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Abstract

When forming beliefs about themselves, politics, and how the world works more generally,
people often face a tension between conclusions they inherently wish to reach and those which
are plausible. And the likelihood of beliefs about one variable (e.g., the performance of a
favored politician) depend on beliefs about other, related variables (e.g., the quality and bias
of newspapers reporting on the politician). I propose a formal approach to combine these two
forces, creating a tractable way to study the distortion of related beliefs. The approach unifies
several central ideas from psychology (e.g., motivated reasoning, attribution) which have been
applied heavily to political science. Some concrete applications shed light on why successful
individuals sometimes attribute their performance to luck (“imposter syndrome”), why those
from advantaged groups believe they in fact face high levels of discrimination (the “persecution
complex”), and why partisans disagree about the accuracy and bias of news sources.
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The world is a complicated place. When making decisions about politics (and other domains),

we need to form beliefs about a wide variety of variables, such as the competence of politicians,

the credibility of news sources, and the likelihood a protest will succeed. Adding to the challenge,

we may not only want these beliefs to be accurate, but also prefer to reach particular directional

conclusions about some variables (Kruglanski, 1980; Kunda, 1990). This paper proposes a model

of belief formation which includes both accuracy and directional motives, allowing for tradeoffs

between these goals.1 These tradeoffs becomes particularly interesting when forming beliefs about

multiple variables, where the accuracy motive pushes us reach conclusions which are jointly co-

herent.

Take a simple example. A newspaper reports that a politician has abused her office for private

gain. A reader who likes the politician could update his beliefs about several factors. One natural

factor to learn about is the quality of the politician. The fact that the news source published a

critical article may also be informative their bias. These updates are linked: if the politician really

is corrupt there is no reason to think the newspaper is biased against her, and if the newspaper is

biased one could conclude the accusations are spurious. Put another way, conditional on reading

a critical article, beliefs about the performance of the politician and the bias of the newspaper

become positively correlated: higher beliefs about bias make higher beliefs about performance

more plausible, and vice versa. If the reader wants to continue believing the politician is doing

a good job while also maintaining a coherent worldview, he may conclude that the newspaper is

biased.

I call this phenomenon the distortion of related beliefs. Some of our beliefs – perhaps a small

fraction – are intrinsically important enough that we want to reach a certain conclusion about their

value. We want to believe that we are capable and decent, that our friends and favored relatives

1As discussed in section 1, this is not the first model to include tradeoffs between accuracy and directional motives
or related goals (e.g., Akerlof and Dickens, 1982; Bénabou and Tirole, 2002; Penn, 2017; Acharya, Blackwell and
Sen, 2018).
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share these traits, and that the groups we belong to are on the right side of conflicts. A much wider

set of beliefs are related to those we care about, such as the accuracy of every test we have taken,

whether scientific evidence backs our favored party’s policy positions, or the veracity of a nasty

rumor about a close friend.

To form a coherent and plausible view of the world writ large, we may distort the auxiliary

beliefs which we do not intrinsically care about if they are related to a core belief over which

we do have a desired conclusion. To formalize this claim, I propose a general model of belief

formation that supposes people face an accuracy motive for all of their beliefs, but directional

motives only apply to core beliefs.

The bulk of the paper applies this idea to several concrete problems. In each, an agent observes

a signal which is driven by one factor he intrinsically cares about, and other factors he does not

intrinsically care about. I use two main interpretations throughout. First, to connect with many

seminal ideas and results from social psychology, the signal can represent a test of the agent’s

ability. Second, to illustrate the value for political applications (in addition to those which flow

from the first interpretation), the signal can represent a news article or other source of information

about the performance of a politician. To avoid juggling too much in the introduction, I primarily

describe the models in terms of the first application, and then highlight the political implications.

In the first model, the signal is only a function of the agent’s ability and an error term (“luck”).

If the agent has directional motives to think more highly of his ability than the belief derived by

Bayes’ rule would dictate, he can respond by upwardly distorting his self-assessment of ability,

albeit at a cost to the plausibility of the view he settles on. As a byproduct of this distortion,

he also concludes that he was less lucky than a neutral observer would think. Conversely, if the

agent does not want his self-assessment of ability to be too high but is very successful, he may

conclude that he just got lucky as a means to distort his belief down to a more comfortable level.

The latter possibility provides an explanation for the “imposter syndrome” phenomenon common

among successful people (Clance and Imes, 1978).
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Next, suppose success is also affected by the level of discrimination faced by the agent. So, he

now forms a joint inference about both his ability and the degree of discrimination faced by people

like him (in addition to luck). Importantly, the Bayesian posterior beliefs about ability and discrim-

ination are positively correlated: for a fixed level of success, those facing more discrimination are

generally higher ability. So, for example, it is more plausible for a mediocre performer to conclude

that he has high ability but was held back by discrimination than it is to conclude that he has high

ability and didn’t face discrimination but somehow still did not perform well. As a result, even if

the agent does not intrinsically care about his conclusion about how much discrimination he faces

(i.e., it is auxiliary), this belief will get distorted as well in order to reach the desired conclusion

about ability while maintaining a reasonably plausible worldview.

This provides an explanation for why members of objectively advantaged groups can develop

a “persecution complex,” believing they are the true victims of discrimination. In the political

context, this model highlights how those with different directional motives will reach different

conclusions about the bias of news sources, consistent with large empirical literature on the “hostile

media” phenomenon (starting with Vallone, Ross and Lepper 1985; see Perloff 2015 for a recent

review).

Finally, suppose the agent is also uncertain about the degree to which success is driven by

ability or other factors. Those who perform well tend to believe the outcome was primarily driven

by their ability (or hard work). Those who do less well are tempted to conclude the test was not

accurate. However, all face a general tendency to explain their own performance (but less so that of

others) to outside factors, as this leads to a more pliable belief about ability. That is, many claims

and empirical results about attribution arise naturally from this setup (e.g., Kelley, 1967; Ross,

1977; Kunda, 1987). The payoff of the dual interpretations here is to suggest a political analog

of the fundamental attribution error: the strongest partisans (and politicians themselves) tend to

be skeptical about the accuracy of all “neutral” media, and may place more trust in news sources

which are in fact inaccurate.
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The primary aim of the paper is synthetic. Many “non-rational” ideas about belief formation

from psychology which have been applied heavily to political science and economics arise nat-

urally when cast as a maximization problem with accuracy and directional goals. Rather than

arguing any particular empirical result is better explained by this approach than existing work,

my main contention is that an unusually wide swath of results spanning disciplines are all natural

consequences of a common maximization problem.

1 Related models

This section briefly describes related formal models of non-standard belief formation; discus-

sion of theoretical and empirical work on the particular applications (e.g., motivated reasoning,

discrimination, partisan interpretation of facts, attribution) is deferred until the approach is em-

ployed in that area.

Several formal models in economics and political science explore potential causes or implica-

tions of non-Bayesian formation of beliefs (e.g., Rabin and Schrag, 1999; Gerber and Green, 1999;

Patty and Weber, 2007; Minozzi, 2013; Levy and Razin, 2015; Ortoleva and Snowberg, 2015; Og-

den, 2016; Stone, 2017); see Bénabou and Tirole (2016) for a recent review. Even small deviations

from standard Bayesian belief formation can have major implications in canonical models of politi-

cal accountability (Patty and Weber, 2007; Woon, 2012; Ashworth and Bueno De Mesquita, 2014),

party competition (Ogden, 2016; Nunnari and Zápal, 2017), and coordination (Little, 2017).

In some of this work, agents trade off material gains to hold more “pleasant” beliefs: that

their job is not dangerous (Akerlof and Dickens, 1982), their investments are likely to pay off

(Brunnermeier and Parker, 2005), or that their accomplishments stack up well compared to others

(Penn, 2017). Forming incorrect beliefs about ones’ ability (Bénabou and Tirole, 2002), valuation

of goods (Heifetz and Segev, 2004), or cost of fighting (Little and Zeitzoff, 2017), can lead to

higher material payoffs by solving time-inconsistency or commitment problems.
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The basic innovation here is to introduce a general approach which captures the tradeoff be-

tween reaching an (arbitrary) desired conclusion which is still relatively likely in the Bayesian

posterior. More importantly, by treating the tradeoff between accuracy and directional motives

in a simple and reduced-form manner, the approach here allows for a tractable treatment of how

distortions of beliefs about one variable affect distortions of beliefs about other variables. That is,

rather than treating belief distortions about different facets of the world individually, the approach

proposed here allows us to model how any belief can become distorted.

2 The Main Idea

Here is a general model for how people form conclusions about themselves and other aspects

of the world. Let θ = (θ1, ..., θn) ∈ Θ ⊆ Rn be a vector of random variables. An agent ob-

serves a signal s, which provides information about θ. In the applications here, the signal will be

unidimensional and correspond to success at a task (including a politician’s performance in office).

