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1 Economic theory and ”as if” rationality

• The rationalistic paradigm in economics: Savage rationality [Leonard

Savage: The Foundations of Statistics, 1954]

— Each economic agent’s behavior derived from maximization of some

goal function (utility, profit), under given constraints and informa-

tion

• The ”as if” defence by Milton Friedman (1953): The methodology of
positive economics

— Firms that do not take profit-maximizing actions are selected against

in the market

— But is this claim right? Under perfect competition? Under imper-

fect competition?



• Evolutionary theorizing: De Mandeville, Malthus, Darwin, Maynard
Smith

• Darwin: exogenous environment - “perfect competition”

• Maynard Smith: endogenous environment - “imperfect competition”



2 Game theory

• A mathematically formalized theory of strategic interaction.

• Applications abound,

– in economics

– in political science

– in biology

– in computer science



3 John Nash’s two interpretations of equilibrium

Nash (Ph.D. thesis, Mathematics Department, Princeton, 1950):

1. The rationalistic (or epistemic) interpretation

2. The ”mass action” (or evolutionary) interpretation



3.1 The rationalistic interpretation

1. The players interact exactly once (true even if the interaction itself is

a repeated game).

2. The players are rational in the sense of Savage (1954)

3. Each player knows the game in question (strategy sets, payoffs to all

players)

However, this clearly does not imply that they will play a Nash equi-

librium. Hence, assume in addition that

4. The game and all players’ rationality is common knowledge



Example 3.1 (Coordination game)

 
 2 2 0 0
 0 0 1 1

Example 3.2 (Matching Pennies)

 
 1−1 −1 1
 −1 1 1−1



Example 3.3 A game with a unique Nash equilibrium. This equilibrium is

strict; any deviation is costly.

  
 7 0 2 5 0 7
 5 2 3 3 5 2
 0 7 2 5 7 0



Conclusion

The rationalistic interpretation, even under CK of the game and

rationality, does not in general imply equilibrium play

[In fact, this combined hypothesis implies rationalizability.]



3.2 Nash’s mass-action interpretation

1. For each player role in the game: a large population of identical indi-
viduals

2. The game is recurrently played, at times  = 0 1 2 3  (or at Poisson
arrival times) by randomly drawn individuals, one from each player
population

3. Individuals play pure strategies

4. Individuals observe empirical samples of earlier behaviors and outcomes
and avoid suboptimal actions

[According to Nash (1950), they need not know the strategy sets or
payoff functions of other player roles. They do not even have to know
they play a game.]



• A population-statistical distribution over the pure strategies in a player
role constitute a mixed strategy

• Nash’s (informal) claim: If all individuals avoid suboptimal pure strate-
gies, and the population distribution is stationary (”stable”), then it

constitutes a Nash equilibrium

— Statistical independence across player populations ⇒ joint proba-

bility distribution over pure-strategy profiles constitutes a mixed-

strategy profile

— Zero probability for suboptimal pure strategies ⇒ each player-

population’s mixed strategy is a best reply

• Reconsider the above examples in this (informal) interpretation



Conclusion

The mass-action interpretation does not in general imply equilib-

rium play, but it almost does it, and holds promise

• In fact, evolutionary game theory provides methods and concepts to
rigorously explore these promises

• The “folk theorem” of evolutionary game theory:

— If the population process converges from an interior initial state,

then the limit distribution is a Nash equilibrium

— If a stationary population distribution is stable, then it constitutes

a Nash equilibrium



— If the population process is ”convex-monotone,” then non-rationalizable

strategies have zero asymptotic probability, in all finite two-player

games



4 Evolutionary game theory

• Evolutionary process =

= mutation process + selection process

• The unit of selection: usually strategies (”strategy evolution”), some-
times utility functions (”preference evolution”)

1. Evolutionary stability: focus on robustness to mutations

2. Replicator dynamic: focus on selection. [Robustness to mutations by

way of dynamic stability]

3. Stochastic stability: both selection and mutations



5 Evolutionary stability under strategy evolution

• ESS = evolutionarily stable strategy [Maynard Smith and Price (1972),
Maynard Smith (1973)]

- “a strategy that ‘cannot be overturned’, once it has become the

‘convention’ in a population



Heuristically

1. A large population of individuals who are recurrently and (uniformly)

randomly matched in pairs to play a finite and symmetric two-player

game

2. Initially, all individuals always use the same pure or mixed strategy, ,

the incumbent (or resident) strategy

3. Suddenly, a small population share   0 switch to another pure or

mixed strategy, , the mutant strategy

4. If the incumbents (residents) on average do better than the mutants,

then  is evolutionarily stable against 



5.  is called evolutionarily stable if it is evolutionarily stable against all

mutations  6= 



Domain of analysis

• Symmetric finite two-player games in normal form

Definition 5.1 A finite and symmetric two-player game is any normal-form

game  = ( ) with  = {1 2}, 1 = 2 =  = {1 } and
2( ) = 1( ) for all   ∈ .

• Payoff bimatrix (), where  = (),  = ()

• Game symmetric iff  =  .



Example 5.1 (Prisoners’ dilemma) Payoff bimatrix:

 
 3 3 0 4
 4 0 2 2

 =

Ã
3 0
4 2

!
 =

Ã
3 4
0 2

!

