion from Proposition 4.

5 Discussion

We have investigated how group size affects the evolutionary dynamics of multiplayer
cooperation. More specifically, we have shown that an increase in group size can have
a negative effect (a decrease in the proportion of cooperators at equilibrium) and a
positive effect (an increase in the basin of attraction of the stable rest point sustaining
the largest proportion of cooperators) on social evolution. Depending on the payoff
structure of the social interactions one effect can be present and the other absent (as
in games featuring a single interior rest point), or both effects can be present at the
same time (as in games featuring two interior rest points). For threshold public goods
games and other games characterized by bistable coexistence both the invasion thresh-
old needed for cooperators to invade a population of defectors and the proportion of
cooperators expected at the stable interior rest point decrease as group size increases.
We have also shown that if payoffs depend explicitly on group size and such depen-
dence is negative, the negative group size effect is reinforced, while the positive group
size effect is attenuated or, depending on the particular payoff structure of the game,
reversed.

The negative group size effect we identify is in line with the common expecta-
tion that the selection pressure on certain types of cooperation decreases as group size
rises. Such a negative group size effect requires that the gain sequence is sometimes
decreasing, meaning that individual incentives to cooperate are (at least for some social
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Figure 6: Illustration of Proposition 6 for the case of a threshold game with shared
benefits. Payoffs are given by ank = uk+1/n − c and bnk = uk/n, where uj = v if j ≥ 3
and uj = 0 otherwise. Both panels show the gain functions gn(x) for group sizes n = 4
and n = 5 (solid lines) and the gain function ĝ5(x) for the larger group size (dashed
lines) corresponding to the benchmark of a threshold public goods game in which
payoffs for group size 5 are the same as for group size 4. In both panels the proportion
of cooperators at the stable interior rest point decreases as group size increases. Left
panel: the proportion of cooperators at the unstable interior rest point decreases as
group size changes from n = 4 to n = 5 (v = 20, c = 1). Right panel: the proportion
of cooperators at the unstable interior rest point increases as group size changes from
n = 4 to n = 5 (v = 14, c = 1).
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contexts) decreasing in the number of cooperators in the group. When this is the case,
the decisions to cooperate are strategic substitutes (Bulow et al., 1985); equivalently,
cooperation is discounted or subject to diminishing returns. Anti-predator vigilance
often follows this payoff structure, as the presence of other vigilant individuals usually
disincentivizes individual investment in vigilance, i.e., there is a “many eyes” effect (Pul-
liam, 1973; McNamara and Houston, 1992); in extreme cases one vigilant individual
is enough for the group to be protected (Bednekoff, 1997; Clutton-Brock et al., 1999).
In agreement with our results, empirical and theoretical studies indicate that vigilant
behavior often decreases with group size (Elgar, 1989; McNamara and Houston, 1992;
Beauchamp, 2008).

Contrastingly, the positive group size effect we identify has been less emphasized in
social evolution theory. In an early paper, Dugatkin (1990) noted that, in his model
of n-person reciprocity, the threshold frequency of cooperators needed to invade a pop-
ulation of defectors decreased as group size increased. Our analysis reveals that such
a positive group size effect is not specific to the payoff structure assumed in Dugatkin
(1990), but that it holds more generally for any game featuring unstable interior rest
points. As a necessary condition for the existence of unstable interior rest points is
that the gain sequence is sometimes increasing, the group size effect can be positive
only when the individual incentives to cooperate are (for at least some social contexts)
increasing in the number of cooperators in the group. In this case, the decisions to
cooperate are strategic complements (Bulow et al., 1985); equivalently, cooperation is
synergistic or subject to increasing returns. A common form of synergistic cooperation
occurs when a critical number of cooperators is required for cooperation to be individu-
ally worthwhile. Examples of such threshold effects have been documented in empirical
studies, and hypothesized to be a causal factor behind inverse density dependence or
Allee effects (Courchamp et al., 1999). For instance, a large critical number of bark
beetles is needed to overcome the defenses of the tree they attack (Franceschi et al.,
2005), and cooperative hunting often requires a critical number of hunters to be en-
ergetically efficient (Creel and Creel, 1995; Alvard and Nolin, 2002; MacNulty et al.,
2014). Also, in group-hunting sailfish, a larger number of hunters improves the hunting
success of the group by allowing individuals to alternate their attacks (Herbert-Read
et al., 2016), and by keeping group-level unpredictability high in the face of individual
lateralization (Kurvers et al., 2017). In all of these cases of synergistic cooperation,
our theory suggests that larger groups can be more favorable to cooperation and less
favorable to free riding. Indeed, this general prediction is in agreement with a recent
mechanistic model of free riding in group-hunting sailfish (Herbert-Read et al., 2016).

