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Abstract

Egg trading, whereby simultaneous hermaphrodites exchange each other’s eggs for fertilization,

constitutes one of the few rigorously documented and most widely cited examples of direct reci-3

procity among unrelated individuals. Yet how egg trading may initially invade a population

of non-trading simultaneous hermaphrodites is still unresolved. Here, we address this question

with an analytical model that considers mate encounter rates and costs of egg production in a6

population that may include traders (who provide eggs for fertilization only if their partners also

have eggs to reciprocate), providers (who provide eggs regardless of whether their partners have

eggs to reciprocate), and withholders (“cheaters” who only mate in the male role and just use9

their eggs to elicit egg release from traders). Our results indicate that a combination of inter-

mediate mate encounter rates, sufficiently high costs of egg production, and a sufficiently high

probability that traders detect withholders (in which case eggs are not provided) is conducive12

to the evolution of egg trading. Under these conditions traders can invade—and resist invasion

from—providers and withholders alike. The prediction that egg trading evolves only under these

specific conditions is consistent with the rare occurrence of this mating system among simulta-15

neous hermaphrodites.

Introduction

Sexual conflict arises when there is a conflict of interest between the two members of a mating18

pair over sexual reproduction (Hammerstein & Parker, 1987; Kokko & Jennions, 2014). In simul-

taneous hermaphrodites such a conflict arises with respect to the male and female functions, and

often manifests as a preference for mating in the male role (Charnov, 1979). Such preference has21

been interpreted as a direct consequence of anisogamy: since eggs are more energetically costly

to produce than sperm, reproductive success is expected to be limited by access to eggs specif-

ically (Bateman, 1948). Mating in the male role should therefore be preferred, which creates a24

conflict of interest between mating partners: both would prefer to mate in the male role, but for

2



the mating to be successful one partner needs to mate in the less preferred female role (Leonard,

1993).27

Egg trading is a specific mating system whereby simultaneous hermaphrodites trade each

other’s eggs for fertilization, which contributes to resolve this type of conflict. Egg trading

evolved independently in fishes (Fischer, 1980, 1984; Oliver, 1997; Petersen, 1995; Pressley, 1981)30

and polychaetes (Picchi et al., 2018; Sella, 1985; Sella & Lorenzi, 2000; Sella et al., 1997; Sella &

Ramella, 1999). When mating, a pair of egg traders take turns in fertilizing each other’s eggs.

By linking male reproductive success to female reproductive success, egg trading disincentivizes33

spawning in the male role predominantly or exclusively, as opportunities to fertilize a partner’s

eggs depend on providing eggs to that partner (Fischer, 1980). More broadly, egg trading consti-

tutes one of the few rigorously documented and most widely cited examples of direct reciprocity36

among unrelated individuals in animals (Axelrod & Hamilton, 1981). Direct reciprocity (also

known as “reciprocal altruism”; Trivers 1971) operates when an individual acts at an immediate

fitness cost to benefit another individual, who in turn reciprocates that benefit back. It provides a39

mechanism for the evolution of cooperation among genetically unrelated individuals (Lehmann

& Keller, 2006; Nowak, 2006; Sachs et al., 2004; Van Cleve & Akçay, 2014).

To date, most theoretical work on egg trading has sought to explain (i) its evolutionary stabil-42

ity against invasion by “cheaters” (referred here as “withholders”) who fertilize their partners’

eggs but do not reciprocate by releasing eggs (Crowley & Hart, 2007; Friedman & Hammerstein,

1991; Leonard, 1990), and (ii) its role in making simultaneous hermaphroditism evolutionarily45

stable relative to gonochorism (Fischer, 1980; Henshaw et al., 2015). While these studies ad-

dressed the stability and evolutionary consequences of egg trading once it is already established,

how egg trading may evolve in the first place turned out to be a problematic question. Axelrod48

& Hamilton (1981) speculated that egg trading might have evolved through a low-density phase

that would have favored self-fertilization and inbreeding, which would have in turn allowed kin

selection to operate. However, this hypothesis has been challenged on the grounds that many51

egg traders do not (and might not have the physiological ability to) self-fertilize (Fischer, 1981,
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1988).

More recently, Henshaw et al. (2014) provided a combination of analytical and simulation54

models that constitutes the first thorough attempt to explicitly address the evolution of egg

trading. Their analytical model considers mate encounters in a population that includes non-

traders (individuals who provide eggs at every mating opportunity, referred here as “providers”)57

and traders (individuals who provide eggs only if their partner have eggs to reciprocate). Their

results show that, as with other instances of direct reciprocity (André, 2014), egg trading is under

positive frequency-dependent selection and counterselected unless the proportion of traders in60

the population reaches a critical threshold. Egg trading can therefore only reach fixation in this

model when the strategy is already represented by a certain proportion of the population, leaving

it open how rare egg-trading mutants may initially persist and spread. Henshaw et al. (2014)63

showed that the egg-trading invasion barrier is easier to overcome when encounters between

mates are frequent, as such high encounter rates increase the chances that a rare egg trader

will find a partner with eggs to reciprocate. This relationship between encounter rates and the66

evolution of egg trading raises an interesting dilemma since high encounter rates have also been

found to destabilize egg trading by allowing withholders to invade a population of egg traders

(Crowley & Hart, 2007). Consequently, it is neither clear how egg trading can initially spread69

nor to what extent it can resist invasion by withholders under the high encounter rates that are

thought to facilitate its establishment.

Here we build on the analytical model of Henshaw et al. (2014) and extend it by adding four72

fundamental features. First, we allow for the possible occurrence of withholders, i.e., “cheaters”

who never provide eggs and only mate in the male role, in addition to traders and providers. Sec-

ond, we relax the implicit assumption in Henshaw et al. (2014) that egg production has no costs75

in terms of availability for mating. This assumption does not generally hold in nature since the

time and energy devoted to the acquisition of resources for egg production often trades off with

the time and energy available for mate search (Puurtinen & Kaitala, 2002). A direct implication78

of this trade-off is that individuals who are in the process of producing new eggs are expected
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to be less available for matings (in the male role since they have no eggs) than individuals car-

rying eggs. Third, we assume that traders can detect withholders with some positive probability81

and “punish” them by not providing eggs. Fourth, we incorporate the biologically important

feature, discussed by Henshaw et al. (2014) but not incorporated in their model, that eggs might

senesce and become unviable before a partner is found. We show that the first three additions84

generate complex evolutionary dynamics that allow traders to invade (and resist invasion from)

both providers and withholders when encounter rates are intermediate and both the costs of egg

production and the probability that wihholders can be detected are sufficiently high. The fourth87

addition (egg senescence) shapes the trade-offs that affect the evolution of egg trading.

Model

We posit a large, well-mixed population of simultaneous hermaphrodites in which generations90

overlap and there is no self-fertilization. At any given time, each individual in the population

is either carrying a batch of eggs or not. Eggless individuals produce a new batch of eggs

at a normalized rate of 1. Egg-carrying individuals encounter potential mates at the positive93

encounter rate m. Eggless individuals (who are producing new eggs) encounter potential mates

at a discounted rate λm, where 0 ≤ λ ≤ 1. The parameter λ measures the degree to which

individuals who are in the process of producing eggs are available for mating. Being unavailable96

for mating constitutes a cost of egg production in terms of missed opportunities for reproduction

in the male role. Thus, low values of mating availability λ imply a high cost of egg production,

with λ = 0 implying maximal costs (mating in the male role is impossible while producing eggs).99

Vice versa, high mating availability λ implies a low cost of egg production, with λ = 1 implying

minimal cost (individuals who are in the process of producing new eggs can always mate in the

male role). We also incorporate egg senescence, with eggs becoming non-viable at a rate ρ ≥ 0.102

We consider three different mating strategies: T (“trading”), H (“withholding”), and P (“pro-

viding”). All three strategies mate in the male role (i.e., fertilize eggs) whenever possible, but
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differ on the conditions under which they provide eggs to partners for fertilization. Traders are105

choosy: they only provide eggs if mates have eggs to reciprocate. Withholders are stingy: they

never provide eggs, and only reproduce through their male function. Indeed, the only function

of their eggs is to elicit egg release from traders: withholders “cheat” on their partners by fail-108

ing to reciprocate eggs. Providers are generous: they provide eggs to any partner, regardless of

whether the mate has eggs to reciprocate. We further assume that traders can detect withholders

with a positive probability q, in which case eggs are not provided. In the absence of withholders111

(there are only providers and traders in the population) and after setting λ = 1 (egg production

is costless in terms of availability for mating), and ρ = 0 (eggs do not senesce), our model re-

covers the analytical model of Henshaw et al. (2014), after identifying our “providers” with their114

“non-traders”.

In line with game-theoretic approaches (Maynard Smith, 1982), we assume a one-locus hap-

loid genetic system, so that each individual’s mating strategy is determined by a single gene117

inherited from the mother or the father with equal probability. Moreover, we assume a separa-

tion of time scales such that the demographic variables (the proportions of individuals carrying

and not carrying eggs within each strategy) equilibrate much faster than the evolutionary vari-120

ables (the proportions of individuals following each strategy). With these assumptions, we can

write the evolutionary dynamics of our model as a system of replicator equations (Hofbauer

& Sigmund, 1998; Weibull, 1995) for the three strategies T, H, and P, with frequencies respec-123

tively given by x, y, and z. The state space ∆ is the simplex of all (x, y, z) with x, y, z ≥ 0 and

x + y + z = 1. In the following we present a summary of our results. Our formal model and

the analytical derivation of all results are given in Appendix A: Detailed Model Description and126

Appendix B: Analysis of the Evolutionary Dynamics.
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Results

The replicator dynamics has three monomorphic equilibria: a homogeneous population of traders129

(T), a homogeneous population of withholders (H), and a homogeneous population of providers

(P). Among these equilibria, H is always unstable: for any parameter combination, a homogenous

population of withholders can be invaded by traders, providers, or a mixture of both strategies.132

In addition to these three monomorphic equilibria, and depending on parameter values, the

replicator dynamics can have up to two of three polymorphic equilibria on the boundary of the

simplex ∆ (fig. 1): (i) an equilibrium R along the TP-edge, where traders and providers coex-135

ist but withholders are absent (figs. 1B, 1C), (ii) an equilibrium Q along the TH-edge, where

traders and withholders coexist but there are no providers (figs. 1C, 1D), and (iii) an equilibrium

S along the HP-edge, where withholders and providers coexist but where there are no traders138

(figs. 1D, 1E). When these polymorphic equilibria exist, R is a saddle (repelling for points along

the TP-edge, and attracting for neighboring points in the interior of ∆), Q is stable (attracting

from neighboring points in ∆), and S is a saddle (attracting for points along the HP-edge, and141

repelling for neighboring points in the interior of ∆). These equilibria are rather complicated

functions of the model parameters, so we report their expressions in Appendix B: Analysis of the

Evolutionary Dynamics. The replicator dynamics has no equilibria in the interior of ∆, i.e., no144

population composition with all three strategies coexisting is an equilibrium.