The variables θ and s are drawn from a joint prior probability distribution f(θ, s). An actor in

a standard model would form a conditional posterior belief about θ after observing s using Bayes’

rule, write this fθ|s(θ|s).

Two problems may arise for someone holding this Bayesian belief. First, the posterior belief

may be a complicated object. Even when imposing a strong structure like joint normality, he must

keep track of nmeans, n variances, and n(n−1)/2 covariances. Second, this posterior distribution

may place heavy weight on beliefs which he finds unpleasant: that he is low ability, that his favored

political party has governed poorly, or that someone close to him has behaved improperly.

To reduce these problems, suppose the agent then forms a “conclusion” about the value of θ.

Intuitively, the conclusion refers to his “best guess” about the state variable θ. In doing so, he faces

two motivations, which I label with the terminology from Kunda (1990). First, he would like this

conclusion to be accurate. A natural way to model this is to assume he prefers picking conclusions
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which receive a relatively high likelihood or density in the Bayesian posterior.2 Second, he may

have a directional motive to reach certain conclusions.

Formally, an optimal conclusion θ̃ is a solution to:

θ̃ ∈ arg max
θ

log(fθ|s(θ|s)) + v(θ). (1)

The log(fθ|s(θ|s)) term captures the accuracy motive. Logarithmic transformations have several

desirable properties for this problem. Most importantly, if two variables are independent in this

posterior belief, a logarithmic transformation ensures the overall accuracy motive is additively

separable in the two variables. So, the conclusion about one can affect the optimal conclusion

about the other via the accuracy motive if they are not statistically independent. (See the Appendix

for a formal statement and further discussion.)

The v term represents the intrinsic value for holding conclusion θ, where depending on the con-

text several assumptions about the v term may be natural. The models here take this value function

as exogenous, though section 6 contains discussion of applications which would microfound the v

function.

An agent who cares only about accuracy is a special case of the model where the v term drops

out. Such an agent picks a conclusion at the mode of the posterior distribution, analogous to

Maximum Likelihood Estimation.3

A natural definition of the distortion of a conclusion is how far it lies from what one with no

directional motive would conclude:
2This formulation is different that the probabilistic formalizations of “coherentism” as reviewed in Olsson (2017),

where the coherence of a set of beliefs is equal to the joint probability of their truth divided by either the probability
of (1) at least one of them being true or (2) the product of the marginal probability of each being true.

3In this analogy, including the directional motive is like penalized Maximum Likelihood Estimation.

6



Definition The distortion of conclusion θ̃ is:

d(θ̃) = θ̃ − arg max
θ

fθ|s(θ|s).

At the other extreme, an agent who only cares about the directional motive is a special case

where the accuracy term drops out or is constant. The solution to (1) is then to simply pick the

value of θ which maximizes v independent of the signal. Here I primarily focus on the more

interesting case where both motives matter.

What is going on here As with any formal model of belief formation or decision-making, we

need not believe people literally think through this optimization problem when forming conclu-

sions. One interpretation of the optimization problem is that at the moment of forming a conclu-

sion, the agent does think carefully through what the Bayesian belief would be, then only holds

onto the conclusion as a summary for later use.4 In this sense being a “motivated reasoner” can be

even more computationally challenging than only following accuracy motives.

Alternatively, a frequent defense of assuming people form beliefs by Bayes’ rule is that if the

deviations in doing so are random (with mean zero) then they will cancel out in a large population.

Of course, substantial empirical evidence indicates that modest and even major departures from

this ideal are common and systematic (see Rabin, 1998, for an overview). The notion of forming

a conclusion used here generalizes this argument by allowing deviations for Bayesian beliefs to

be biased in a predictable direction; in particular, towards beliefs that individuals want to hold

for reasons outside of plausibility. This same technical approach could be used to model other

motives for belief formation such as not wanting to change one’s belief from the prior; see Acharya,

Blackwell and Sen (2018) for a model of cognitive dissonance in this spirit.

Importantly, in this interpretation we need not imagine that the agent consciously forms the

4See Mullainathan (2002) and Fryer Jr, Harms and Jackson (2013) for further discussion of this idea in other
models of memory.
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Bayesian posterior and then pays a cost to deviate from it, though using language like this will

be useful in describing how the calculations work. More generally, the optimization problem as

specified here serves as first approximation for any process of belief formation where both accuracy

and some directional motive are at play.5

In either case, treating belief formation as a maximization problem is more in line with “System

2” or conscious thinking, rather than a “System 1” or unconscious process (see chapter 1 of Lodge

and Taber, 2013, for an overview). So, the model is less obviously suited to explaining phenomena

like seemingly irrelevant stimuli affecting political beliefs. However, it may be useful to think of

implicit attitudes, affect, and the like as factors that drive the directional motive when consciously

forming beliefs.

Core and auxiliary beliefs A natural way to define which beliefs “matter” for the directional

motive is:

Definition θi is an auxiliary variable if v is constant in θi. θi is a core variable if it is not an

auxiliary variable.

I refer to beliefs or conclusions about core (resp. auxiliary) variables as core (resp. auxiliary)

beliefs or conclusions.

General characteristics of optimal conclusions An immediate consequence of the core/auxiliary

definition is that the conclusion about auxiliary variable θi will always be the value that maximizes

fθ|s(θi, θ̃−i|s). That is, the most likely value of θi given the signal and the conclusion about other

variables (θ̃−i). If θi is independent of the other variables conditional on s, this is the mode of

the marginal posterior distribution of θi. However, if θi is related to other beliefs, the conclusion

chosen will depend on the conclusion about the state of the world writ large.
5The appendix contains a discussion of two other potential ways to model belief formation with accuracy and

directional motives (and the drawbacks of these alternatives). In one, agent maintains a “complete” belief distribution
with a penalty associated with deviations from the Bayesian posterior, and the second measures the accuracy motive
as the agent trying to minimize the “error” in his conclusion.

8



For core beliefs, there will be tradeoffs between these goals. To formalize, write the a function

as waa0(·) where a0 is a “baseline” accuracy motive and wa > 0 is a scale parameter which

measures how important this factor is. Similarly, write the v function as wvv0(·) for wv > 0.

Taking comparative statics on these scale parameters:

Proposition 1. i. The plausibility of the optimal conclusion (fθ|s(θ̃|s)) is increasing in wa and

decreasing in wv, and

ii. the directional value associated with the optimal conclusion (v0(θ̃)) is decreasing in wa and

increasing in wv.

Proof See the appendix.

Naturally, when the agent cares more about the accuracy motive, he will shift to a more likely

conclusion. Since the optimal conclusion requires tradeoffs on the margin, this also implies that he

picks a conclusion which he intrinsically likes less. Conversely, as the agent cares more about the

directional motive, he will pick a conclusion he intrinsically likes better at the cost of being less

realistic.

If interpreting the model as describing not just what people believe but what they say they

believe, this is consistent with empirical results that partisan differences in beliefs about political

facts diminish when respondents are given monetary incentives for correct answers (Bullock et al.,

2015; Prior et al., 2015).6 Similarly, if respondents pay a psychic cost for misreporting their true

beliefs, then these monetary incentives could change how they process information in the first

place.

We now turn to some more specific applications.

6However, these studies do not find substantial increases in the accuracy of responses with monetary incentives.
This is consistent with respondents in different parties having similar and uninformative beliefs about the questions
they are asked, but different v functions. If so, putting more weight on the accuracy motive will lead to a convergence
of reported beliefs, though not necessarily to a detectably more accurate belief.
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3 Application 1: Success, luck, and imposter syndrome

Consider an agent forming a conclusion about a quality θ ∈ R. He starts with a prior belief on

θ which is normal with mean µθ and variance σ2
θ . He then observes a noisy signal of the quality,

given by:

s = θ + ε (2)

where ε is normally distributed with mean 0 and variance σ2
ε , independent of θ.

In this and later models, I employ two interpretations of this signal. In the first, θ is the agent’s

own ability on some dimension (intelligence, skill at his job, etc.). Here a natural way to view s

is a score on a test or success at a task affected by the ability in question. For this interpretation I

refer to ε as “luck”. Call this the ST (“self test”) interpretation.

For the second interpretation, θ will refer to the performance of a politician who the agent is

invested in supporting or opposing. Here the signal could naturally correspond to a news story

about the politician, or an opinion about the politician presented by a friend. To keep the directions

of the directional motive aligned between interpretations, I primarily focus on the case where the

politician is favored by the agent. Call this the PN (“political news”) interpretation.

The Bayesian belief The standard Bayesian update on θ conditional on s is normally distributed

with a mean that is a weighted average of the prior and the signal:

µBθ (s) ≡ σ−2θ
σ−2θ + σ−2ε

µθ +
σ−2ε

σ−2θ + σ−2ε
s

and variance σ2
θ ≡ 1

σ−2
ε +σ−2

θ

. So, fθ|s(θ|s) = 1
σθ
φ
(
θ−µBθ (s)

σθ

)
, where φ is the PDF of a standard

normal random variable.