We used a variety of public goods games to illustrate our results. In such games,
both cooperators and defectors gain equal access to the collective good produced by
cooperators, i.e., the collective good is public. Notwithstanding the importance of these
models, there are many other kinds of social dilemmas for which public goods games
are not a natural description of the relevant strategic trade-offs. For instance, the
social interaction can take the form of a collective action problem where the produced
good can be accessed only by cooperators or only by defectors, i.e., the collective good
is in some sense excludable. Group size effects in such “club” and “charity” goods
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games (Peña et al., 2015) are readily amenable to analysis by applying our results.
We conclude by noting that our analysis assumed populations were well-mixed and

hence without genetic structure. This assumption is not always justified, as many
social interactions take place in spatially structured populations characterized by non-
negligible amounts of genetic structure (Rousset, 2004; Lehmann and Rousset, 2010;
Van Cleve, 2015). A simple way of modeling social evolution in these populations
is to focus on a continuously varying mixed strategy and to identify the convergence
stable strategies of the resulting adaptive dynamics (e.g., Rousset 2004; Van Cleve and
Lehmann 2013; Peña et al. 2015). In this case, the counterpart to the gain function we
have analyzed in this paper is also a polynomial in Bernstein form, now with coefficients
given by “inclusive gains from switching” depending on the payoffs of the game, the
group size, and demographic parameters of the particular spatial model determining
the degree of genetic relatedness and the amount of local competition (Peña et al.,
2015). In this light, the analysis conducted here is also relevant to investigate group
size effects in genetically structured populations, provided that the likely dependence
of the inclusive gains from switching on group size is taken into account. Investigating
the effects of group size on the evolution of cooperative behaviors under nontrivial
population structure with the tools developed here would complement recent efforts in
this area (Shen et al., 2014; Powers and Lehmann, 2017; Van Cleve, 2017).

Appendix

A.1 Proof of Proposition 1

We first obtain Eq. (3). To do so, we make use of two identities established in the
appendix of Motro (1991). Using our notation for the gain function and the gains from
switching, these identities are

dgn
dx

(x) = (n− 1)
n−2∑
k=0

(
n− 2

k

)
xk(1− x)n−2−k (dk+1 − dk) , (7)

and

gn+1(x)− gn(x) = x

n−1∑
k=0

(
n− 1

k

)
xk(1− x)n−1−k (dk+1 − dk) . (8)

Applying Eq. (7) (which is nothing but the derivative property of polynomials in
Bernstein form; see, e.g., Peña et al. 2014) to group size n+ 1 and dividing both sides
of the resulting equation by n yields

1

n

dgn+1

dx
(x) =

n−1∑
k=0

(
n− 1

k

)
xk(1− x)n−1−k (dk+1 − dk) . (9)

Substituting from Eq. (9) into Eq. (8) we obtain

gn+1(x)− gn(x) =
x

n

dgn+1

dx
(x),
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from which Eq. (3) is immediate.
Consider any n satisfying n ≤ n < n̄. The following establishes that the repli-

cator dynamics for group size n must have a rest point in the interval (x∗n+1,`, 1):
Because gn+1(x) has no root in (x∗n+1,`, 1), gn+1(x) has the same sign as the deriva-
tive dgn+1(x∗n+1,`)/dx for all x ∈ (x∗n+1,`, 1). As the gain sequences (d0, . . . , dn−1) and
(d0, . . . , dn) have the same initial sign (given by the sign of the first non-zero gain from
switching dk) and the same number of sign changes s, they also have the same final
sign. Hence, the final sign of the gain sequence (d0, . . . , dn) is the same as the sign of
dgn+1(x∗n+1,`)/dx, too (Peña et al., 2014, Property 1). Therefore, for sufficiently large
x̂ ∈ (x∗n+1,`, 1) the sign of gn(x̂) coincides with the sign of dgn+1(x∗n+1,`)/dx. From
Eq. (3) and gn+1(x∗n+1,`) = 0 we then have that gn(x∗n+1,`) and gn(x̂) have opposite
signs, so that gn(x) has a root in the interval (x∗n+1,`, x̂). Consequently, the replicator
dynamics for group size n has a rest point in the interval (x∗n+1,`, x̂). For the case ` = 1
this finishes the proof of the proposition.

Suppose ` ≥ 2 and let n again satisfy n ≤ n < n̄. Consider (with r = 1, . . . , `− 1)
any adjacent interior rest points x∗n+1,r < x∗n+1,r+1 of the replicator dynamics for group
size n+1. As stable and unstable rest points alternate, the derivatives dgn+1(x∗n+1,r)/dx
and dgn+1(x∗n+1,r+1)/dx have opposite signs. As gn+1(x∗n+1,r) = gn+1(x∗n+1,r+1) = 0
holds, it follows from Eq. (3) that gn(x∗n+1,r) and gn(x∗n+1,r+1) have opposite signs, too.
Therefore, gn(x) has at least one root in the interval (x∗n+1,r, x

∗
n+1,r+1), with each such

root corresponding to an interior rest point of the replicator dynamics for group size n.
As there are `−1 intervals of the form (x∗n+1,r, x

∗
n+1,r+1) and the replicator dynamics for

group size n has an interior rest point in the interval (x∗n+1,`, 1), this implies that there
is exactly one interior rest point of the replicator dynamics for group size n in each of
the intervals (x∗n+1,r, x

∗
n+1,r+1) for r = 1, . . . , ` − 1. Therefore, for all n = n, . . . , n̄ − 1

and r = 1, · · · , `− 1, we have

x∗n+1,r < x∗n,r < x∗n+1,r+1. (10)

In conjunction with the inequality x∗n+1,` < x∗n,` established in the preceding paragraph,
Eq. (10) finishes the proof.