We find that both the stability of the monomorphic equilibria T and P, and the existence of

the polymorphic equilibria Q, R, and S, depend on how the mating availability λ compares to

the critical value

λ∗ =
m− (1 + ρ)

ρ(1 + ρ) + m(2 + ρ)
, (1)

and on how the encounter rate m compares to the critical values

m∗ = (1 + ρ) [1 + λ(1 + 2ρ)] , (2)
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Figure 1: Effects of mating availability and encounter rates on the evolutionary dynamics of egg

trading. The parameter space can be divided into five disjoint regions (i to v) depending on how

availability λ compares to the critical availability λ∗ (equation (1)) and on how the encounter

rate m compares to the critical encounter rates m∗ (equation (2)) and m∗ (equation (3)). The

triangles ∆ represent the state space ∆ = {(x, y, z) ≥ 0, x + y + z = 1}, where x, y, and z are the

frequencies of traders, withholders, and providers, respectively. The three vertices T, H, and P

correspond to homogeneous states where the population is entirely comprised of traders (x = 1),

withholders (y = 1), or providers (z = 1). Full circles represent stable equilibria (sinks); empty

circles represent unstable equilibria (sources or saddle points). (A) In region i all trajectories

in ∆ converge to P. (B) In region ii trajectories converge to either P or T, depending on initial

conditions. The equilibrium R on the TP-edge is a saddle point dividing the basins of attraction

of P and T. (C) In region iii trajectories converge to either P or the equilibrium Q along the

TH-edge, depending on initial conditions. (D) In region iv all trajectories converge to Q. The

equilibrium S along the HP-edge is a saddle point. (E) In region v all trajectories converge to T.

Parameters: ρ = 1, q = 0.5, m = 2 (A), 12 (B), 50 (C and D) or 8 (E), and λ = 0.7 (A, B, and C), or

0.1 (D and E).

and

m∗ =
(1 + ρ)(1 + q) [1− q + λ(1 + q + 2ρ)]

(1− q)2 . (3)

First, the stability of the monomorphic equilibrium P depends on how the mating availability

λ compares to the critical value λ∗. A homogeneous population of providers is stable against147

invasions by the other two strategies if and only if mating availability is high (λ > λ∗). As λ

decreases and crosses the threshold λ∗, P becomes unstable against both traders and withholders,

and the saddle S is created along the TH-edge.150

Second, the stability of the monomorphic equilibrium T depends on how the encounter rate m
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compares to the critical values m∗ and m∗. A homogeneous population of traders is: (i) unstable

against invasion by providers but stable against invasion by withholders if the encounter rate153

is low (m < m∗), (ii) stable against both withholders and providers if the encounter rate is

intermediate (m∗ < m < m∗), and (iii) stable against invasion by providers but unstable against

invasion by withholders if the encounter rate is high (m > m∗). As m increases and crosses the156

threshold m∗, T becomes stable while spawning the unstable equilibrium R along the TP-edge; as

m increases further and crosses the threshold m∗, T becomes unstable and the stable equilibrium

Q (where traders and withholders coexist) is created along the TH-edge.159

All in all, the parameter space can be partitioned into the following five dynamical regions

(fig. 1), each having qualitatively different evolutionary dynamics. Among these, only regions

iv and v allow traders to invade a resident population of providers, and only region v allows162

traders to both invade providers and resist invasion by withholders. A key requirement for this

last scenario is that encounter rates are neither too high nor too low (m∗ < m < m∗) and that

availability is sufficiently low (λ < λ∗).165

Region i is characterized by low encounter rates (m < m∗). In this region of the parameter

space, there are no polymorphic equilibria, T is a saddle (attracting from H, repelling from P),

and P is a sink. All trajectories converge to P, which is the only stable equilibrium of the replicator168

dynamics. At equilibrium, the population consists only of providers (fig. 1A).

Region ii is characterized by high mating availability (λ > λ∗) and intermediate encounter

rates (m∗ < m < m∗). Here, the saddle R along the TP-edge is the only polymorphic equilibrium,171

and T and P are sinks. The evolutionary dynamics are bistable, with a trajectory leading from H

to R dividing ∆ into two regions: one with trajectories converging to T, and the other with tra-

jectories converging to P. Depending on initial conditions, at equilibrium the population consists174

either only of traders or only of providers (fig. 1B).

Region iii is characterized by high mating availability (λ > λ∗) and high encounter rates

(m > m∗). In this region of the parameter space, the saddle R along the TP-edge and the sink Q177

along the TH-edge are the only polymorphic equilibria, T is a saddle (attracting from P, repelling
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from H), and P is a sink. The evolutionary dynamics are again bistable, with a trajectory leading

from H to R dividing the basins of attraction of the stable equilibria P and Q. Depending on180

initial conditions, at equilibrium the population consists either only of providers or of a mixture

of traders and withholders (fig. 1C).

Region iv is characterized by low mating availability (λ < λ∗) and high encounter rates183

(m > m∗). In this region of the parameter space, the saddle S along the HP-edge and the sink Q

along the TH-edge are the only polymorphic equilibria, T is a saddle (attracting from P, repelling

from H), and P is a source. All trajectories converge to Q, which is the only stable equilibrium of186

the replicator dynamics. At equilibrium, the population is hence a stable mixture of traders and

withholders (fig. 1D).

Finally, region v is characterized by low mating availability (λ < λ∗) and intermediate en-189

counter rates (m∗ < m < m∗). Here, the saddle S along the HP-edge is the only polymorphic

equilibrium, T is a sink, and P is a source. All trajectories converge to T, which is the only stable

equilibrium of the replicator dynamics. At equilibrium, the population consists only of traders192

(fig. 1E).

The encounter rate m is a key parameter in our model. For low encounter rates (m < m∗;

region i), P is the only stable equilibrium and the outcome of the evolutionary dynamics. This195

makes intuitive sense: if potential mates are difficult to find, individuals should provide eggs

at every mating opportunity; being picky in this context is risky as another partner might be

difficult to find before eggs become unviable. For higher encounter rates (m > m∗; regions ii to v)198

finding mates becomes easier, and it pays to reject eggless partners in hopes of finding partners

carrying eggs. Very large encounter rates (m > m∗; regions iii and iv) even allow withholders

(who never release their eggs and only mate in the male role) to be successful in the long run201

and coexist with traders at the equilibrium Q. The proportion of traders at such an equilibrium

decreases as the mate encounter rate increases, down to 50% in the limit of high encounter rates.

The benefits of being choosy are particularly salient when the costs of egg production are high204

(i.e., when the mating availability λ is low). Indeed, a lower mating availabity λ has two related
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and reinforcing consequences. First, low availability means fewer opportunities to mate in the

male role when not carrying eggs, and hence higher opportunity costs to mate indiscriminately207

in the female role. Second, low availability also implies that the probability of finding another

potential mate without eggs after having rejected previous potential partners is lower, thus de-

creasing the risk of being choosy. In line with these arguments, we find that for sufficiently high210

costs of egg production (λ < λ∗; regions iv and v), P can be invaded by strategies that do not

mate indiscriminately in the female role (traders and withholders). For high encounter rates

(m > m∗, region iv) traders invade but are not able to displace withholders, and the population213

composition at equilibrium is a mixture of traders and withholders. Otherwise, for moderate

encounter rates (m∗ < m < m∗, region v) traders invade and take over the whole population

while resisting invasion by withholders.216

The probability that traders detect withholders, q, plays an essential role in stabilizing the

trading equilibrium T in our model (fig. 2). Indeed, some amount of withholder detection (as

encapsulated by the parameter q) is necessary for trading to be evolutionarily stable in the pres-219

ence of withholders. This follows because the critical encounter rate m∗ tends to m∗ (which does

not depend on q) as q tends to zero. Thus, in this limit, regions ii and v cease to exist and T is un-

stable for all encounter rates. In addition, the critical encounter rate m∗ is an increasing function222

of q (fig. 2). As m ≤ m∗ is a necessary and sufficient condition for a monomorphic population of

traders to resist invasion by withholders, larger values of q imply that more stringent conditions

(i.e., higher encounter rates) are required to destabilize the trading equilibrium T.225

Finally, we note that the critical mating availability λ∗ and the critical encounter rates m∗ and

m∗ are all functions of the rate of egg senescence ρ. The critical availability λ∗ is decreasing

in ρ (fig. 2). The evolutionary consequence of this effect is that the higher the rate of egg228

senescence ρ, the lower the critical availability λ∗ belows which traders (and withholders) can

invade a monomorphic population of providers. This makes intuitive sense as providers give

up their eggs more freely and are thus less likely to suffer the consequences of a higher egg231

senescence than traders and withholders. Additionally, both critical encounter rates m∗ and m∗
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Figure 2: Effects of egg senescence and probability of withholder detection on the evolutionary

dynamics of egg trading. Panels represent, for different combinations of egg senescence ρ and

probability of withholder detection q, the critical mating availability λ∗ (equation (B4)), and the

critical encounter rates m∗ (equation (B51)) and m∗ (equation (B52)) that define the boundaries

of the five dynamical regions (i to v) into which the parameter space can be divided. For fixed

ρ and λ, increasing q increases the values of the encounter rate m at which m = m∗ holds, thus

increasing the areas of regions ii and v (where the trading equilibrium T is evolutionarily sta-

ble) and shrinking the areas of regions iii and iv (where withholders invade T). For fixed q and

m, increasing ρ decreases the values of the mating availability λ at which λ = λ∗ holds, thus

decreasing the combined area of regions iv and v, where traders can invade the providing equi-

librium P. Note that the middle panel (second row, second column) corresponds to the parameter

values (ρ = 1, q = 0.5) used in fig. 1.

are increasing in ρ (fig. 2). Therefore, the higher ρ, the higher the minimal encounter rate m∗

(respectively, the maximal mating rate m∗) required for a monomorphic population of traders to234

resist invasion by providers (respectively, by withholders).

Discussion

A general prediction of our model is that there are only three possible evolutionarily stable237

equilibria: a homogenous population of providers, a homogenous population of egg traders,

and a polymorphic population that includes both egg traders and withholders. The first stable

equilibrium would correspond to simultaneous hermaphrodites that do not trade eggs. This240

equilibrium is attained in a large area of the parameter space, which is consistent with the fact

that the majority of simultaneous hermaphrodites do not trade eggs. The second stable equilib-

rium would correspond to egg traders and can be attained under the specific conditions that we243
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discuss below. The closest situation to the third stable equilibrium in nature would correspond

to egg-trading species in which mating also occurs in the male role only through streaking, i.e.,

the furtive release of sperm in competition with the male of an egg trading pair (Fischer, 1984;246

Oliver, 1997; Petersen, 1995; Pressley, 1981). We did not intend to capture this situation in par-

ticular but we note that, as in our model, such streakers are not pure males but simultaneous

hermaphrodites that mate in the male role. We are not aware of simultaneously hermaphroditic249

species in which egg trading is facultative, which is consistent with the fact that there is no stable

equilibrium in our model that involves both traders and providers.