Since the mode of the Bayesian belief is the same as the mean, the distortion of the quality
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conclusion is d(θ̃) = θ̃−µBθ (s). Rearranging (2), any signal and conclusion about the quality imply

a conclusion about the error term: ε̃ = s− θ̃. The conclusion about luck contains a distortion of the

same magnitude, just in the opposite direction: ε̃ = s−(µBθ (s)+d(θ̃)) = s−µBθ (s)−d(θ̃). So, any

upward distortion of the quality conclusion entails a downward distortion of the luck conclusion

with equal magnitude. Conversely, a downward distortion of the quality conclusion mechanically

requires an upward distortion of the conclusion about luck.

The optimal conclusion The “log-likelihood formulation” of the accuracy motive is particularly

convenient when combined with normal distributions, as the accuracy motive becomes a quadratic

function centered at µBθ (s):

log(fθ|s(θ|s)) = k1 −
(θ − µBθ (s))2

2σ2
θ

, (3)

where k1 collects terms which are not a function of θ and hence drops out in the maximization

problem. (The subscript is to differentiate from subsequent constants.)

For now, I only assume that v is continuous and differentiable. The first order condition for θ̃

is then:

v′(θ̃) =
θ̃ − µBθ (s)

σ2
θ

(4)

Since the mean of the Bayesian posterior distribution is also the mode, the distortion of the

belief is d(θ̃) = θ̃ − µBθ (s). Substituting this into (4) and rearranging gives an expression for the

optimal distortion:

d(θ̃) = v′(θ̃)σ2
θ (5)

Using the ST interpretation, the agent will have a higher self-assessment than the Bayesian mean
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if and only if he prefers a higher self-assessment (on the margin). The magnitude of the distortion

is increasing in the strength of the directional motive (v′(θ̃)) and the variance in the posterior belief

about ability (σθ). The latter implies that conclusions are more distorted over characteristics where

the agent has little information.

More detailed results about distortion in the agent’s conclusion depends on the shape of the v

function. Consider two plausible cases.

Case 1: Higher self-evaluation is always better First, suppose the agent always wants a higher

conclusion about the quality, but with diminishing marginal returns:

Proposition 2. If v is increasing and concave, then for the optimal conclusion solving (4):

i. θ̃ > µBθ (s),

ii. θ̃ is increasing in s, but

iii. d(θ̃) is decreasing in s.

Proof Parts i-ii follow from implicitly differentiating (4). For part iii, consider any s1 < s2,

and let θ̃1 and θ̃2 be the corresponding optimal conclusions. By part ii and the concavity of v,

v′(θ̃1) > v′(θ̃2), and, by (4), d(θ̃1) = θ̃1 − µBθ (s1) > θ̃2 − µBθ (s2) = d(θ̃2)

So, the conclusion moves in the “correct” direction as the signal of quality changes, but distor-

tion relative to the Bayesian posterior is greater when the signal is low. More on this below.

Case 2: Don’t get too cocky When forming beliefs about one’s ability or the performance of a

favored politician, it is probably unreasonable to assume v is globally decreasing, i.e., the agent

always prefers lower conclusions. However, using interpretation ST , suppose the agent is uncom-

fortable thinking his ability is “too high,” either for internal reasons or to not come off as arrogant.

Another plausible reason for this directional motive is that being too overconfident may lead to

poor decisions. In either case, a natural way to model to capture this premise is to assume v is a

single-peaked function:
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Figure 1: Optimal conclusions as a function of the Bayesian mean with increasing and concave
(left), and single-peaked (right) v function. In both panels, the black curve represents a case with
a higher posterior variance (σ2

θ) than the grey curve.
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Proposition 3. Suppose v is continuous and differentiable, and there exists a θ∗ such that v′(θ) > 0

for θ < θ∗ and v′(θ) < 0 for θ > θ∗. Then there exists an s∗ such that for s < s∗, the optimal

conclusion solving (4) is θ̃ ∈ (µBθ (s), θ∗), and for s > s∗, θ̃ ∈ (θ∗, µBθ (s))

Proof See the appendix.

Intuitively, the agent always forms a conclusion between what he intrinsically wants to believe

and what a Bayesian would think of his ability. So, high performers will think they are not as good

as they really are, or, equivalently, think they just got lucky. Low performers will think they are

better than they really are.

Summary and empirical discussion Figure 3 summarizes how the conclusions about quality

diverge from the Bayesian posterior mean for the two cases for the v function. In both panels, the

dashed line is the 45-degree line, so conclusions further from this line represent larger distortions.
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The black curves correspond to a case with more uncertainty in the posterior belief (higher σ2
θ) and

the grey curves represent a case with less uncertainty.

The left panel illustrates the case where higher conclusions are always better but with dimin-

ishing returns (v increasing and concave). The distortions are largest for low signals; i.e., those

performing poorly on the test or reading a highly negative article about the favored politician. Dis-

tortions are smaller for those who do well, eventually the conclusion converges to the Bayesian

mean. For any µBθ (s), the distortion of the conclusion is greater with more uncertainty, i.e., a

higher σ2
θ.

More generally, those learning unpleasant information form the most distorted beliefs. There is

a pessimistic element to this result: getting people to accept facts far from what they want to believe

will always be a challenge. Still, there is a silver lining. Everyone is responsive to the information

they receive, in the sense that higher signals lead to higher conclusions about whatever the signal

indicates. Learning happens and “in the right direction”, just not as far as a Bayesian purist would

predict or hope. (See Hill 2017 for empirical evidence consistent with this prediction close the

PN interpretation.)

The right panel illustrates the case where v is single peaked, and the self-assessment the agent

intrinsically likes best is θ∗ = 1. In this case, the conclusions are above the Bayesian mean for

µ < θ∗, and below for higher means. Again, the magnitude of this deviation is higher when σ2
θ is

high.

With interpretation ST , this provides a simple theory for the origin of “imposter syndrome”

among successful people (Clance and Imes, 1978). Those who perform well have a high Bayesian

posterior about θ and may recognize that others will interpret this to mean they are high ability.

To form a more comfortable assessment, they explain their success by ascribing it to other factors

(“I just got lucky”), even if they realize others with the same data would conclude that they really

have high ability.

If our agent accepts that he is of lower ability than a neutral observer would conclude, then he
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should expect that future signals of his performance should be lower than his past performance.

So, once his conclusion is formed in this manner, it is in a sense “correct” to fear that he will be

revealed as an “imposter” by future signals.

To be somewhat formal about this, suppose the agent truly has an ability θ = 2 (think two

standard deviations above the mean). He starts with a weak prior about his ability, then observes

an accurate signal s1 = 2, generating a Bayesian posterior centered around µBθ (2) = 2. The desire

to not seem too full of himself pushes his conclusion down to θ̃ = 1.7 If he thinks that the next

signal will be close to his own conclusion about ability, he will expect that the second signal will

be around s2 = 1. If the two signals are weighted equally, this will lead the Bayesian posterior to

go down from 2 to µBθ (s1, s2) = 1.5. However, note that his premise that s2 will likely be around

1 is incorrect: his true ability is θ = 2. So if the second signal is also typical, the neutral observer

will be unsurprised by the agent’s continued success, though he himself will just expect that the

third (and later) signals will reveal him to be not as good as previously thought.

The model also suggests a connection between imposter syndrome, overconfidence, and gen-

der. Since men are more overconfident than women in a wide variety of contexts (e.g., Barber and

Odean, 2001; Johnson et al., 2006; Ortoleva and Snowberg, 2015), this connection could explain

why imposter syndrome is concentrated among successful women (empirical evidence on this front

is mixed but generally in the direction that women are more apt to exhibit imposter feelings, see

Cusack, Hughes and Nuhu 2013). In particular, suppose the overconfidence of men is driven (for

whatever reason) by a stronger desire for a high self-assessment. This could be formalized by

assuming men and women both have a single-peaked v function, but men tend to have a higher

ideal (θ∗). If so, then (1) men will have a higher upward distortion of their conclusion about their

ability, and (2) women (particularly successful ones) will have a higher upward distortion in their

conclusion about how lucky they were, and a greater fear that their future performance will not live

up to the past.

7This would be the optimal conclusion if, for example v(θ) = −θ2 and σθ = 1/2; see (4).
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4 Application 2: Discrimination, bias, and the “persecution complex”

While the model in the previous section considers the relationship between beliefs about two

factors – in interpretation ST , ability and luck – these variables are connected by a simple account-

ing identity. Luck was just the difference between success and ability, so increasing the conclusion

about ability forced a change in the conclusion about luck. What happens if there are other factors

which influence the signal?