Symmetric since  =  .



• Write ∆ for ∆ (), the mixed-strategy simplex:

∆ = { ∈ R+ :
X
∈

 = 1}

• Write the payoff to any strategy  ∈ ∆, when used against any strategy

 ∈ ∆ as

( ) = 

Note that the first argument is own strategy, second argument the

other party’s strategy.

• While the prisoner dilemma is symmetric, matching-pennies is not



Example 5.2 (Matching Pennies) Payoff bimatrix:

 
 1−1 −1 1
 −1 1 1−1

 =

Ã
1 −1
−1 1

!
 =

Ã
−1 1
1 −1

!

Here  6= . Not a symmetric game.

• Thus, matching pennies games fall outside the domain of evolutionary
stability analysis.

• However, if player roles are randomly assigned, with equal probability
for both role-allocations, then the so-defined metagame is symmetric,

and evolutionary stability analysis applies to the metagame.



Example 5.3 (Coordination game) Payoff bimatrix:

 
 2 2 0 0
 0 0 1 1

 =  =

Ã
2 0
0 1

!

A doubly symmetric game:  =  =  (this is an example of a ‘potential

game’, Monderer and Shapley, 1996)



• Best replies to  ∈ ∆:

∗() = {∗ ∈ ∆ : (∗ ) ≥ 
³
0 

´
∀0 ∈ ∆}

• This defines a correspondence from ∆ to itself: ∗ : ∆⇒ ∆

[This is distinct from the usual BR correspondence, which maps ∆2 to

∆]

• Let
∆ = { ∈ ∆ :  ∈ ∗ ()}

• Note  ∈ ∆ ⇔ ( ) is a symmetric Nash equilibrium

Proposition 5.1 ∆ 6= ∅.

Proof: Application of Kakutani’s Fixed-Point Theorem.



5.1 Definition of ESS

• We are now in a position to define evolutionary stability exactly:

Definition 5.2  ∈ ∆ is an evolutionarily stable strategy (ESS) if for every

strategy  6=  ∃ ̄ ∈ (0 1) such that for all  ∈ (0 ̄):

 [  + (1− )]   [  + (1− )] 

• “Post-entry mixture”:

 =  + (1− ) ∈ ∆

a convex combination of  and , a point on the straight line between

them.



• Let ∆ ⊂ ∆ denote the set of ESSs

• Note that an ESS has to be a best reply to itself: if  ∈ ∆ then

( ) ≤ ( ) for all  ∈ ∆

• Hence ∆ ⊂ ∆

• Note also that an ESS has to be a better reply to its alternative best
replies than they are to themselves: if  ∈ ∆,  ∈ ∗ () and
 6= , then  ( )   ( )



Proposition 5.2  ∈ ∆ if and only if for all  6= :

( ) ≤ ( )

and

( ) = ( )⇒ ( )  ( )



5.2 Examples

5.2.1 Prisoner’s dilemma

 
 3 3 0 4
 4 0 2 2

∆ = ∆ = {}



5.2.2 Coordination game

 
 2 2 0 0
 0 0 1 1

∆ =
½


1

3
+

2

3

¾

∆ = {}

The mixed NE is perfect and even proper, but not evolutionarily stable



5.2.3 Partnership game

• Small start-up businesses with two partners, or pairs of students as-
signed to write an essay together

• Each partner has to choose between work (or “contribute”) and shirk
(or “free-ride”)

- If both choose W: good outcome for both

- If one chooses W and the other S: loss to the first but gain to the
second

- If both choose S: heavy loss to both

• Example of payoff bimatrix:
 

 3 3 0 4
 4 0 −1−1



• Symmetric game, but not a Prisoners’ Dilemma: S does not dominate
W: it is better to work if the other shirks

• Consider a large pool of individuals and random matching

• What do you think would happen? A tendency to work? To shirk?

Any tendency at all?

• Any ESS? This is strategically equivalent to a so-called hawk-dove
game, where work = dove and shirk = hawk



1. Unique symmetric NE: randomize uniformly, ∗ = (12 12),∆ =

{∗}. Hence ∆ ⊂ {∗}

2. ∗ an ESS iff

(∗ )  ( ) ∀ 6= ∗

3. Equivalently:

1

2
[31 + 41 − (1− 1)]  321 + 41 (1− 1)− (1− 1)

2

or

81 − 1  −421 + 121 − 2

or

4
µ
1 −

1

2

¶2
 0



4. True, hence ∗ is an ESS!

• Graphical illustration of payoff difference (∗ )− ( ):
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• Some games have no ESS. For instance, when all payoffs are the same.
But also in more interesting games such as

Example 5.4 (Rock-scissors-paper) Rock beats Scissors, Scissors beat Pa-

per, and Paper beats Rock:

 =

⎛⎜⎝ 0 1 −1
−1 0 1
1 −1 0

⎞⎟⎠

Unique Nash equilibrium: ∗ =
³
1
3
1
3
1
3

´
. All pure strategies are best replies

and do as well against themselves as ∗ does against them. ∆ = ∅.



THE END

Literature: Chapter 9 in van Damme (1991) or Chapter 2 in Weibull (1995).