One important way in which our model differs from Henshaw et al. (2014) is in the incor-252

poration of the costs of egg production in terms of mating availability (λ), which play a crucial

role in the evolution of egg trading. Setting the parameter λ to one, so that eggless individuals

are always available to mate in the male role, our model recovers the implicit assumption in255

Henshaw et al. (2014) that egg production is essentially costless. In this case, and in line with the

results by Henshaw et al. (2014) for their particular model without egg senescence and without

withholders, we have shown that there is an initial barrier that traders need to overcome in order258

to invade a population of providers. Although, as predicted by Henshaw et al. (2014), higher

encounter rates can make such an invasion barrier smaller, very high encounter rates (m > m∗)

will also inevitably allow withholders to invade the trading equilibrium. In the limit of very high261

encounter rates (so that the invasion barrier becomes arbitrarily small) the evolutionary outcome

is not, as predicted by Henshaw et al. (2014), the invasion and fixation of trading. Rather, in

the case of full availability and very high encounter rates, our model predicts that over the long264

run the population will consist of a stable mix of 50% traders and 50% withholders. Recogniz-

ing the possibility of costly egg production by allowing mating availability to be less than one

opens new possibilities. In particular, for sufficiently low mating availability, traders can both267

(i) invade providers at sufficiently high encounter rates, and (ii) be stable against invasion by

withholders at sufficiently small encounter rates. This result implies that neither a combina-

tion of self-fertilization and kin selection (Axelrod & Hamilton, 1981) nor high encounter rates270
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(Henshaw et al., 2014) are necessary for the evolution of egg trading, and thereby resolves the

dilemma on the relationship between encounter rate and the evolution of egg trading.

The trade-off between the time and energy allocated to acquire resources for egg production273

versus mate search that is captured by our parameter λ has been documented in egg traders.

For example, in the hamlets (Hypoplectrus spp.), one of the fish groups in which egg trading is

best described, individuals meet on a daily basis in a specific area of the reef for spawning at276

dusk (Fischer, 1980). This can imply swimming over hundreds of meters of reef (Puebla et al.,

2012). Not all individuals show up in the spawning area on each evening, but most individuals

that are present are observed spawning in both the female and male role (implying that they279

carry eggs). The majority of individuals who do not spawn are not present in the spawning area

and are therefore not available for mating, even in the male role only, which is exactly what the

parameter λ captures. This said, our model is not meant to represent any group of egg traders in282

particular but to capture the minimal set of parameters that are relevant for the evolution of egg

trading. Mate encounter rate had been identified as such a parameter by Henshaw et al. (2014);

we added here the opportunity costs of egg production. Our results indicate that the evolution285

of egg trading from an ancestral state where the population consists only of providers requires

at the very least a minimum of egg-production costs.

Once egg trading is able to invade a population of providers, two different evolutionary288

scenarios are possible. First, trading can reach fixation and be established at an evolutionarily

stable equilibrium. Second, trading can be sustained at a polymorphic equilibrium featuring egg

traders and withholders. Which of these two scenarios is reached depends to a large extent on291

the ability of egg traders to detect withholders (q). A necessary condition for the first scenario to

be reached is that q is positive, i.e., that there is at least some withholder detection. Moreover,

the higher q (i.e., the better the abilities of traders to detect withholders), the larger the set of294

value for the other parameter under which trading is evolutionarily stable against withholding

and the first scenario prevails. There are at least two ways in which egg traders may be able to

detect withholders in nature. The first one is through reputation and learning in small popula-297
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tions where mating encounters occur repeatedly among the same set of individuals (Puebla et al.,

2012). In this situation, individuals who fail to reciprocate eggs might be identified as withhold-

ers and avoided in subsequent mating encounters. The second one is through parcelling of the300

egg clutch, which occurs in several egg-trading species (Fischer, 1980; Fischer & Hardison, 1987;

Oliver, 1997; Petersen, 1995). In this case eggs are divided into parcels that the two partners take

turns in providing and fertilizing. This constitutes an efficient mechanism to detect partners that303

fail to reciprocate, and also provides the opportunity to terminate the interaction before all eggs

are released if the partner does not reciprocate.

By and large, the conditions that are required for the invasion and fixation of egg trading306

(intermediate encounter rates, sufficiently high costs of egg production and possibility to detect

withholders) are rather restrictive. In addition, egg trading requires that individuals interact

directly to trade eggs, which implies that they are mobile. It is therefore not surprising that egg309

trading is a rare mating system, documented only in Serraninae fishes (Fischer, 1980, 1984; Oliver,

1997; Petersen, 1995; Pressley, 1981) and dorvilleid polychaetes in the genus Ophryotrocha (Sella,

1985; Sella & Lorenzi, 2000; Sella et al., 1997; Sella & Ramella, 1999). Hermaphroditism, on the312

other hand, occurs in 24 out of 34 animal phyla and is common to dominant in 14 phyla includ-

ing sponges, corals, jellyfishes, flatworms, mollusks, ascidians and annelids (Jarne & Auld, 2006).

The rare occurrence of egg trading among simultaneous hermaphrodites suggests that egg trad-315

ing did not play a major role in the evolution of simultaneous hermaphroditism globally, i.e., that

simultaneous hermaphroditism can readily evolve in the absence of egg trading. This is what mo-

tivated our choice to focus on the evolution of egg trading among simultaneous hermaphrodites318

as opposed to the joint evolution of egg trading and simultaneous hermaphroditism or the role

played by egg trading in stabilizing or destabilizing simultaneous hermaphroditism (Henshaw

et al., 2015). In our model this is illustrated by the fact that although withholders mate in the321

male role exclusively, they are nonetheless not pure males: they are hermaphrodites that keep

producing eggs to elicit egg release by traders.

All in all, our model suggests that egg trading should generally occur in simultaneously324
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hermaphroditic species for which encounter rates are intermediate, egg production entails a cost

in terms of mating availability and withholders can be detected to some extent. The estimation

of these factors (as well as rates of egg senescence) in egg-trading and closely related non-egg-327

trading species would allow to test this prediction. The incorporation of egg parcelling into our

model would also allow to refine our predictions.

Acknowledgments330

This research was funded by a Future Ocean Cluster of Excellence grant to O. Puebla. J. Peña

also gratefully acknowledges financial support from the ANR-Labex IAST. The code used for

creating the figures of this paper builds on Inom Mirzaev and Drew F. K. Williamson’s Python333

package egtplot (https://github.com/mirzaevinom/egtplot). Our source code in Python is

publicly available on GitHub (https://github.com/jorgeapenas/eggtrading).

18

https://github.com/mirzaevinom/egtplot
https://github.com/jorgeapenas/eggtrading


Appendix A: Detailed Model Description336

Our model builds on the analytical model of Henshaw et al. (2014), extending it in a number of

directions.

We posit a large, well-mixed population of simultaneous hermaphrodites. At any time, each339

individual in the population either is or is not carrying a batch of eggs. Individuals without

eggs produce a new batch of eggs at a rate normalized to 1, so that all other rates are measured

relative to the rate of egg production. Potential mates are encountered at rate m > 0 if the focal342

individual carries eggs, or at a discounted rate λm, where 0 < λ ≤ 1, if the focal does not carry

eggs. Equivalently, an individual not carrying eggs is available for encounters with probability

λ. Hence, λ captures the opportunity costs of egg production; λ < 1 models that an individual345

busy producing eggs cannot be available all the time as a potential partner in the male role. We

assume that eggs senesce and become unviable at rate ρ ≥ 0.

Individuals adopt one of three possible strategies: trading (T), withholding (H), and provid-348

ing (P). Our traders behave like the traders in Henshaw et al. (2014): they offer their eggs only

to partners carrying eggs (who can reciprocate). Withholders produce and carry eggs but never

release them to partners, thereby only reproducing through the male role. Providers correspond351

to the “non-traders” in Henshaw et al. (2014): they offer their eggs to any partner (either carrying

or not carrying eggs). All three strategies fertilize the eggs offered to them by partners. Finally,

we assume that traders can detect withholders with probability 0 < q < 1 and “punish” them by354

not releasing eggs.

The model in Henshaw et al. (2014) is recovered from our more general model by (i) allowing

only for providers and traders, (ii) assuming costs of egg production are zero (by setting λ = 1),357

and (iii) ignoring egg senescence (by setting ρ = 0).
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Proportions of strategies and of egg carriers

Let x, y, and z denote the respective proportions of traders, withholders, and providers in the360

population, satisfying

x + y + z = 1, x ≥ 0, y ≥ 0, z ≥ 0, (A1)

and let ∆ denote the set of population shares (x, y, z) of the three strategies satisfying the condi-

tions in (A1). Similarly, let xe, ye, and ze denote the proportions (relative to the overall population363

size) of, respectively, traders carrying eggs, withholders carrying eggs, and providers carrying

eggs, with the corresponding proportions of individuals not carrying eggs given by

xo = x− xe, (A2a)

yo = y− ye, (A2b)

zo = z− ze. (A2c)

To abbreviate formulas, it will sometimes be convenient to use e and o to denote the popula-366

tion fractions carrying eggs, resp. not carrying eggs:

e = ze + xe + ye, (A3a)

o = zo + xo + yo. (A3b)

Steady-state equations

For given (x, y, z) satisfying (A1), we define a steady state by the requirement that for each369

strategy the rate of inflow into the egg-carrying state (the left side of the three the following

equations) balances the outflow from the egg-carrying state (the right side of the three following

equations):372

xo = ρxe +

(
m

xe + (1− q)ye + ze

e + λo

)
xe, (A4a)

yo = ρye, (A4b)

zo = ρze + mze. (A4c)
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As we have normalized the rate of egg production to one, the left side of these equations is

equal to the proportion of individuals not carrying eggs following the relevant strategy . The

first term on the right side of equations (A4) describes the outflow from the egg-carrying state375

due to egg senescence. As withholders never give up their eggs when meeting a partner, they

only lose eggs due to senescence, so that there is no further term on the right side of (A4b).

Egg-carrying providers lose their eggs at rate rate m due to meeting other individuals, as each378

meeting partner accepts (i.e., fertilizes) the eggs offered by a provider. This gives the second term

on the right side of (A4c). To understand the second term on the right side of (A4a), observe that

in a meeting with another individual an egg-carrying trader only gives up its eggs if its partner381

is also carrying eggs and is not identified as a withholder. Hence, the proportion of meetings in

which an egg-carrying trader provides eggs is given by the proportion of meetings in which this

condition is satisfied. As a fraction e + λo of the individuals in the population are available for384

meetings this proportion is given by (xe + (1− q)ye + ze)/(e + λo).