When considering success in life, one of these factors is the degree of discrimination we face.

Some groups face more discrimination than others, but there can be strong disagreement about

which groups are disadvantaged and to what degree. For example, substantial empirical evidence

indicates that women and ethnic and religious minorities in the United States are subject to sub-

stantial discrimination in labor markets and other contexts (e.g., Riach and Rich, 2002; Bertrand

and Mullainathan, 2004). However, a common trope on conservative media is a complaint that

“if you’re a Christian or a white man in the USA, it’s open season on you.”8 And part of their

audience agrees: in a recent survey, Evangelical Christians on average report that Christians face

more discrimination in the United States than Muslims,9 a belief which other religious groups do

not hold.

In the PN interpretation, the natural analog to discrimination is bias of the news source. A

large literature studies the reality and perceptions of bias in news sources (e.g., Groseclose and

Milyo, 2005; Gentzkow and Shapiro, 2006). The strand most related to the model here has shown

that people generally think the media is biased against their own positions (Vallone, Ross and

Lepper, 1985), particularly those who are strong partisans and highly involved in politics (Eveland

and Shah, 2003). Such views of bias are not limited to the media: those more invested in politics

in the United States perceive more institutional bias against their preferred party (Davidai and

8http://www.wonkette.com/582723/bill-oreilly-hillary-clinton-to-murder-all-
the-poor-white-christian-men-goodbye-america/

9http://www.patheos.com/blogs/godisnotarepublican/2015/07/please-stop-with-
the-christian-persecution-complex-youre-embarrassing-the-faith/
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Gilovich, 2016).

Why might such disagreements arise? To explore this question, write the signal of success as:

s = θ − δ + ε

where δ represents the discrimination against the agent or the new source bias against the politician.

Suppose θ, δ, and ε are (in the prior) independent and normally distributed with means µθ, µδ, and

0; and variances σ2
θ , σ2

δ , and σ2
ε .

The Bayesian belief The signal provides information about both the agent’s ability and how

much discrimination he faces. As derived in the appendix, the joint distribution of (θ, δ) conditional

on s is jointly normal with mean vector:

(µBθ (s), µBδ (s)) =

(
µθ(σ

2
δ + σ2

ε ) + (s+ µδ)σ
2
θ

σ2
θ + σ2

δ + σ2
ε

,
µδ(σ

2
θ + σ2

ε )− (s− µθ)σ2
δ

σ2
θ + σ2

δ + σ2
ε

)
(6)

and covariance matrix:

Σ =


θ δ

θ
σ2
δσ

2
θ+σ

2
εσ

2
θ

σ2
θ+σ

2
δ+σ

2
ε

σ2
δσ

2
θ

σ2
θ+σ

2
δ+σ

2
ε

δ
σ2
δσ

2
θ

σ2
θ+σ

2
δ+σ

2
ε

σ2
δσ

2
ε+σ

2
δσ

2
θ

σ2
θ+σ

2
δ+σ

2
ε

 ≡
 σ2

θ Cov(θ, δ)

Cov(θ, δ) σ2
δ .

 (7)

The individual updates resemble standard unidimensional learning models, as s is a noisy signal

of θ with “error term” δ + ε, and also a noisy signal of −δ with “error term” θ + ε.

More important for our purposes, even though θ and δ were independent in the prior, condi-

tional on s they have a positive covariance (Cov(θ, δ) > 0). This is because for a fixed degree of

success, higher ability will generally be associated with facing more discrimination (“if she suc-

ceeded despite the obstacles, she must be really good”, “even the liberal New Republic...”). The
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correlation between the two variables conditional on s is

ρ =
Cov(θ, δ)

σθσδ
=

σδσθ√
(σ2

θ + σ2
ε )(σ

2
δ + σ2

ε )
, (8)

which is strictly positive, decreasing in σε, and approaches 1 as σε → 0.

The optimal conclusion Suppose the belief about the quality θ is core, but discrimination/bias

is auxiliary. The latter is not obviously so. Returning to our definition, assuming beliefs about

discrimination are auxiliary implies that people do not intrinsically care about the conclusion they

reach in isolation. For the ST interpretation, one may object that people really do care about their

beliefs about whether people like them face discrimination. Similarly, for the PN interpretation,

one could argue that beliefs about liberal media bias is a central to conservative identity in the

United States. Both objections are fair; however, the point of the modeling that follows is that

these beliefs can become distorted even when considering the “hard case” where people don’t care

about discrimination or media bias in and of itself, but because these beliefs affect their worldview

more generally. Put another way, the fact that people act as if they want to hold certain beliefs

about whether they face discrimination may be driven solely by the desire to protect other beliefs

which are more central to their identity.

With v a function of θ but not δ, the optimal joint conclusion is:10

(θ̃, δ̃) ∈ arg max
(θ,δ)

log(fθ,δ|s(θ, δ|s)) + v(θ). (9)

The accuracy term simplifies to:

log(fθ,δ|s(θ, δ|s)) = k2 −

(
(θ−µBθ (s))2

σ2
θ

− 2ρ(θ−µBθ (s))(δ−µBδ (s))

σθσδ
+

(δ−µBδ (s))2

σ2
δ

)
2(1− ρ2)

, (10)

10As above, this conclusion corresponds to a luck conclusion ε̃ = s − θ̃ + δ̃. Analogous results hold if writing the
maximization problem as forming a joint inference about θ and ε.
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where k2 collects the terms which do not depend on θ and δ and hence do not affect the optimiza-

tion. Conveniently, (10) is quadratic in both θ and δ.

Since δ only enters the accuracy term, the optimal conclusion about discrimination requires

that the derivative of (10) with respect to δ is equal to zero (at θ = θ̃), which simplifies to:

δ̃ = µBδ (s) +
ρσδ
σθ

(θ̃ − µBθ )

⇔ d(δ̃) =
Cov(θ, δ)

σ2
θ

d(θ̃) (11)

So, the distortion in the conclusion about discrimination/bias is a fraction times the distortion

about the core quality θ. Further, this fraction is the ratio of the covariance between θ and δ and the

variance of θ, i.e., the hypothetical regression coefficient for data drawn from the agent’s posterior

belief about the two variables.

Figure 4 illustrates why. Each panel plots level curves of the Bayesian posterior belief about

the two variables, with higher density in curves closer to the center black square (at the mean). The

grey (lower) dots are points on this posterior density if only distorting the ability belief by amount

d(θ) (and d(δ) = 0). However, the agent can form a belief which is more plausible (at a level curve

closer to the mean) by also upwardly distorting the belief about δ. For any conclusion about θ,

the agent will pick the δ which maximizes the density conditional on both θ and s. Visually, this

is represented by the solid points which lie tangent to the level curves, meaning higher or lower

conclusions about discrimination would be less plausible (for the fixed ability conclusion). So,

the ratio of these distortions is always equal to the slope of the regression line: Cov(θ,δ)

σ2
θ

. The left

panel illustrates a case where this covariance is low, and hence the distortion of the belief about

discrimination is small. In the right panel, the covariance is higher, and hence the discrimination

belief gets distorted nearly as much as the ability belief.

Importantly, this implies that the degree to which auxiliary beliefs get distorted is directly

tied to how closely related they are to core beliefs. With the ST interpretation, this means that
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Figure 2: The optimal distortion of the belief about discrimination as a function of the distortion
of the belief about ability. Each panel contains a contour plot of a posterior belief about θ and δ. In
the left panel, the posterior covariance between the beliefs is 0.35, and in the right panel it is 0.7. In
both panels, for a fixed distortion of θ indicated by the vertical dotted line, the optimal conclusion
is at the highest level curve of the posterior belief, which is the point along the vertical line tangent
to the level curves.

µθ µθ+ d(θ)

µδ

µδ+ d(δ) ●

µθ µθ+ d(θ)

µδ

µδ+ d(δ) ●

if discrimination does not drive much of the variance in life success, then there is little reason

to distort beliefs about it. However, if believing that one faces high degrees of discrimination

does make much more confident self-assessments plausible, beliefs about discrimination can be

highly distorted. For the PN interpretation, this means that the belief about the bias of a news

source will get distorted more when the reporting induces a strong correlation between the bias

and performance of the politician. Revisiting (8), this will tend to be true when there is little noise

in the signal (σε is small), which could be true when the news source has reported a lot on the

politician in question.

To complete the derivation of the optimal assessment, plugging the optimal conclusion about δ
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as a function of the conclusion about θ into (10) and simplifying gives:

log

(
fθ,δ|s

(
θ, µBδ (s) +

Cov(θ, δ)

σ2
θ

(θ − µBθ )

∣∣∣∣ s)) = k3 −
(θ − µBθ (s))2

2σ2
θ

for a constant k3. Other than this constant (which differs from k1 in (3), but also drops out when

maximizing with respect to θ), this expression is the same as the log likelihood of the marginal

distribution of θ. The optimal conclusion about θ (given the relationship between the optimal

conclusions of θ and δ) now solves:

v′(θ̃) =
θ̃ − µBθ
σ2
θ

. (12)

So, the distortions on the belief about ability/the performance of the politician are the same as the

model in the previous section, just with a different posterior variance for the belief about ability.