A.2 Proof of Proposition 2

Let ` denote the number of interior rest points of the replicator dynamics for a given
group size n. We begin by showing that the number of interior rest points of the
replicator dynamics for group size m < n must be at least `. This is trivially true for
` = 0, so consider ` ≥ 1. By the same arguments as in the proof of Proposition 1,
the replicator dynamics for group size n− 1 has at least one rest point in the interval
(x∗n,`, 1) and, in case ` > 1, at least one rest point in each of the intervals (x∗n,r, x

∗
n,r+1)

for r = 1, . . . , `− 1. As there are `− 1 such intervals, the replicator dynamics for group
size n− 1 has at least as many rest points as the replicator dynamics for group size n.
By a straightforward induction argument, it follows that the same conclusion obtains
not only for group size n− 1 but for all group sizes m < n.
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Suppose that the number of interior rest points for group size n̄ is equal to the
number of sign changes s of the gain sequences. It then follows from the argument in
the previous paragraph that, for all group sizes n, the number of interior rest points
is at least s. On the other hand, the number of interior rest points of the replicator
dynamics for group size n cannot be larger than the number of sign changes s of the
gain sequence (Peña et al., 2014, Property 2). Hence, independently of group size the
number of interior rest points is s.

The assumption that the regularity condition dgn(x∗)/dx 6= 0 holds for all interior
rest points implies that all roots of the polynomials gn(x) are simple. Therefore, for all
group sizes n the number of interior rest points is either equal to the number of sign
changes s of the gain sequences or less by an even amount Peña et al. (2014, Property
2). It follows that the number of interior rest points for the replicator dynamics for
two different group sizes either are equal or differ by an even amount. As it has been
established above that the number of interior rest points cannot increase with group
size, this observation finishes the proof.

A.3 Proof of Proposition 4

From Result 4.1 in Peña et al. (2014) the condition ḡn̄ > 0 (in conjunction with the
assumption on the sign pattern of the gain sequences) is sufficient to imply that the
replicator dynamics for group size n̄ has two interior rest points x∗n̄,1 < x∗n̄,2 with the
first of these being unstable and the second stable. As the gain sequences have two sign
changes for all n, Proposition 2 then implies that the replicator dynamics for any group
size n has two interior rest points with the same stability pattern. From Proposition
1, the inequalities x∗n+1,1 < x∗n,1 and x∗n+1,2 < x∗n,2 hold for all n satisfying n ≤ n < n̄.
The remaining inequality in Eq. (4) follows from Eq. (10) in the proof of Proposition 1
in Appendix A.1.

A.4 Proof of Proposition 5

The existence of a unique interior rest point x∗n and its stability for all group sizes is
immediate from Result 3 in Peña et al. (2014).

Fix n satisfying n ≤ n < n̄ and let

hn(x) =

n−1∑
k=0

(
n− 1

k

)
xk(1− x)n−1−kdn+1

k . (11)

Observe that the assumption dn+1
k ≤ dnk for all k = 0, 1, . . . , n−1 implies hn(x) ≤ gn(x)

for all x ∈ [0, 1], where gn(x) has been defined in (6).
An argument identical to the one that we have used to obtain Eq. (3) in Appendix

A.1, yields

hn(x) = gn+1(x)− x

n

dgn+1

dx
(x). (12)
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As the rest point x∗n+1 is stable, Eq. (12) implies hn(x∗n+1) > 0 and therefore gn(x∗n+1) >
0. By the stability of the rest point x∗n, we have gn(x) < 0 for all x ∈ (x∗n, 1). Therefore,
the inequality gn(x∗n+1) > 0 implies x∗n+1 < x∗n, which is the desired result.

A.5 Proof of Proposition 6

From Result 4.1 in Peña et al. (2014) the condition ḡn > 0 (in conjunction with the
assumption on the sign pattern of the gain sequences) is sufficient to imply that for all
group sizes n, two interior rest points x∗n,1 < x∗n,2 exist with x∗n,1 being unstable and
x∗n,2 being stable. The proof is then finished by observing that the same argument as
in the proof of Proposition A.4 implies the inequality x∗n+1,2 < x∗n,2 for all n satisfying
n ≤ n < n̄.
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