Substituting from (A2) and (A3a), we can rewrite the steady-state equations (A4) solely in

terms of (x, y, z) and (xe, ye, ze) as387

x =

(
m

xe + (1− q)ye + ze

λ + (1− λ)(xe + ye + ze)
+ 1 + ρ

)
xe, (A5a)

y = (1 + ρ) ye, (A5b)

z = (1 + m + ρ) ze, (A5c)

For any (x, y, z) ∈ ∆ the equations in (A5) have a unique non-negative solution (xe, ye, ze)

given by

xe =
−b +

√
b2 − 4ac

2a
, (A6a)

ye =
y

1 + ρ
, (A6b)

ze =
z

1 + m + ρ
, (A6c)
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where390

a = m + (1 + ρ)(1− λ), (A7a)

b = m
[

z
1 + m + ρ

+ (1− q)
y

1 + ρ

]
+ (1 + ρ)

[
λ + (1− λ)

(
z

1 + m + ρ
+

y
1 + ρ

)]
(A7b)

− (1− λ)x,

c = −
[

λ + (1− λ)

(
z

1 + m + ρ
+

y
1 + ρ

)]
x. (A7c)

Equations (A6b) and (A6c) are immediate from (A5b) and (A5c). To obtain (A6a), we rewrite

(A4a) as

x− xe − ρxe = m
ze + xe + (1− q)ye

e + λo
xe ⇔ (A8)

[x− (1 + ρ)xe] [(1− λ)(ze + xe + ye) + λ] = mx2
e + m [ze + (1− q)ye] xe. (A9)

Rearranging, substituting for ye and ze from (A6b) and (A6c), and using the definitions in (A7),393

we obtain that xe is given by the unique non-negative solution of the quadratic equation

ax2
e + bxe + c = 0, (A10)

i.e., xe is given by (A6a).

Before proceeding, we note that (A5) can be rearranged as396

xe

x
=

1

1 + m xe+(1−q)ye+ze
e+λo + ρ

, (A11a)

ye

y
=

1
1 + ρ

, (A11b)

ze

z
=

1
1 + m + ρ

, (A11c)

whenever the population share of the strategy under consideration is strictly positive, giving us

expressions for the fraction of time that an individual following one of these strategies carries

eggs. When the population share of a strategy is zero, we interpret the expressions xe/x, ye/y,399

and ze/z as the corresponding limits (which are well-defined) of the expressions on the right side

(A11) as the population share of a strategy goes to zero.
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Male, female, and total reproductive success for each strategy402

We take the rate of offspring produced via reproduction in both sex roles as our fitness measure.

The fitnesses for the three different strategies are calculated as follows.

Traders405

Traders carry eggs in a fraction xe/x of all encounters, encounter mates at rate m, but release

their eggs only if their partners have eggs themselves and cannot be identified as withholders.

Traders hence gain reproductive success through the female function at rate408

wF
T =

xe

x
m

xe + (1− q)ye + ze

e + λo
. (A12)

Traders gain reproductive success through the male function (i) if carrying eggs when they meet

providers or traders, and (ii) if not carrying eggs only when they meet providers. Therefore,

traders gain reproductive success through the male function at rate411

wM
T =

xe

x
m

xe + ze

e + λo
+

xo

x
λm

ze

e + λo
. (A13)

Adding (A12) and (A13), the total fitness to traders is

wT = wF
T + wM

T

=
xe

x
m

xe + (1− q)ye + ze

e + λo
+

xe

x
m

xe + ze

e + λo
+

xo

x
λm

ze

e + λo

=
xe

x
m

2xe + (1− q)ye + 2ze

e + λo
+
(

1− xe

x

)
λm

ze

e + λo

= λm
ze

e + λo
+

xe

x
m

2xe + (1− q)ye + (2− λ)ze

e + λo
. (A14)

Withholders

Withholders never release eggs. Hence, they gain no reproductive success through the female

function:414

wF
H = 0. (A15)
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Withholders gain reproductive success through the male function (i) if carrying eggs, when meet-

ing providers or meeting traders that do not identify them as withholders, or (ii) if not carrying

eggs, when meeting providers. We then have417

wM
H =

ye

y
m
(1− q)xe + ze

e + λo
+

yo

y
λm

ze

e + λo
. (A16)

Hence, the total fitness to withholders adds up to

wH = wF
H + wM

H

=
ye

y
m
(1− q)xe + ze

e + λo
+

yo

y
λm

ze

e + λo

=
ye

y
m
(1− q)xe + ze

e + λo
+

(
1− ye

y

)
λm

ze

e + λo

= λm
ze

e + λo
+

ye

y
m
(1− q)xe + (1− λ)ze

e + λo
. (A17)

Providers

Providers carry eggs a proportion of time ze/z and while doing so encounter mates at rate m.420

Since providers allow any partner to fertilize their eggs, they gain reproductive success through

the female function at rate

wF
P =

ze

z
m. (A18)

When they carry eggs, providers can also gain male fitness by, again, meeting potential mates at423

rate m and fertilizing their partners’ eggs if these are either providers carrying eggs or traders

carrying eggs. When they do not carry eggs, providers encounter mates at the lower rate λm and

only get to fertilize the eggs of a partner if this partner is another provider carrying eggs. Hence,426

providers gain reproductive success through the male function at rate

wM
P =

ze

z
m

xe + ze

e + λo
+

zo

z
λm

ze

e + λo
. (A19)
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The total fitness to providers can then be written as

wP = wF
P + wM

P

=
ze

z
m +

ze

z
m

xe + ze

e + λo
+

zo

z
λm

ze

e + λo

=
ze

z
m
(

1 +
xe + ze

e + λo

)
+
(

1− ze

z

)
λm

ze

e + λo

= λm
ze

e + λo
+

ze

z
m
(

1 +
xe + (1− λ)ze

e + λo

)
= λm

ze

e + λo
+

ze

z
m
(

e + λo
e + λo

+
xe + (1− λ)ze

e + λo

)
= λm

ze

e + λo
+

ze

z
m
(

λ + (1− λ)E
e + λo

+
xe + (1− λ)ze

e + λo

)
= λm

ze

e + λo
+

ze

z
m
(

λ + (2− λ)xe + (1− λ)ye + 2(1− λ)ze

e + λo

)
. (A20)

Evolutionary dynamics429

We assume a separation of time scales such that that the demographic dynamics adjusting the

proportions of egg-carriers to their steady state values uniquely determined by (A5) are much

faster than the evolutionary dynamics. Hence, for given frequencies x, y, and z, the fitness of432

each strategy can be evaluated at the corresponding steady state values xe, ye, and ze (given by

(A6)). To model the evolutionary dynamics, we make use of the replicator dynamics (Hofbauer

& Sigmund, 1998; Weibull, 1995) with total (expected) fitness in the place of expected payoffs.435

That is we consider the following system of differential equations:

ẋ = x (wT − w̄) , (A21a)

ẏ = y (wH − w̄) , (A21b)

ż = z (wP − w̄) , (A21c)

where dots denote time derivatives and

w̄ = xwT + ywH + zwP

is the average fitness in the population. The frequencies x, y, z can vary within the simplex ∆438

defined by (A1).
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The replicator dynamics is invariant to transformations that add the same function to all

payoffs or multiply payoffs by the same positive function (this last invariance up to a change441

of speed). We can then subtract the common term λmze/(e + λo) from the expressions for wT,

wH, and wP given in Eqs. (A14), (A17), and (A20), and then multiply the resulting expressions

by (e + λo)/m to obtain the renormalized fitnesses (which, with slight abuse of notation, we444

continue to denote by wP, wT and wH):

wT =
xe

x
[2xe + (1− q)ye + (2− λ)ze] , (A22a)

wH =
ye

y
[(1− q)xe + (1− λ)ze] , (A22b)

wP =
ze

z
[λ + (2− λ)xe + (1− λ)ye + 2(1− λ)ze] . (A22c)

Introducing the abbreviations (where the second equality in the first line follows from the

definitions in (A3))447

α = xe + (1− q)ye + ze = e− qye, (A23a)

β = λ + (1− λ)e, (A23b)

γ = xe + (1− λ)ze, (A23c)

we can rewrite (A22) as

wT =
xe

x
(α + γ), (A24a)

wH =
ye

y
(γ− qxe), (A24b)

wP =
ze

z
(β + γ). (A24c)

Replacing the ratios on the right side of these equations by the expressions in equation (A11) and

using (from (A11a), (A23a), and (A23b))450

xe

x
=

β

β(1 + ρ) + mα
,
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yields

wT =
β(α + γ)

β(1 + ρ) + mα
, (A25a)

wH =
γ− qxe

1 + ρ
, (A25b)

wP =
β + γ

1 + m + ρ
. (A25c)
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Appendix B: Analysis of the Evolutionary Dynamics

The replicator dynamics (A21) has three trivial rest points at the corners of the simplex ∆:453

(x, y, z) = (1, 0, 0), (x, y, z) = (0, 1, 0), and (x, y, z) = (0, 0, 1). With slight abuse of notation,

we denote these rest points by T, H, and P, respectively. In addition to analyzing the stability of

the trivial rest points, our analysis consist in identifying the number, location, and stability of456

non-trivial rest points, and in how the phase portraits of our model depend on parameter values.

Our analysis proceeds in six steps. First, we obtain convenient expressions for the pairwise

comparison of the renormalized fitnesses in (A25) which provide the basis for much of the sub-459

sequent analysis (Section Pairwise fitness comparisons). Second, we show that the replicator

dynamics (A21) has no interior rest point, that is, no rest point (x, y, z) in the interior of ∆, i.e.,

where x > 0, y > 0, and z > 0 (Section The replicator dynamics has no interior rest point). Thus,462

if the replicator dynamics has any rest points but the trivial ones, these must be located on the

edges of the simplex. Third, we investigate the dynamics along the three edges of the simplex ∆,

thereby identifying how the number and location of the rest points on the edges of the simplex465

depend on the parameters of the model (Section Dynamics on the edges). This analysis pro-

vides us with much of the requisite information to determine the stability properties of all the

rest points. Fourth, we complete the stability analysis for the non-trivial rest points identified468

in the third step (Section Stability analysis of the non-trivial rest points). Fifth, we summarize

our results by identifying the five disjoint regions in our parameter space, each one characterized

by qualitatively different phase portraits, shown in fig. 1 in the main text (Section Dynamical471

regions). Sixth, we provide for formal underpinnings for fig. 2 in the main text, showing how

the five regions identified in the fifth step change as the parameters q and ρ change (Section

Effects of varying q and ρ on the dynamical regions). All together, these results provide us with474

a complete qualitative picture of the evolutionary dynamics of our model.