Summarizing:

Proposition 4. The optimal conclusion solving (9) is equal to the Bayesian belief plus distortions

which are characterized by:

d(θ̃) = v′(θ̃)σ2
θ (13)

d(δ̃) = v′(θ̃)Cov(θ, δ) (14)

Proof Follows immediately from (11) and (12).

This formulation highlights two factors that determine the magnitude of distortions of auxiliary

beliefs: how much the agent cares about his conclusion about the core variable θ (v′(θ̃)), and how

closely related this belief is to the auxiliary variable (Cov(θ, δ)).

Summary and empirical discussion Revisiting the motivating example, diverging views of

which groups face discrimination can arise from a common desire among all individuals to think
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they are of high ability. The model also suggests who will believe most strongly that they face dis-

crimination. Inspection of (6) reveals that, for purely Bayesian reasons, those with a higher prior

on their ability will tend to believe they face more discrimination for a fixed signal. On the other

hand, if this prior belief is correct, those with a higher prior belief will observe higher signals (as-

sociated with less discrimination). Combining, those observing signals worse than they expected

will tend to believe they face more discrimination. In a dynamic setting where discrimination and

luck evolve over time, this will be precisely people who had “good” draws of δ and ε in the past;

i.e., those who were previously privileged.

Further, when there are diminishing marginal returns to higher conclusions about ability (i.e., v

is concave) this distortions will be strongest among the unsuccessful. So, we may expect to see the

strongest and most distorted beliefs about discrimination among the less successful of previously

privileged group, a potentially testable hypothesis. In particular, the conclusion by white Christian

males that they are held back by discrimination may be particularly alluring for those in this group

who haven’t succeeded for other reasons (ability, luck, etc.).

More broadly, can “blaming failure on discrimination” lead to higher self-evaluations? In a

sense, yes. If the presence of an indeterminate amount of discrimination makes success a noisier

signal of ability, then belief distortions will be greater. But once this greater noise is accounted for,

one reaches the same conclusion about ability whether jointly assessing ability and discrimination

or just the latter. More generally, we can’t infer from the the fact that people form incorrect beliefs

about auxiliary facts that this is a cause of them forming incorrect beliefs about themselves or other

core facts; rather, the desire to reach a certain conclusion about the core facts is what causes the

wider set of false beliefs.

With the PN interpretation, the model implies that those with different directional motives

about the politician will reach different conclusions about the bias of the news source even if they

have all of the same information. Further, those with different directional motives may appear to

have different “prior” beliefs even if they have the same information. For example, suppose two
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people with the same prior belief but different directional motives both observe the same signal.

Since they have a different v function, they will reach a different conclusion. And if that con-

clusion acts as their prior belief (say, as measured by a researcher before giving an informational

treatment) when observing a new signal, it might appear that different priors are what drive differ-

ent interpretations of the second signal. However, it is really the different directional motive that

led to the different prior in the first place.11

So, those with stronger prior beliefs will be more resistant to accepting unpleasant information

about their core beliefs, and more apt to attribute unpleasant signals to auxiliary variables. As a

result, it may prove challenging to distinguish between explanations of why different readers inter-

pret the same new piece of information differently driven by purely Bayesian versus “behavioral”

mechanisms.

Similarly, if people have prior beliefs about core variables which were influenced by directional

motives, it may also be tricky to empirically distinguish between not wanting to accept unpleas-

ant information because of current directional motives (as in the model here) or due to just not

wanting to change any belief due to confirmation bias Rabin and Schrag (1999) or cognitive disso-

nance (Acharya, Blackwell and Sen, 2018). However, a recent study which distinguishes between

receiving new information about presidential polling which is desirable versus undesirable and

confirmatory versus disconfirmatory indicates the subjects update heavily when observing discon-

firmatory but desirable new information (Tappin, van der Leer and McKay, 2017). This is more

consistent with the model here, where directional motives push people to favorable conclusions

regardless of their prior belief.

11See Gentzkow and Shapiro (2006) for a statement of the “purely Bayesian” argument along these lines.
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5 Application 3: Attribution and news source quality

The final model considers a situation where the agent is unsure how important different factors

are in driving the signal he observes. For the ST interpretation, he may not only make inferences

about his ability from how well he does, but whether to attribute his performance to luck, skill, or

other factors (Kelley, 1967; Ross, 1977; Kunda, 1987). For the PN interpretation, our reader may

be uncertain about how accurate the news source is, even setting aside issues of bias. To capture

this, let the signal be:

s = θ + ωε,

where ω ∈ {g, b}, 0 < g < b. As above, the prior on θ is normal with mean µθ and variance σ2
θ . In

this section, let ε be a standard normal random variable (i.e., with variance 1). So, the ω parameter

scales how much noise the signal contains. When ω = g, the signal has less noise (a “good test of

ability”, “accurate news source”) compared to when ω = b (“bad test of ability”, or an “unreliable

news source”). Let π ∈ (0, 1) be the prior probability that the signal is good (ω = g).

The agent forms his conclusion with respect to θ and ω, i.e., the quality and the degree to which

the signal is driven by noise.12 The optimal conclusion solves:

(ω̃, θ̃) ∈ arg max
(ω,θ)

log(fθ,ω|s(θ, ω|s)) + v(θ, ω). (15)

The Bayesian belief If the agent knew for sure how noisy the signal was (i.e., ω), then Bayesian

posterior belief would use the standard updating formulas employed in previous sections. Since

12Given there is a 1:1 mapping between any conclusion about (θ, ω) to a conclusion about (θ, ε) (write ε = (s −
θ)/ω), this is equivalent to forming a conclusion over θ and ε.
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the agent is uncertain about ω, the poster belief is a normal mixture:

fθ,ω|s(θ, ω|s) =


Pr(ω = g|s)fθ|s,ω(θ|s, g) ω = g

Pr(ω = b|s)fθ|s,ω(θ|s, b) ω = b.

There are two pairs of terms in the density. The fθ|s,ω(θ|s, ω) terms are the beliefs about θ condi-

tional on s and ω, which by standard analysis are normal with mean and variance

µBθ (s, ω) =
σ−2θ µθ + ω−1s

σ−2θ + ω−1
and σθ(ω)2 =

1

σ−2θ + ω−1
,

The Pr(ω = g|s) and Pr(ω = b|s) terms represent the beliefs about whether the test is good or

bad given the signal. To derive these terms, conditional ω (but not θ), the distribution of s is normal

with mean µθ and variance σ2
θ + ω2 ≡ σs(ω)2. So:

Pr(ω|s) =
π 1
σs(ω)

φ
(
s−µθ
σs(ω)

)
Pr(s)

(I refrain from writing out the denominators as they drop out of relevant calculations.)

The optimal conclusion for a “neutral observer” As a benchmark, first consider the case where

both θ and ω are auxiliary. This corresponds to what the attribution literature describes as infer-

ences made by an outside observer who does not intrinsically care about the ability of the test-taker

(nor the reliability of the test). In thePN interpretation, this could correspond to a news item about

a topic where the reader has no directional motive.

It is immediate that for a fixed conclusion about ω, the optimal conclusion about θ is µBθ (s, ω).

For example, once the neutral observer decides the test is accurate, he picks the most likely con-

clusion about the quality given ω = g.

So, the overall optimal conclusion is either (g, µBθ (s, g)) or (b, µBθ (s, b)). The good test conclu-
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sion leads to a higher posterior likelihood if and only if:

Pr(ω = g|s)fθ|s,ω(µBθ (s, g)|s, g) ≥ Pr(ω = b|s)fθ|s,ω(µBθ (s, b)|s, b)

π 1
σs(g)

φ
(
s−µθ
σs(g)

)
Pr(s)

1

σθ(g)
φ(0) ≥

(1− π) 1
σs(b)

φ
(
s−µθ
σs(b)

)
Pr(s)

1

σθ(b)
φ(0)

π

1− π
σθ(b)

σθ(g)
≥

1
σs(b)

φ
(
s−µθ
σs(b)

)
1

σs(g)
φ
(
s−µθ
σs(g)

) (16)

When the two ratios on the left-hand side of (16) are high, the agent tends to believe the signal is

accurate. The first ratio reflects the prior information: when the prior indicates the test is likely to

be accurate (high π, low 1− π), this conclusion is more likely.

Less obvious, the second ratio is the standard deviation of the posterior belief about θ with a

bad test over a good test. This is always above 1, indicating a general tendency to conclude that

the signal of success is accurate. Algebraically, this follows from the fact that the peaks of normal

densities are higher when the standard deviation is low. The agent wants to be confident in his

conclusion about θ, and believing the test had low noise allows for a more precise estimate.

Interpreting ability-as-auxiliary as the case of assessing others, this is consistent with a key part

of the fundamental attribution error (Ross, 1977). If we want to form inferences about the ability of

others and just want them to be plausible, there is a bias towards thinking that outcomes are driven

by ability rather than situational factors. Things will be different when ability is a core belief and

the agent faces pressure to form a conclusion away from the peak of the posterior density, which

drops off more sharply when concluding the test is accurate.

Next, consider the right-hand side of (16), which is the relative likelihood of observing s under

the low or high noise conclusion. This will be high when s is close to µθ, and low when s is

far from µθ. Intuitively, when observing a “typical” signal, the observer tends to think the test is

accurate. When observing an extreme signal, the observer becomes convinced that it must be a

noisy signal of ability simply because the result is so extreme. Formally:
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Proposition 5. Suppose θ and ω are both auxiliary. If π
1−π

σθ(b)
σθ(g)

≤ σs(g)
σs(b)

, then the optimal conclu-

sion solving (15) is (ω̃, θ̃) = (b, µBθ (s, b)) for all s. If the reverse inequality holds, then there exists

a (s, s) such that the optimal assessment is (ω̃, θ̃) = (g, µBθ (s, g)) for s ∈ [s, s] and (b, µBθ (s, b))

for s ≤ s and s ≥ s.

Proof See the appendix.

A naive reading of this result could indicate that there are more circumstances where the neutral

observer believes that the signal was high noise. However, note that σθ(b)
σθ(g)

> 1 and σs(g)
σs(b)

< 1. So,

if starting with a neutral prior on the signal being low or high noise (i.e, π = 1/2), the agent will

think the signal is primarily driven by ability for signals which are not too extreme (i.e., s close to

µθ). For example, suppose σθ = g = 1, b = 2, and π = 1/2. Then the chance of a signal moderate

enough to induce a low noise assessment is nearly 90%.13 So, the result is largely consistent with

the idea that people tend to think the performance of others is mainly driven by their ability rather

than situational factors. However, this tendency will be weaker when observing an unexpected

performance level, consistent with (Feather, 1969).

More importantly, most of the cited results in the attribution literature are about comparisons

between how neutral observers (i.e., when the ability belief is auxiliary) form conclusions versus

those with a vested interest in reaching a certain conclusion would (when the ability belief is core).

The final analysis makes this comparison.

The optimal conclusion when ability is a core belief Now consider an agent who does care

about having a high self-assessment of ability, or a reader who has a directional motive in how

they view the subject of a news article.

To simplify, let v(θ) = αθ, for α > 0. So, the agent always wants a higher conclusion about θ,

and α scales the magnitude of this preference.

13When the noise is in fact low, the probability that s ∈ (s, s) is 0.83, and when it is in fact high the analogous
probability is 0.9.
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There are two ways that adding this directional motive affects whether the agent concludes the

test is accurate. First, for any result, there is an advantage to concluding that the test is noisy, since

this means there is less of a penalty for distorting the belief upwards. Second, there is a tendency to

want to think tests which return favorable results are accurate, since this leads to a larger increase

in the mean of the Bayesian belief. As derived in the appendix, the agent concludes that the test is

accurate if and only if:

α
(
µBθ (s, g)− µBθ (s, b) + α(σθ(g)2 − σθ(b)2)

)
≥ log

(
σθ(g)φ(ασθ(b))Pr(ω = b|s)
σθ(b)φ(ασθ(g))Pr(ω = g|s)

)
(17)

The left-hand side of (17) represents the intrinsic (dis)advantage of reaching the ability conclu-

sion associated with the low noise versus high noise. The right-hand side reflects the comparison

between the objective likelihood of the optimal high and low noise conclusions.

Both sides of (17) are quadratic functions in s. So, like the auxiliary case, the inequality either

always holds, in which case the high noise conclusion is always preferred, or, there is an interval

of signals where the agent thinks the test is accurate:

Proposition 6. When v(θ) = αθ, then there exists a π∗ ∈ (0, 1) such that:

(i) if π < π∗, then the optimal conclusion solving (15) is (ω̃, θ̃) = (b, µBθ (s, b) + ασθ(b)
2) for all s.

If π > π∗, then:

(ii) there exists a s and s > s such that the optimal conclusion is (ω̃, θ̃) = (g, µBθ (s, g) + ασθ(g)2)

for s ∈ [s, s] and (b, µBθ (s, b) + ασθ(b)
2) for s ≤ s and s ≥ s, where

(iii) s and s are increasing in α, and

(iv) s− s is constant in α.

Proof See the appendix.

In words, unless the prior belief that the signal is noisy is strong enough to force this conclusion,

then there is a “window” of signals where the agent thinks the test is accurate. This window is

28



Figure 3: Range of signals of success leading to low noise attribution as a function of α.
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increasing in his desire to have a high self-evaluation, though the length of the window is constant

in α.

Summary and empirical discussion Figure 5 shows an example of how introducing the need

for positive self-evaluation affects attribution. Using the ST interpretation, higher values on the

x-axis correspond to a greater desire to have a positive self-evaluation. For the PN interpretation,

higher values of α correspond to a stronger desire to have a positive view of the politician.

The left panel shows which signals leads to the conclusion that the signal is a good or bad test.

For signals between the two lines vertically, the optimal conclusion is that the signal is low noise.

As α increases, there is an upward shift of the window of levels of success where the agent believes

success is mostly driven by ability. People who care more about their self-assessment of ability

are more apt to “believe” tests which are in their favor. However, no matter how much the agent

wants to believe they are high ability, extremely high signals always lead him to conclude that the
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test does not measure ability well.

The right panel plots the probability of a signal which leads to a low noise conclusion as a

function of α. The dotted curve shows the probability of a low noise conclusion when the test is in

fact low noise, and the dashed curve when the test is high noise. The solid curve plots the average

probability of a low noise assessment.

All three curves are decreasing in α. This is because the (unconditional) distribution of s is

symmetric and single peaked around µθ = 0. So, shifting the window of accepted signals upwards

decreases the probability that the agent believes the signal is a good measure of ability. This

completes the model’s derivation of the fundamental attribution error: those who care a lot about

seeming high ability tend to think their performance is not primarily driven by ability, as this allows

them more leeway to reach positive self-evaluations (Ross, 1977).

Comparing the dotted and dashed curves, a neutral observer or someone with a lower need

for a positive self-evaluation is more likely to think the test is accurate (ω = g) when it is in fact

accurate. Visually, the dotted curve is above the dashed curve for low α. However, the curves

eventually cross. So, someone who cares a great deal about a positive self-evaluation is more

likely to think that the test is accurate when it is in fact not accurate. This is because only noisy

tests have a decent chance of giving a positive enough score that someone with high α will believe

they are accurate. Tests which are truly accurate generally deliver truer but less acceptable results

to people with strong directional motives.

The Political Attribution Error? In the PN interpretation, those with strong directional mo-

tives plausibly correspond to strong partisans and those highly involved in politics, including politi-

cians themselves. According to the model, readers without directional motives will tend to trust

their sources of information, as this leads to more plausible conclusions about the subject of report-

ing. On the other hand, strong partisans and politicians will tend to be skeptical about the accuracy
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of media which objectively is “neutral” and “accurate”.14 Further, as shown by the b curve lying

above the g curve in the right panel of figure 5, they may place more trust in news sources which

are in fact less accurate.

6 What Next?

The applications in this paper are wide-ranging. Empirical examples span disciplines and

decades. While it risks becoming disorienting, this broadness is purposeful, as it hopefully in-

dicates how the approach introduced here is flexible enough to apply to many domains. What ties

the results together is that they are all consequences of the maximization problem given by (1),

which balances the desire to reach accurate conclusions that are also intrinsically palatable, where

the accuracy motivation can span several related variables.

In order to focus on how several prominent empirical results and observations can be cast as

distorting beliefs about one variable to reach a desired conclusion about another, I have treated the

directional motive as exogenously given and avoided modeling how distorted beliefs might affect

decisions. To conclude, I provide some suggestions for how the model here could be extended to

address these limitations.

Microfounding the v function A natural way to extend the model is to endogenize the direc-

tional motive. In the context of ability, people may want to think they are high ability to better

convince others that they are capable (Trivers, 2000). A similar principle could hold in the over-

precision notion of overconfidence studied by Ortoleva and Snowberg (2015): if people share their

beliefs and want to be listened to or persuade others to move closer to their viewpoint, there is an

incentive to convince others that one’s beliefs are very precise.