Throughout the following we write =s to indicate that two expressions have the same sign

(either +, −, or 0).477
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Pairwise fitness comparisons

Comparison of wP and wT

From (A25a) and (A25c) we obtain that wP = wT holds if and only if β(1 + ρ) = mγ:480

wP = wT ⇔ [β(1 + ρ) + mα] (β + γ) = β (1 + m + ρ) (α + γ)

⇔ [β(1 + ρ) + mα] β + mαγ = β (1 + m + ρ) α + mβγ

⇔ (β− α) [β(1 + ρ)−mγ] = 0

⇔ β(1 + ρ) = mγ,

where the last equivalence follows from observing, first, that from (A23a) and (A23b) we have

β − α = λ(1 − e) + qye and, second, that the latter expression is strictly positive as we have

assumed λ > 0 and every steady-state satisfies e < 1 – unless we have ρ = 0 and y = 1, in which483

case the term qye = qy is strictly positive as we have assumed q > 0.

The same line of reasoning holds when we start with inequality rather than equality, showing

wP − wT =s β(1 + ρ)−mγ. (B1)

Comparison of wP and wH486

Using (A25b) and (A25c) we obtain

wP = wH ⇔ (1 + ρ) (β + γ) = (1 + m + ρ) (γ− qxe)

⇔ β(1 + ρ) = mγ− (1 + m + ρ) qxe.

Similar reasoning implies that the sign of wP − wH coincides with the sign of β(1 + ρ)− mγ +

(1 + m + ρ) qxe:489

wP − wH =s β(1 + ρ)−mγ + (1 + m + ρ) qxe. (B2)
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Comparison of wT and wH

Using (A25a) and (A25b) we obtain

wT = wH ⇔ (1 + ρ) β(α + γ) = [β(1 + ρ) + mα] (γ− qxe)

⇔ β(1 + ρ)(α + qxe) = mα (γ− qxe)

⇔ αβ(1 + ρ) = αmγ− α

[
β

α
(1 + ρ) + m

]
qxe

⇔ β(1 + ρ) = mγ−
[

β

α
(1 + ρ) + m

]
qxe,

where we have used α > 0 (from (A23a), e ≥ ye, q < 1, and e > 0 for all (x, y, z) ∈ ∆) to obtain492

the last two equivalences. Similar reasoning implies that the sign of wT − wH coincides with the

sign of β(1 + ρ)−mγ +
[

β
α (1 + ρ) + m

]
qxe or:

wT − wH =s β(1 + ρ)−mγ + (1 + m + ρ)qxe +

(
β

α
− 1
)
(1 + ρ)qxe. (B3)

The replicator dynamics has no interior rest point495

If (x, y, z) is an interior rest point of the replicator dynamics, then the associated (xe, ye, ze) sat-

isfies xe > 0, ye > 0, and ze > 0, and we have wP = wT = wH. In particular, we must have

wP = wT and wP = wH. From (B1) and (B2) these equalities are equivalent to β(1 + ρ) = mγ and498

β(1 + ρ) = mγ− (1 + m + ρ) qxe. Substituting the first of these equalities into the second yields

qxe = 0. Because q > 0 holds, this contradicts xe > 0. Therefore, no interior rest point exists. As

a corollary, we also have that there are no closed orbits in the system (Strogatz, 1994, p. 180).501

Dynamics on the edges

TP-edge

On the TP-edge, the dynamics depend on how m compares to 1 + ρ and on how λ compares to504

the critical values

λ∗ =
m− (1 + ρ)

ρ(1 + ρ) + m(2 + ρ)
, (B4)
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Figure B1: Evolutionary dynamics on the TP-edge. If m ≤ 1 + ρ, then P dominates T (A). The

same is true if m > 1 + ρ and λ ≥ λ∗ (B). If λ∗ < λ < λ∗, there is bistability with both T and

P being stable along the TP-edge (C). If λ ≤ λ∗, T dominates P (D). Full (resp. empty) circles

represent stable (resp. unstable) equilibria along the TP-edge. Parameters: ρ = 2, q = 0.5,

m = 0.8 (A), 8 (B), 20 (C) or 15 (D), and λ = 0.75 (A, B, and C), or 0.05 (D).
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and

λ∗ =
m− (1 + ρ)

(1 + ρ)(1 + 2ρ)
, (B5)

which for m > 1 + ρ satisfy λ∗ < λ∗, in the following way (fig. B1):507

1. If m ≤ 1 + ρ, then providing dominates trading, i.e., the dynamics on the TP-edge are

unidirectional leading from T to P (fig. B1A).

2. If m > 1 + ρ and λ∗ ≤ λ, then providing dominates trading (fig. B1B).510

3. If m > 1 + ρ and λ∗ < λ < λ∗, there is bistability, i.e., there exists a critical proportion of

traders xR ∈ (0, 1) such that R = (xR, 0, 1− xR) is a rest point of the replicator dynamics

and on the TP-edge the dynamics lead to P for x < xR and to T for x > xR (fig. B1C). For513

λ = 1 this critical proportion of traders is given by

xR =
(1 + ρ)

[
2(1 + ρ)2 + (3 + 2ρ)m

]
m(2 + m + 2ρ)

, (B6)

while for 0 < λ < 1 it is given by

xR =
ζ − η

√
θ

ι
, (B7)

where516

ζ = m3 − (2 + ρ− 5λ− 4λρ)m2 − (1 + ρ)(1− 7λ + 4λ2 + ρ− 4λρ + λ2ρ)m

+ (1− λ)(1 + ρ)2(2 + ρ + λρ), (B8a)

η = (1 + m + ρ) [m− (1− λ)(1 + ρ)] , (B8b)

θ = [m− (2 + ρ + λρ)]2 + 8λ(1 + ρ)m, (B8c)

ι = 4λ(1− λ)(1 + ρ)m. (B8d)

4. If m > 1 + ρ and λ ≤ λ∗, then trading dominates providing, i.e., the dynamics on the

TP-edge are unidirectional, leading from P to T (fig. B1D).
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To show the above claims, note that, as indicated in (B1), the sign of the payoff difference wP−wT519

coincides with the sign of β(1 + ρ)− mγ. On the TP-edge, y = 0 holds and hence ye = 0 and

e = xe + ze hold. Replacing the expressions for β and γ from their definitions (A23b) – (A23c) we

thus obtain522

wP − wT =s [λ + (1− λ)(xe + ze)] (1 + ρ)−m [xe + (1− λ)ze]

= λ (1 + ρ−mxe) + (1− λ)(xe + ze) (1 + ρ−m) . (B9)

As both xe and ze are uniquely determined by x on the TP-edge, the latter explicitly as

ze =
1− x

1 + m + ρ
(B10)

(by (A6c) and z = 1− x) and the former by the unique solution to the equation (cf. (A5a))

x =

(
m

xe + ze

λ + (1− λ)(xe + ze)
+ 1 + ρ

)
xe, (B11)

we may view the expression on the right side of (B9) as a function of x defined on the domain525

x ∈ [0, 1], that we denote by h(x).

For m ≤ 1 + ρ, the function h(x) is positive so that wP − wT > 0 holds for all x ∈ [0, 1]. This

establishes the result for the first of the above cases.528

In the remaining three cases we have m > 1 + ρ, which we may therefore impose as an

assumption. We structure the argument for theses cases as follows: First, we show that h(x) is

a decreasing function of x. Second, we assess how the extreme values h(0) and h(1) compare531

to zero. In particular, (i) if h(0) ≤ 0 then h(x) < 0 and hence wP − wT < 0 holds for x > 0

(trading dominates providing), (ii) if h(1) ≥ 0 then h(x) > 0 and hence wP − wT > 0 holds for

0 ≤ x < 1 (providing dominates trading), (iii) if h(1) < 0 < h(0) then there is bistability, as the534

fitness difference wP −wT is positive for x ∈ [0, xR) and negative for (xR, 1], where xR is a root of

h(x) such that h(xR) = 0.

To show that h(x) is decreasing in x, we consider the derivative of h(x), given by537

dh
dx

= −λm
dxe

dx
+ (1− λ) (1 + ρ−m)

d(xe + ze)

dx
. (B12)
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Using the inequality m > 1 + ρ, this is negative if both derivatives appearing on the right side of

(B12) are positive. To show that this is the case, we differentiate both sides of the identity (B11)

with respect to x to obtain540

1 =
dxe

dx
[1 + ρ + Am] + mxe

dA
d(xe + ze)

d(xe + ze)

dx
. (B13)

where we have used the abbreviation A = (xe + ze)/(λ+(1−λ)(xe + ze)). Using d(xe + ze)/dx =

dxe/dx + dze/dx and solving for dxe/dx we get

dxe

dx
=

1−mxe
dA

d(xe+ze)
dze
dx

1 + ρ + Am + mxe
dA

d(xe+ze)

. (B14)

A straightforward calculation verifies that we have dA/d(xe + ze) > 0. As we also have dze/dx <543

0 and A > 0, it follows from (B14) that dxe/dx > 0 holds. It remains to exclude the possibility that

d(xe + ze)/dx ≤ 0 in equation (B12). Towards this end, we observe that if d(xe + ze)/dx ≤ 0 holds,

then (B13) implies dxe/dx ≥ 1/(1 + ρ + Am). As A < 1 holds, we also have 1/(1 + ρ + Am) >546

1/(1+ ρ + m), so that dxe/dx > 1/(1+ ρ + m). As dze/dx = −1/(1+ ρ + m) it then follows that

d(xe + ze)/dx > 0 holds, yielding a contradiction. We conclude that h(x) is a decreasing function

of x.549

Next, we determine the sign of h(0). For x = 0 we have xe = 0 and e = ze = 1/(1 + m + ρ).

Therefore,

h(0) = λ(1 + ρ) +
(1− λ)(1 + ρ−m)

1 + m + ρ
(B15)

=s (1 + m + ρ)λ(1 + ρ) + (1− λ)(1 + ρ−m). (B16)

Consequently, the sign of h(0) coincides with the sign of λ− λ∗, where λ∗ is given by equation552

(B4).

In particular, the conditions m > 1 + ρ and λ ≤ λ∗ ensure that h(x) is decreasing and that

h(0) ≤ 0 holds. Consequently, under these conditions we have h(x) < 0 for x > 0, so that trading555

is dominant on the TP-edge. This establishes the fourth of the above claims.

It remains to consider m > 1 + ρ and λ > λ∗. Here we have that h(x) is decreasing and

h(0) > 0 holds. Therefore, if h(1) ≥ 0 holds, then providing is dominant on the TP-edge (i.e., we558
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are in the second of the above cases). Otherwise, i.e., if h(1) < 0 holds, then there exists a unique

value 0 < xR < 1 such that h(xR) = 0 holds and there is bistability on the TP-edge with the rest

point corresponding to xR separating the basins of attraction of T and P (i.e., we are in the third561

of the above cases). It remains to link the above conditions on the sign of h(1) to the conditions

on λ appearing in our claims.

Consider the condition for h(1) ≥ 0, ensuring that providing is dominant along the TP-edge.564

As x = 1 implies ze = 0, from (B9) we have

h(1) = λ (1 + ρ−mxe) + (1− λ)xe (1 + ρ−m) , (B17)

and from (B11) we have

λ + (1− λ)xe = {mxe + (ρ + 1) [λ + (1− λ)xe]} xe. (B18)

The unique positive solution to the quadratic implicitly defined by (B18) is567

xe =
1− λ(2 + ρ) +

√
4λm + (1 + λρ)2

2 [m + (1− λ)(1 + ρ)]
. (B19)

From equation (B17), and noting that m > (1+ ρ)(1− λ) holds (since we assumed that m > 1+ ρ

holds), the condition h(1) ≥ 0 can be then written as

xe ≤
λ(1 + ρ)

m− (1 + ρ)(1− λ)
.

Substituting equation (B19) into the above expression, rearranging, and simplifying, we obtain570

that h(1) ≥ 0 is equivalent to

√
4λm + (1 + λρ)2 (m− (1 + ρ)(1− λ)) ≤ B, (B20)

where we have defined

B = (1− λ)(1 + ρ)(1 + λρ) + m [λ(4 + 3ρ)− 1] (B21)

= −ρ(1 + ρ)λ2 + [m(4 + 3ρ) + (ρ− 1)(1 + ρ)] λ + 1 + ρ−m. (B22)
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The expression on the left hand side of (B20) is positive. B can be either negative or non-573

negative, depending on parameter values. If B is negative, condition (B20) cannot hold, and

hence h(1) < 0 must hold. If B is non-negative, taking squares of both sides of (B20) and

simplifying shows that λ ≥ λ∗ (where λ∗ is given by equation (B5)) is a necessary and sufficient576

condition for (B20) (and hence h(1) ≥ 0) to hold. In particular, no matter the sign of B, h(1) < 0

holds if λ < λ∗.

To show that h(1) ≥ 0 holds if λ > λ∗, it remains to exclude the possibility that B is negative579

when λ > λ∗. From (B21), a necessary condition for B to be negative is that

λ < λ̂, (B23)

where

λ̂ =
1

4 + 3ρ
. (B24)

We could have the following two scenarios:582

First, λ∗ ≥ λ̂. In this case, λ ≥ λ∗ implies that condition (B23) is violated, so that B is

non-negative.

Second, λ∗ < λ̂. Then, if λ̂ ≤ λ also holds, condition (B23) is violated and B is non-negative.585

It remains to show that B is non-negative if λ∗ < λ < λ̂ holds. To do so, note that B can be

written as a quadratic function in λ (equation (B22)), B(λ). In this case, B(λ) has two roots in

the positive axis, and B(0) < 0 and limλ→∞ B(λ) < 0 hold for m > 1 + ρ. Since B(λ∗) > 0 and588

B(λ̂) > 0 hold for m > 1 + ρ, this implies that B(λ) is positive in the whole interval [λ∗, λ̂].

We conclude that h(1) ≥ 0 holds if λ ≥ λ∗ and that h(1) < 0 holds if λ∗ < λ < λ∗.

To find the value xR ∈ (0, 1) such that h(xR) = 0 holds when there is bistability, first assume591

that λ = 1 holds. Then the right hand side of (B9) reduces to 1 + ρ− mxe, so that h(xR) = 0 is

equivalent to

xe =
1 + ρ

m
.

Replacing equation (A6a) into this expression (with λ = 1, x = xR, y = 0, z = 1− xR), solving594

for xR, and simplifying, yields the expression for xR given in equation (B6).
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Assuming now that 0 < λ < 1, h(xR) = 0 is equivalent to

xe =
λ(1 + ρ) + ze(1− λ)(1 + ρ−m)

m− (1− λ)(1 + ρ)
.

Replacing equation (A6a) and equation (B10) into this expression (with x = xR, y = 0, z = 1− xR),597

solving for xR, and simplifying, yields the expression for xR given in equation (B7).

HP-edge

On the HP-edge, the dynamics depend on how λ compares to the critical value λ∗ given in600

equation (B4) in the following way (fig. B2):

1. If λ ≥ λ∗, then providing dominates withholding, i.e., the dynamics on the HP-edge are

unidirectional and lead from H to P (fig. B2A).603

2. If λ < λ∗, then providers can invade H, withholders can invade P, and there exists one

further rest point S = (0, yS, 1− yS) on the HP-edge (fig. B2B). The proportion of providers

at this rest point is given by606

yS = 1− (1 + λρ)(1 + m + ρ)

2m(1− λ)
. (B25)

To show this, note that on the HP-edge, x = 0 and hence xe = 0 holds. Therefore, as indicated

in (B2), the sign of the payoff difference wP − wH coincides with the sign of β(1 + ρ) − mγ.

Replacing the expressions for β and γ from their definitions (A23b) – (A23c) and using e = ye + ze609

we thus obtain

wP − wH =s [λ + (1− λ)(ye + ze)] (1 + ρ)−m(1− λ)ze.

Replacing the expressions for ye and ze (equation (A6b) and (A6c)) with y = 1− z, and simplify-

ing, we obtain612

wP − wH =s n(y), (B26)
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Figure B2: Evolutionary dynamics on the HP-edge. If λ ≥ λ∗, providing dominates withholding

(A). If λ < λ∗, traders invade P, providers invade T, and the two strategies coexist at a polymor-

phic equilibrium S (B). Full (resp. empty) circles represent stable (resp. unstable) equilibria along

the HP-edge. Parameters: ρ = 0.5, q = 0.5, m = 5 (A), or 20 (B), and λ = 0.7 (A), or 0.2 (B).
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where

n(y) = (1 + λρ)(1 + m + ρ)− 2m(1− λ)(1− y). (B27)

Since n(1) = (1 + λρ)(1 + m + ρ) is positive, the linear function n(y) (and hence the payoff

difference (B26)) is either positive for all y ∈ (0, 1], or has a single sign change from negative to615

positive at some yS ∈ (0, 1) on the HP-edge.

A necessary and sufficient condition for n(y) to change sign is that n(0) < 0 holds. This

condition is satisfied if and only if λ < λ∗, where λ∗ is given by equation (B4). In this case,618

the point yS at which the direction of selection changes is found by solving the linear equation

n(yS) = 0 for yS. If λ ≥ λ∗, n(0) ≥ 0, then the sign of n(y) (and hence of the payoff difference

(B26)) is positive in the relevant interval. This establishes our claims.621

TH-edge

On the TH-edge, the dynamics depend on how λ compares to the critical value

λ̄ =
m(1− q)2 − (1− q2)(1 + ρ)

(1 + q)(1 + ρ)(1 + q + 2ρ)
(B28)

in the following way (fig. B3):624

1. If λ ≥ λ̄, then trading dominates withholding, i.e., the dynamics on the TH-edge are

unidirectional, leading from H to T (fig. B3A).

2. If λ < λ̄, then traders can invade H, withholders can invade T, and there exists one further627

rest point Q = (xQ, 1− xQ, 0) on the TH-edge (fig. B3B). The proportion of traders xQ at

this rest point is given by

xQ =
−ε +

√
ε2 − 4δφ

2δ
, (B29)
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Figure B3: Evolutionary dynamics on the TH-edge. If λ ≥ λ̄, trading dominates withholding

(A). If λ < λ̄, rare traders invade H, rare withholders invade T, and the two strtaegies coexist at

a polymorphic equilibrium Q (B). Parameters: ρ = 0.5, q = 0.5, m = 5 (A), or 20 (B), and λ = 0.7

(A), or 0.2 (B).
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where630

δ =
q2(1− λ)

1 + ρ
, (B30a)

ε =
m(1− q)2 − 2q(1 + ρ) [q + λ(1− q + ρ)]

2(1 + ρ)2 , (B30b)

φ = − (1− q) {m(1− q) + (1 + ρ) [1 + q + λ(1− q + 2ρ)]}
4(1 + ρ)2 . (B30c)

Moreover, xQ is decreasing in m and tends to 1/2 as m grows large.

To show this, note that on the TH-edge, z = 0 and hence ze = 0 holds. Setting ze = 0 in

equation (A22) we obtain633

wT =
xe

x
[2xe + (1− q)ye] ,

wH =
ye

y
(1− q)xe.

Replacing the expression for ye (equation (A6b)) with y = 1 − x into the above payoffs and

simplifying, we obtain

wT − wH =
xe

(1 + ρ)x
f (x) =s f (x),

as xe/[(1 + ρ)x] is always positive for x ∈ (0, 1), and where we have defined636

f (x) = 2(1 + ρ)xe + (1− q)(1− 2x).

Along the TH-edge, xe is given by equation (A6a), with

a = m + (1 + ρ)(1− λ), (B31a)

b = m(1− q)
1− x
1 + ρ

+ (1 + ρ)

[
λ + (1− λ)

1− x
1 + ρ

]
− (1− λ)x, (B31b)

c = −
[

λ + (1− λ)
1− x
1 + ρ

]
x. (B31c)

It is clear that f (0) = 1− q > 0, and that the roots of f (x) satisfy

xe = `, (B32)
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where we have used the abbreviation639

` =
(1− q)(2x− 1)

2(1 + ρ)
. (B33)

In particular, since xe ≥ 0 and ` < 0 always holds if x < 1/2, it must be that roots of f (x) can

only exist in the interval [1/2, 1].

Substituting (A6a) into (B32) we obtain642

−b +
√

b2 − 4ac
2a

= `√
b2 − 4ac = b + 2a`

b2 − 4ac = b2 + 4ab`+ 4a2`2

−c = b`+ a`2

0 = g,

where we defined

g = c + b`+ a`2, (B34)

which can be viewed as a function of x, g(x). Note that the roots of f (x) and g(x) coincide.

Moreover, since b and ` are linear in x and c is quadratic in x, g(x) is a quadratic function of x645

that can be rewritten as

g(x) = δx2 + εx + φ, (B35)

for real coefficients δ, ε, and φ. Replacing the expressions for a, b, c (given in (B31)) and the

expression for ` (given in equation (B33)), into (B34) and simplifying we obtain the values of648

these coefficients as given by (B30). Since δ > 0 and φ < 0 always hold, and by Descartes’ rule

of signs, g(x) (and hence f (x)) has exactly one positive root xQ, given by equation (B29). Since

g(0) = φ < 0, a necessary and sufficient condition for xQ < 1 is that g(1) > 0 holds. Substituting651

x = 1 into equation (B35) and simplifying, we get

g(1) =
m(1− q)2 − (1 + q)(1 + ρ) [1− q + λ(1 + q + 2ρ)]

4(1 + ρ)2 . (B36)
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From this expression, it is immediate that a necessary and sufficient condition for g(1) > 0 (and

hence f (1) < 0) is that the numerator of (B36) is positive, which obtains if and only if λ < λ̄,654

where λ̄ is given by (B28). In this case, and since f (0) > 0, f (x) is positive for x ∈ [0, xQ)

and negative for (xQ, 1]. This establishes that the condition λ < λ̄ ensures that traders and

withholders invade each other and coexist at an equilibrium frequency xQ given by equation657

(B29). Otherwise, if λ ≥ λ̄, then g(1) ≤ 0 and there is no root of g(x) or f (x) in the interval

(0, 1). In this case, it follows that f (x) is positive for all x ∈ [0, 1]. This establishes that trading

dominates withholding for λ ≥ λ̄.660

It remains to show that the proportion of traders xQ at the equilibrium Q is decreasing in the

mate encounter rate m and tends to 1/2 as m grows large. To do so, first note that, from equation

(B35), xQ is given implicitly by663

δx2
Q + εxQ + φ = 0, (B37)

where δ, ε, and φ are as given in equation (B30). Differentiating implicitly with respect to m and

simplifying we obtain

∂xQ

∂m
=

(1−q)2(1−2xQ)
4(1+ρ)2

2δxQ + ε
< 0.