14At first glance this may seem inconsistent with empirical results which find that more partisan citizens are better
informed (e.g., Palfrey and Poole, 1987). However, these results are likely better explained by differential incentives
to acquire information rather than how differences in partisanship affect the processing of the same information. See
the conclusion for further discussion of this point.

31



While it does not lack empirical grounding, the directional motive driving the PN application

– the desire to think highly of certain political leaders – has less obvious theoretical origins. One

possibility is that people want to think that the groups they are a part of are good. Since partisanship

can be a basis for a strong group identity and the quality of leaders reflects on the quality of the

group, there can be a desire to want to think highly of the leader through this channel. Another

possibility is a general tendency to defer to authority, which can promote social cohesion.

The effect on decisions While belief formation is a topic worthy of study by itself, most of polit-

ical science (particularly formal theory) is concerned with how people make decisions given their

beliefs. The model of belief formation proposed here could be dropped into nearly any incomplete

information model.

A general class of problems where this model could prove fruitful is in studying information

acquisition. For example, what types of news sources would someone with accuracy and direc-

tional motives seek out? And how would those decisions affect the media’s incentives to provide

certain kinds of news?

Another possible direction is to study how voters processing information in this manner would

affect politician behavior. For example, do directional motives undermine politician incentives

to work on behalf of constituents? And how does this question interact with the way directional

motives affect media behavior? The results about beliefs becoming more distorted over uncer-

tain variables also may have implications for how precise politicians want to be in stating their

platforms or other information they have.

A Final Thought The notion that formal theories of politics must involve selfish actors maxi-

mizing their material gains given correctly formed beliefs is long dead, and good riddance. How-

ever, most deviations from this paradigm have involved more general assumptions about utility

functions, such as adding altruism, an expressive/“warm glow” payoff for participation, or loss
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aversion. Nonstandard treatment of beliefs have been less common. This may be partly driven by

the fact that fiddling with utility functions requires no changes to standard solution concepts, which

tell us how to translate any set of utility functions (and other assumptions about the environment)

to behavioral predictions. When changing assumptions about beliefs, things are harder: in addi-

tion to figuring out which deviations from using Bayes’ rule to formalize, the modeler must also

face challenges in determining how these distorted beliefs map to actions, and, in a game-theoretic

setting, how higher order beliefs map to actions. Should actor A know that actor B forms incorrect

beliefs? Does B know that A knows he forms incorrect beliefs, and if so why doesn’t A correct

his beliefs?

The model here does not answer all of these questions, but hopefully providing a simple and

tractable formulation of how to model distorted beliefs in a multivariate environment will be a

useful first step in building applied models with more general and realistic belief formation.
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Appendix

A quasi-axiomatic justification for using logarithms for the accuracy motive. In general, it

would be reasonable to write the accuracy motive as a(fθ|s(θ|s), where a is an increasing function.

However, in addition to the convenient properties it has in computations, here is a simple (and

somewhat axiomatic) reason to use a logarithmic transformation of the density of the accuracy

motive.

A main motivation of the model here is to study when the conclusion of one variable affects

another. It is instructive to think through when we think this should not be the case, i.e., when the

conclusion about one variable is independent of the conclusion about another. A formal definition

of this independence when forming an optimal conclusion over two variables θ1 and θ2 is:

Definition The optimal conclusion for variable θ1 is independent from the optimal conclusion on

θ2 if and only if for all θA2 and θB2 :

arg max
θ1

a(fθ|s(θ1, θ
A
2 , ·|s)) + v(θ1, θ

A
2 ) = arg max

θ1

a(fθ|s(θ1, θ
B
2 , ·|s)) + v(θ1, θ

B
2 )

This property will hold when the objective function is additively separable in θ2 and θ2, and

the simplest way to ensure this property is if both the a(·) and v(·) terms are additively separable.

Assuming the v function is not additively separable is to assume that the agent intrinsically likes

reaching different conclusions about θ1 depending on the value of θ2, in which case we shouldn’t

expect the conclusions reached to be independent.

When should we want the accuracy motive to be additively separable? A natural intuition here

is we would like this property to hold if and only if the variables are independent in the statistical

sense, i.e., when f(θ1, θ2) can be written f(θ1, θ2) = f1(θ1)f2(θ2), where fi is the marginal density

of θi. With a logarithmic a of any base k, statistical independence then implies logk(f(θ1, θ2)) =

logk(f1(θ1)) + logk(f2(θ2)), i.e., the accuracy motive is in fact additively separable in θ1 and θ2.

And, further, logarithms are the only class of functions where g(xy) = g(x) + g(y) for all x and y.
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The use of the natural log function rather than another base leads to cleaner algebra, but since

logk(x) = loge(x)
loge(k)

, using a different base would just lead to a positive linear scaling of the accu-

racy motive. So, switching to a different base just changes the weighting of the accuracy versus

directional motive, which can also be achieved by a linear scaling of the v function.

By contrast, if, for example, we use the identity function for the accuracy motive, then the op-

timal conclusion reached on θ1 will affect the optimal conclusion on θ2 even though both variables

are independent both in the accuracy in the directional motive.15 In other words, using a log trans-

formation ensures the “independence of irrelevant conclusions”: what the agent concludes about

one variable only affects the conclusion about others if they are related in the posterior belief or in

the directional motive.

Alternative definitions of the optimal conclusion One alternative approach (which could prove

useful when modeling decisions made using distorted beliefs) would be to assume the agent still

keeps track of a full probability distribution, but places stronger weight on preferred values of θ.

For example, the maximization problem could be to pick the posterior density g(θ) which max-

imizes an objective function like
∫
θ
v(θ)g(θ)dθ − d(fθ|s(θ|s), g(θ)), where v again captures the

notion that some beliefs are more pleasant to hold, and d is a distance metric which penalizes devi-

ations from the Bayesian density. Since the argument to maximize is no longer just a real number

(or a vector of real numbers) but a function, this proves to be a substantially more complicated

problem. Future work could explore this tack more fully.

Another way to measure the accuracy motive would be to assume the agent pays a penalty for

how far his belief is from the truth. A natural way to model this would be to write the objective

function:

θ̃ = arg max
θ′

v(θ)− Eθ|s[||θ′ − θ||2]

15In particular, choosing a highly implausible value for θ1 will lower the magnitude of the accuracy motive for θ2.
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where, in the case of a multidimensional problem, ||θ′ − θ|| is the Euclidean distance between the

chosen conclusion and the truth. Note that the expectation is taken with respect to the Bayesian

posterior distribution of θ|s. Let µi be the mean of the posterior belief on dimension i. The the loss

function can be rewritten:

Eθ|s[||θ′ − θ||2] = Eθ|s

[
n∑
i=1

(θ′i − θi)2
]

=
n∑
i=1

Eθi|s[((θ
′
i − µi) + (µi − θ))2]

=
n∑
i=1

Vθi|s[θi] + (θ′i − µi)2

Now, let’s compare how this approach differers from the one used for the models in sections 3

and 4.

In section 3, where the optimal conclusion is just over the ability θ, the optimization problem

becomes:

θ̃ = arg max
θ′

v(θ′)− Vθ|s[θ]− (θ′ − µθ)2

and so the optimal conclusion is characterized by:

v′(θ̃) = 2d(θ̃) (18)

(where again d(θ̃) = θ̃−µθ). This is quite similar to the solution for the preferred approach, though

note in this case the variance in the posterior belief does not affect the magnitude of the distortion.

In section 4, the main optimization problem is:

(θ̃, δ̃) = arg max
(θ′,δ′)

v(θ′)− Vθ|s[θ]− (θ′i − µθ)2 − Vδ|s[δ]− (δ′ − µδ)2
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which is solved by θ̃ = µδ and (18). Importantly, there is no distortion of the belief about δ, since

doing so moves the conclusion further from the Bayesian mean. So, the core idea of the paper –

that conclusions about one variable can affect conclusions about other variables – does not happen

with this setup.16

Proof of proposition 1 Take any 0 < w1
v < w2

v , which both lead to a unique optimal conclusion.

Let θ̃1 be the optimal conclusion at w1
v , and θ̃2 the optimal conclusion at w2

v . Let a1 and v1 be the

accuracy and directional value associated with conclusion θ̃1, and the a2 and v2 the corresponding

terms for θ̃2.

To show that v1 ≤ v2 and a1 ≥ a2, it is sufficient to show that any other pair of changes leads

to a contradiction.

For θ̃1 to be an optimal conclusion under w1
v , the objective function evaluated at θ̃1 must be at

least as high as θ̃2:

w1
vv

1 + waa
1 ≥ w1

vv
2 + waa

2 (19)

Similarly, for θ̃2 to be an optimal assessment:

w2
vv

2 + waa
2 ≥ w2

vv
1 + waa

1 (20)

If v1 ≤ v2 and a1 ≤ a2 and at least one of the inequalities is strict, then (19) can’t hold. If v1 ≥ v2

and a1 ≥ a2 and at least one of the inequalities is strict, then (20) can’t hold.