The inequality follows from the fact that the denominator is positive, and that xQ > 1/2 holds666

(as shown after equation (B33)). This establishes the monotonic decrease of xQ with respect to m.

To obtain the limit result, divide both sides of equation (B37) by ε, take the limit of both sides

when m→ ∞, and simplify to obtain limm→∞ xQ = 1/2.669

Stability analysis of the non-trivial rest points

The previous analysis has identified three non-trivial rest points located on the edges of the

simplex: Q (located on the TH-edge), R (located on the TP-edge), and S (located on the HP-672

edge). Here, we discuss the local stability of these rest points.
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Q is a sink

Suppose that the rest point Q, located on the TH-edge, exists. From the analysis in Section675

TH-edge, this rest point is stable along the TH-edge as it is attracting from both T and H.

Moreover, Q is also attracting for neighboring points in the interior of the simplex. To show

this, we begin by noting that at Q the fitnesses of traders and withholders are equal, i.e., wT = wH678

holds. By (B3) this implies

β(1 + ρ)−mγ +

[
β

α
(1 + ρ) + m

]
qxe = 0. (B38)

Since α and β, defined in (A23), are positive and at Q we also have x > 0 and hence xe > 0, (B38)

implies β(1 + ρ)−mγ < 0. By (B1) this is the condition for wP < wT to hold. We then have that681

at Q the fitnesses of the three strategies satisfy wT = wH > wP, establishing our claim.

Hence, Q is a sink. In particular, it is stable.

R is saddle684

Suppose that the rest point R, located on the TP-edge, exists. From the analysis in Section TP-

edge, this rest point is unstable along the TP-edge as it is repelling from both T and P.

Moreover, R is attracting for neighboring points in the interior of the simplex. To show this,687

we begin by noting that at R the fitnesses of traders and providers are equal, i.e., wT = wP holds.

By (B1) this implies β(1+ ρ)−mγ = 0. Since q > 0 and at R we have x > 0 and hence xe > 0, this

implies β(1 + ρ)−mγ + (1 + m + ρ)qxe > 0. By (B2) this is the condition for wP > wH to hold.690

We then have that at R the fitnesses of the three strategies satisfy wT = wP > wH, establishing

our claim.

Hence, R is a saddle. In particular, it is unstable.693

S is a saddle

Suppose that the rest point S, located on the HP-edge, exists. From the analysis in Section HP-

edge, this rest point is stable along the HP-edge as it is attracting from both H and P.696
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At S we have wH = wP and, further, xe = 0 because x = 0 holds. By equations (B1) and (B2)

this implies wH = wP = wT. Consequently, we cannot use an argument similar to the one given

in Sections Q is a sink and R is saddle to infer whether or not S is attracting for neighboring699

points in the interior of the simplex. We therefore resort to center manifold theory (Kuznetsov,

2013) to show that S is a saddle point. Throughout the following argument, we will make use of

the fact that the rest point S only exists if λ < λ∗ holds (Section HP-edge) and that λ∗ < 1 holds702

(cf. (B4)), so that we may assume λ < 1.

As a first step, we observe that by using the identity z = 1− x− y the fitnesses wT, wH, and

wP as given in equations (A25) can be expressed as functions of x and y and the evolutionary705

dynamics (A21) can be reduced to the two-dimensional system

ẋ = x ((1− x)(wT(x, y)− wP(x, y))− y(wH(x, y)− wP(x, y))) (B39a)

ẏ = y ((1− y)(wH(x, y)− wP(x, y))− x(wT(x, y)− wP(x, y))) (B39b)

In terms of this system our interest is in determining the stability of the rest point (0, y∗), where

y∗ is given in equation (B25). The Jacobian of the dynamic at this rest point:708

J =

 ∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

 ∣∣∣∣∣
x=0,y=y∗

(B40)

takes the form

J = y∗(1− y∗)

0 0

C D

 , (B41)

where

C =
∂[wH(0, y∗)− wP(0, y∗)]

∂x
(B42a)

D =
∂[wH(0, y∗)− wP(0, y∗)]

∂y
. (B42b)

To obtain this result from (B39), we have used that wH(0, y∗) = wP(0, y∗) = wT(0, y∗) holds.

The argument demonstrating the stability of the rest point S along the HP-edge in Section

HP-edge implies that wH(0, y)− wP(0, y) is linear and decreasing in y. (In terms of the function711
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n(y) defined in equation (B27), we have wH(0, y)− wP(0, y) = −n(y)/((1 + m + ρ)(1 + ρ)), with

the inequality λ < 1 implying that n(y) is increasing.) Thus, we have D < 0. Consequently, the

two eigenvalues of J are given by λ1 = y∗(1− y∗)D < 0 and λ2 = 0 with associated eigenspaces714

E1 and E2 given by the scalar multiples of the eigenvectors e1 = (0, 1) and e2 = (1,−C/D). Note

that the eigenspace E1 corresponds to movements along the HP-edge, so that the negativity of

the eigenvalue λ1 reflects the stability of the dynamic along that edge. Center manifold theory717

asserts that there exists an invariant manifold of the dynamic that is tangent to the eigenspace E2

associated with the eigenvalue λ2 = 0 at the rest point (0, y∗). Further, the stability properties of

the rest point are determined by the stability properties of the dynamic along this so-called center720

manifold. In our case only displacements from the rest point into the interior of the simplex are

relevant. We now show that for a sufficiently small displacement onto the center manifold the

trajectory starting from such an initial condition will lead away from the HP-edge, indicating723

that S is a saddle.

Continuing to use the identity z = 1− x − y we can view the expressions appearing on the

right sides of equations (B1) – (B3) as functions of x and y:726

f (x, y) = β(x, y)(1 + ρ)−mγ(x, y) (B43a)

g(x, y) = β(x, y)(1 + ρ)−mγ(x, y) + (1 + m + ρ)qxe(x, y) (B43b)

h(x, y) = β(x, y)(1 + ρ)−mγ(x, y) + (1 + m + ρ)qxe(x, y)

+

(
β(x, y)
α(x, y)

− 1
)
(1 + ρ)qxe(x, y), (B43c)

From equations (B1) – (B3) and wH(0, y∗) = wP(0, y∗) = wT(0, y∗) we have f (0, y∗) = g(0, y∗) =

h(0, y∗) = 0.

The functions f (x, y), g(x, y), and h(x, y) are well-defined and continuously differentiable on729

a neighborhood of the rest point (0, y∗). Further, appealing to the same arguments as the one

leading up to equation (B27) in Section HP-edge we have that the functions defined in (B43)
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satisfy732

∂ f (0, y∗)
∂y

=
∂g(0, y∗)

∂y
=

∂h(0, y∗)
∂y

= −2m(1− λ) < 0.

Therefore, the implicit function theorem yields the existence of continuously differentiable func-

tions y f (x), yg(x), and yh(x), uniquely defined on some interval [0, ε), satisfying

f (x, y f (x)) = g(x, yg(x)) = h(x, yh(x)) = 0

on that interval as well as y f (0) = yg(0) = yh(0) = y∗. Further, the derivatives of these functions735

at x = 0 are given by

dy f

dx
(0) = −∂ f (0, y∗)/∂x

∂ f (0, y∗)/∂y
=

∂ f (0, y∗)/∂x
2m(1− λ)

(B44a)

dyg

dx
(0) = −∂g(0, y∗)/∂x

∂g(0, y∗)/∂y
=

∂g(0, y∗)/∂x
2m(1− λ)

(B44b)

dyh

dx
(0) = −∂h(0, y∗)/∂x

∂h(0, y∗)/∂y
=

∂h(0, y∗)/∂x
2m(1− λ)

. (B44c)

As g(x, y) differs from wH(x, y)−wP(x, y) only by a non-zero multiplicative constant, we also

have738

dyg

dx
(0) = −C

D
,

indicating that the center manifold is tangent to the graph of the function yg at the rest point

(0, y∗). Provided that

∂ f (0, y∗)
∂x

<
∂g(0, y∗)

∂x
<

∂h(0, y∗)
∂x

(B45)

holds, it follows that for sufficiently small xc > 0 a point (xc, yc) on the center manifold satisfies

y f (xc) < yc < yh(xc) and therefore f (xc, yc) < 0 < h(xc, yc). From (B1) and (B3) it then follows

that we have wT(xc, yc) > wP(xc, yc) and wT(xc, yc) > wH(xc, yc), implying that the population741

share x is increasing in a trajectory starting from (xc, yc).

To complete the argument, it remains to establish the inequalities in (B45). From (B43) we

have g(x, y)− f (x, y) = (1 + m + ρ)qxe(x, y). Therefore, as (1 + m + ρ)q > 0, the first inequality744
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in (B45) holds if ∂xe(0, y∗)/∂x > 0. To see that this is true, we find it convenient to use implicit

differentiation on (A10) to obtain

∂xe(0, y∗)
∂x

=

[
λ + (1− λ)

(
(1−y∗)
1+m+ρ +

y∗
1+ρ

)]
m
[
(1−y∗)
1+m+ρ + (1− q) y∗

1+ρ

]
+ (1 + ρ)

[
λ + (1− λ)

(
(1−y∗)
1+m+ρ +

y∗
1+ρ

)]
and observe that both numerator and denominator of the expression on the right side are positive.747

Similarly, we have

h(x, y)− g(x, y) =
(

β(x, y)
α(x, y)

− 1
)
(1 + ρ)qxe(x, y)

and the second inequality in (B45) holds if the partial derivative of this expression with respect

to x evaluated at (0, y∗) is positive. Applying the product rule, the derivative in question is given750

by (
β(0, y∗)
α(0, y∗)

− 1
)
(1 + ρ)q

∂xe(0, y∗)
∂x

.

As β(x, y) > α(x, y) > 0 holds and we have already established ∂xe(0, y∗)/∂x > 0, this delivers

the desired result.753

Dynamical regions

Here we build on the characterization of the dynamics on the edges from Section Dynamics on

the edges to first establish in Section Co-existence of non-trivial rest points that, for any given756

values of the parameters 0 < q < 1 and ρ ≥ 0, for generic values of the parameters 0 < λ ≤ 1

and m > 0 five different scenarios for the co-existence of the rest points R, S, and Q arise. These

are (i) none of these rest points exists, (ii) only the the rest point R exists, (iii) only the rest759

point S exists, (iv) the rest points R and Q co-exist, and (v) the rest points S and Q co-exist.

For each of these scenarios, the stability properties of the other three rest points T, H, and P

are immediate from Section Dynamics on the edges and the stability of whichever of the rest762

points R, S, and Q exist have been established in Section Stability analysis of the non-trivial rest

points. Combining this with the observation that there are no interior rest points or closed orbits

(Section The replicator dynamics has no interior rest point) this provides us with a complete765
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picture of the qualitative properties of the dynamics in each of the five different scenarios that

we present in Section Characterization of the dynamics. Finally, Section Characterization of the

dynamical regions in the main text characterizes the five different dynamical scenarios in terms768

of the inequality relationships that we employ in the main text.

Co-existence of non-trivial rest points

The existence of the non-trivial rest points depends on how λ compares to the critical values λ∗,771

λ∗, and λ̄ (given by equations (B4), (B5), and (B28)). For given values of the parameters 0 < q < 1

and ρ ≥ 0 we consider these critical values as functions of m (fig. B4) and write

λ∗(m) =
m− (1 + ρ)

ρ(1 + ρ) + m(2 + ρ)
, (B46a)

λ∗(m) =
m− (1 + ρ)

(1 + ρ)(1 + 2ρ)
, (B46b)

λ̄(m) =
m(1− q)2 − (1− q2)(1 + ρ)

(1 + q)(1 + ρ)(1 + q + 2ρ)
, (B46c)

All these three functions are increasing in m. Moreover, λ∗ is asymptotic to774

λ̂ =
1

2 + ρ
(B47)

as m grows large; λ∗ and λ∗ are equal to zero at a critical value of m given by

m = 1 + ρ; (B48)

and λ̄ is equal to zero at a critical value of m given by

m =
(1 + ρ)(1− q2)

(1− q)2 . (B49)

Since (1− q2)/(1− q)2 > 1 holds for 0 < q < 1, these critical values of m satisfy m < m.777

It was already noted in Section TP-edge that for m > m, the inequality λ∗(m) < λ∗(m) holds.

As λ∗(m) > λ̄(m) holds and it is easily verified that 0 < q < 1 implies that the derivatives of λ∗

and λ̄ with respect to m satisfy dλ∗/dm > dλ̄/dm, we also have the inequality λ̄(m) < λ∗(m) for780

all m ≥ m. It remains to investigate how λ̄ and λ∗ compare.
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Figure B4: The five disjoint and non-empty regions into which the parameter space can be parti-

tioned. The precise shape of these regions depends on the values of the parameters ρ and q, but

the general picture is qualitatively the same. Parameters: ρ = 0.5, q = 0.4.
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Consider the difference λ̄(m)−λ∗(m) for m ≥ m. First, note that λ̄(m) = 0 < λ∗(m) = q/(1+

q + ρ), and hence λ̄(m)− λ∗(m) < 0. Second, we have limm→∞ λ̄(m) = ∞, and limm→∞ λ∗(m) =

1/(2 + ρ), so that the difference λ̄(m)− λ∗(m) is positive when m is large. We then have that

λ̄(m)− λ∗(m) has an odd number of sign changes in [m, ∞). From (B46a) and (B46c), we have

that λ̄(m)− λ∗(m) also satisfies

λ̄(m)− λ∗(m) =s (1− q)2(2 + ρ)m2 − (1 + ρ) [3 + 2ρ + q(2− q)(1 + 2ρ)]m + (1 + q)2(1 + ρ)3.

(B50)

Denote the quadratic in m on the right hand side of the above expression by p(m). By Descartes’

rule of signs, p(m) and hence λ̄(m)− λ∗(m) has either zero or two sign changes in the interval783

[0, ∞). Since we have established that λ̄(m)−λ∗(m) has an odd number of sign changes in [m, ∞),

it must be that λ̄(m)− λ∗(m) has two positive roots, one in the interval [0, m) and another in the

interval [m, ∞). Moreover, at this latter root, λ̄(m)−λ∗(m) changes sign from negative to positive.786

Consequently, there exists a uniquely determined value m̃ > m such that for m ∈ [m, m̃) we have

λ∗(m) > λ̄(m), for m > m̃ we have λ∗(m) < λ̄(m), and for m = m̃ we have λ∗(m) = λ̄(m) = λ̃,

where 0 < λ̃ < λ̂ (fig. B4).789

The properties of the functions λ∗(m), λ∗(m), and λ̄(m) established above imply that the set

of feasible values for the parameters m > 0 and 0 < λ ≤ 1 can be partitioned into five disjoint

and non-empty regions as follows (where we ignore the non-generic cases in which one of the792

inequalities involving λ holds as an equality; fig. B4):

i. (a) m ≤ m or (b) m > m and λ∗(m) < λ.

ii. m > m and max(λ∗(m), λ̄(m)) < λ < λ∗(m).795

iii. m > m and λ∗(m) < λ < λ̄(m).

iv. m > m and λ < min(λ̄(m), λ∗(m)).

v. m > m and λ̄(m) < λ < λ∗(m).798
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In the first of these regions none of the non-trivial rest points R, S, and Q exists. To see

this, consider case (a) first. Here λ∗(m) and λ̄(m) are both non-positive, so that the inequalities

λ ≥ λ∗(m) and λ ≥ λ̄(m) are implied by λ > 0. The results from Section Dynamics on the801

edges then imply that none of the non-trivial rest points R, S, and Q exists. In case (b) we have

λ∗(m) > λ∗(m) and λ∗(m) > λ̄(m), so that λ is not only strictly greater than λ∗(m), but also

strictly greater than λ∗(m) and λ̄(m). The results from Section Dynamics on the edges then imply804

that in this region, too, none of the non-trivial rest points R, S, and Q exists.

In the second region, the inequality max(λ∗(m), λ̄(m)) < λ implies that neither of the rest

points S and Q exist, whereas the inequalities λ∗(m) < λ < λ∗(m) imply that the rest point R807

exists. Thus, in this region R is the only non-trivial rest point.

In the third region, we again have λ∗(m) < λ < λ∗(m), so that the rest point R exists, whereas

the rest point S does not exist. The additional inequality λ < λ̄(m) implies that, in addition to R,810

the rest point Q exists.

In the fourth region, the inequality λ < λ∗(m) implies (as λ∗(m) < λ∗(m) holds) that the rest

point R does not exist, whereas the rest point S exists. From the inequality λ < λ̄(m) , the rest813

point Q exists, too, so that in this region the rest points Q and S co-exist.

In the fifth region, the inequality again implies that the rest point R does not exist, whereas

the rest point S exists. From the inequality λ̄(m) < λ, the rest point Q does not exist, so that in816

this region S is the only non-trivial rest point.

Characterization of the dynamics

For all the five regions that we identified in the preceding section, Section Stability analysis of819

the non-trivial rest points provides us with all the information required to determine the stability

properties of whichever non-trivial rest points exist. Specifically, when they exist: (i) Q is a sink,

(ii) R is a saddle (repelling for points along the TP-edge, attracting for interior points), and (iii)822

S is a saddle (attracting for points along the HP-edge, repelling for interior points). The stability

properties of the trivial rest points T, H, and P in each of the regions are easily identified from
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Section Dynamics on the edges by using the inequalities defining the five regions. For instance,825

in the first of the above regions T is a saddle (attracting from H and repelling from P), P is a sink,

and H is a source. Together with the fact that there are no interior rest points, we thus obtain the

following characterization of the rest points:828

i. If (a) m ≤ m or (b) m > m and λ∗(m) < λ, then there is no rest point on the edges, T is a

saddle (attracting from H and repelling from P), P is a sink, and H is a source. In particular,

P is the only stable rest point.831

ii. If m > m and max(λ∗(m), λ̄(m)) < λ < λ∗(m), then R is the only rest point on an edge, T is

a sink, P is a sink, and H is a source. In particular, T and P are the only stable rest points.

iii. If m > m and λ∗(m) < λ < λ̄(m), then R and Q are the only rest points on the edges, T is a834

saddle (attracting from P and repelling from H), P is a sink, and H is a source. In particular,

P and Q are the only stable rest points.

iv. If m > m and λ < min(λ̄(m), λ∗(m)), then S and Q are the only rest points on the edges, T837

is a saddle (attracting from P, repelling from H), and P and H are sources. In particular, Q is

the only stable rest point.

v. If m > m and λ̄(m) < λ < λ∗(m), then S is the only rest point on an edge, T is a sink, and P840

and H are sources. In particular, T is the only stable rest point.

As there are no closed orbits, we further have that the dynamic always (i.e., from all initial

conditions) converges to one of the rest points, justifying our focus on the stable rest points of843

the dynamics.

Characterization of the dynamical regions in the main text

Setting λ = λ∗(m) and solving for m we find the critical value846

m∗(λ) = (1 + ρ) [1 + λ(1 + 2ρ)] (B51)
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Similarly, setting λ = λ̄(m) and solving for m we find the critical value

m∗(λ) =
(1 + ρ)(1 + q) [1− q + λ(1 + q + 2ρ)]

(1− q)2 . (B52)

Thus, the curves described by λ∗(m) and λ̄(m) can be equivalently represented by the functions

m∗(λ) and m∗(λ). Using this representation, the five dynamical regions identified above then849

correspond to:

i. m < m∗(λ).

ii. λ > λ∗(m) and m∗(λ) < m < m∗(λ).852

iii. λ > λ∗(m) and m > m∗(λ).

iv. λ < λ∗(m) and m > m∗(λ).

v. λ < λ∗(m) and m∗(λ) < m < m∗(λ).855

This is the characterization of the dynamical regions that we refer to in the main text.

Effects of varying q and ρ on the dynamical regions

Effects of varying q858

The critical encounter rate m∗ is increasing in q. Indeed, differentiating equation (B52) with

respect to q and simplifying, we obtain

∂m∗

∂q
=

2(1 + ρ) [1− q + λ(2 + 3ρ) + λq(2 + ρ)]

(1− q)3 > 0.

Effects of varying ρ861

The critical availability λ∗ (equation (B46a)) is decreasing in ρ. Indeed, differentiating λ∗ (equa-

tion (B46a)) with respect to ρ and simplifying we obtain

∂λ∗
∂ρ

=
(1 + ρ)(1 + ρ− 2m)−m2

(ρ + ρ2 + m(2 + ρ))2 ,
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which for m > 1 + ρ (and hence for m > m∗) leads to ∂λ∗/∂ρ < 0.864

Both critical encounter rates m∗ (equation (B51)) and m∗ (equation (B52)) are increasing in ρ.

Indeed,
∂m∗
∂ρ

= 1 + λ(3 + 4ρ) > 0,

and867

∂m∗

∂ρ
=

(1 + q) [1− q + λ(3 + 4ρ + q)]
(1− q)2 > 0.
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