The last case to rule out is v1 > v2 and a1 < a2. The intuition to show is that if the loss

associated with going from v1 to v2 in order to get the gain of a1 to a2 is worth it under weight w2
v ,

16Squaring the Euclidean distance makes some of these calculations tidier, but does not change the fact that if the
agent minimizes some transformation of this distance, they will never distort beliefs about auxiliary variables (if the
distortion is defined with respect to the mean).
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it must also be worth it under w1
v . Formally, we can rearrange (19) to:

w1
v(v

1 − v2) ≥ wa(a
2 − a1)

w1
v

wa
≥ a2 − a1

v1 − v2

But (20) (under the assumption that v1 > v2 and a1 < a2, hence v2 − v1 is negative and dividing

by this flips the inequality) requires:

w2
v(v

2 − v1) ≥ wa(a
1 − a2)

w2
v

wa
≤ a1 − a2

v2 − v1
=
a2 − a1

v1 − v2
≤ w1

v

wa

which contradicts w1
v < w2

v .

So, it must be the case that v1 ≤ v2 and a1 ≥ a2. The proof for changing wa follows an

identical logic.

Proof of proposition 3 If µBθ (s) < θ∗, then the objective function is strictly increasing in θ for

θ < µBθ (s), and decreasing for θ > θ∗. So, any solution must be in (µBθ (s), θ∗). (And. since

the objective function is continuous, such a solution must exist, though it need not be unique).

Conversely, for µBθ (s) > θ∗, the objective function is increasing for θ < θ∗ and decreasing for

θ > µBθ (s), and so the solution must be on (µBθ (s), θ∗)

To complete the proof, we need to show there is a unique s∗ such that µBθ (s) < θ∗ for s < s∗

and µBθ (s) > θ∗ for s > s∗. Since µBθ (s) is increasing and linear in s, the threshold θ∗ corresponds

to a s∗ which solves:

θ∗ = µB(s∗) =
σ−20 µ0 + σ−2θ s∗

σ−20 + σ−2θ
.
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Rearranging gives:

s∗ =
θ∗σ−2θ + σ−2ε − σ−2θ µ0

σ−2ε

Derivation of (6) and (7) Formally, to compute the posterior belief about θ and δ given s, first

write and then partition the covariance matrix of (θ, δ, s) as:



θ δ s

θ σ2
θ 0 σ2

θ

δ 0 σ2
δ σ2

δ

s σ2
θ σ2

δ σ2
θ + σ2

δ + σ2
ε

 =

Σ11 Σ12

Σ21 Σ22



where Σ22 = σ2
θ + σ2

δ + σ2
ε (which uniquely determines the remainder of the partition).

The joint distribution of (θ, δ) conditional on s is then jointly normal (Greene, 2008, p. 1014)

with mean vector:

(µBθ (s), µBδ (s)) = (µθ, µδ) + Σ12Σ
−1
22 (s− µθ + µδ)

=

(
µθ(σ

2
δ + σ2

ε ) + (s+ µδ)σ
2
θ

σ2
θ + σ2

δ + σ2
ε

,
µδ(σ

2
θ + σ2

ε )− (s− µθ)σ2
δ

σ2
θ + σ2

δ + σ2
ε

)

and covariance matrix:

Σ = Σ11 − Σ12Σ
−1
22 Σ21 =


θ δ

θ
σ2
δσ

2
θ+σ

2
εσ

2
θ

σ2
θ+σ

2
δ+σ

2
ε

σ2
δσ

2
θ

σ2
θ+σ

2
δ+σ

2
ε

δ
σ2
δσ

2
θ

σ2
θ+σ

2
δ+σ

2
ε

σ2
δσ

2
ε+σ

2
δσ

2
θ

σ2
θ+σ

2
δ+σ

2
ε

 ≡
 σ2

θ Cov(θ, δ)

Cov(θ, δ) σ2
δ


.

45



Proof of Proposition 5. It is immediate that the left-hand side of (16) is strictly positive. The

ratio on the right-hand side simplifies to σs(g)
σs(b)

e(σs(g)
−2−σs(b)−2)(s−µθ)2 . This expression is continuous

in s, equal to σs(g)
σs(b)

at s = µθ, strictly decreasing in |s − µθ|, and goes to zero when |s − µθ| goes

to infinity. So if 1−π
π

σθ(g)
σθ(b)

≥ σs(g)
σs(b)

then the high noise attribution (along with θ̃ = µBθ (s, b)) leads

to a higher posterior likelihood for all s. If not, there exists two values of s (symmetric around

µθ) where (16) is met with equality, label these (s, s). So, the low noise attribution is chosen for

s ∈ (s, s), and the high noise attribution is chosen for lower or higher signals.

Derivation of 17 A two step procedure determines the optimal noise attribution. First, compute

the optimal conclusion about θ conditional on ω̃ = g and ω̃ = b. Second, compare the maximum

values of the objective function under both options.

For the first step, the optimal conclusion about θ as a function of ω̃ maximizes:

log(Pr(ω̃|s)fθ|s,ω(θ|s, ω̃)) + αθ

= k4 −
(θ − µBθ (s, ω̃))2

2σθ(ω̃)2
+ αθ

for a constant k4. Again the log formulation proves convenient as most of the terms drop out when

optimizing θ, and the problem is globally concave, with maximizer

θ̃(ω̃) = µBθ (s, ω̃) + ασθ(ω̃)2

For the second step, the objective function evaluated at θ = θ̃(ω̃) simplifies to:

log (Pr(ω̃|s))− log(Pr(s)) + log

(
1

σθ(ω̃)
φ

(
θ̃(ω̃)− µBθ (s, ω̃)

σθ(ω̃)

))
+ αθ̃(ω̃)

= log

(
φ(ασθ(ω̃))Pr(ω|s)

σθ(ω̃)

)
− log(Pr(s)) + α

(
µBθ (s, ω̃) + ασθ(ω̃)2

)
. (21)
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The accurate test conclusion is now preferred if and only if (21) evaluated at ω̃ = g is higher than

it is when evaluated at ω̃ = b, which simplifies to (17)

Proof of proposition 6 Recall the objective function evaluated at the best low-noise and best

high noise conclusion is:

O(b) = log

φ(ασθ(b))(1− π)φ
(
s−µθ
σs(b)

)
σθ(b)σs(b)

− log(Pr(s)) + α
(
µBθ (s, b) + ασθ(b)

2
)

O(g) = log

φ(ασθ(g))πφ
(
s−µθ
σs(g)

)
σθ(g)σs(b)

− log(Pr(s)) + α
(
µBθ (s, g) + ασθ(g)2

)

So the high noise assessment is chosen when DO ≡ O(b)−O(g) ≥ 0, which simplifies to:

DO = log

φ(ασθ(b))(1− π)φ
(
s−µθ
σs(b)

)
σθ(b)σs(b)

− log

φ(ασθ(g))πφ
(
s−µθ
σs(g)

)
σθ(g)σs(g)


+ α

(
µBθ (s, b) + ασθ(b)

2
)
− α

(
µBθ (s, g) + ασθ(g)2

)
= k5 + log

(
1− π
π

)
+ α(µBθ (s, b)− µBθ (s, g)) + log

(
φ

(
s− µθ
σs(b)

))
− log

(
φ

(
s− µθ
σs(g)

))
= k5 + log

(
1− π
π

)
+ α(µBθ (s, b)− µBθ (s, g)) +

(
s− µθ
σs(g)

)2

−
(
s− µθ
σs(b)

)2

(22)

where k5 collects terms which are not a function of s or π. Equation (22) is quadratic in s. Since

σs(g) > σs(b), the quadratic is concave. So, O(b)− O(g) is either always positive, in which case

the high noise assessment is always chosen, or it is positive except for the interval between the

zeros of O(b)−O(g).

Rather than derive these zeroes (which are too messy to provide insight), note that increasing

π increases O(g) − O(b) by a shift which is constant in s. Since this shift is given by log
(
1−π
π

)
which has full support on R, there must be a unique π∗ such that there are real roots to (22) if and

only if π > π∗. This completes the proof of parts (i)-(ii).
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For parts (iii) and (iv), s and s are both implicitly defined by O(b) − O(g) = 0. Implicitly

differentiating gives:

−
∂(O(b)−O(g))

∂s
∂(O(b)−O(g))

∂α

= −
(b−g)(s−µθ+ασ2

θ)

(b+σ2
θ)(g+σ

2
θ)

−σ2
θ(b−g)(s−µθ+ασ

2
θ)

(b+σ2
θ)(g+σ

2
θ)

= σ2
θ

So, ∂s
∂α

= ∂s
∂α

= σ2
θ > 0 and ∂s

∂α
− ∂s

∂α
= 0
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