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1 Stochastic social learning

The evolution of conventions in recurrent play of games, in the style of

Nash’s mass action interpretation

• Modelling paradigm: individuals most of the time play best replies to
”recent history of play”

Young P. (1993): “The evolution of conventions”, Econometrica 61, 57-84.

Hurkens S. (1995): “Learning by forgetful players”, Games and Economic

Behavior 11, 304-329.

Young (1998): Individual Strategy and Social Structure, Princeton Univer-

sity Press, 1998.



1.1 Young’s model

• Finite normal-form games

• For each player role : a population of (arbitrary) finite size 

• Recurrent play with (uniform) random matching, each time 1 individual
from each player population

• Individuals receive random samples of size  from last rounds of play

• Markov chain where a state = the most recent pure-strategy profiles

• After each match: add the new action profile, delete the oldest



1. The unperturbed process: always play some best reply against your

sample of past play

2. The perturbed process:

(a) with probability 1− : play a best reply against your sample

(b) with probability : play at random, with positive probability for all

your pure strategies

3. The perturbed process is ergodic and thus has a unique invariant dis-

tribution 

4. Let  → 0. Then  → ∗. Pure strategy-profiles used in histories in
the support of ∗ are called stochastically stable



5. ∗ defines a social convention, a statistical description of how the game
is usually played

• A finite normal-form game has property NDBR (non-degenerate best

replies) if, for every player  ∈  and pure strategy  ∈ , the set

 = { ∈ ¡ () :  ∈  ()}

is either empty or has a non-empty (relative) interior. This is a generic

property of finite normal-form games

• For each player role , let  ⊂  and consider the sub-polyhedron

¡ ( ) = ×∈∆ ():  = ¡ ( ) is closed under rational behavior
(CURB) [Basu and Weibull, 1991] if

 [¡ ( )] ⊂ 



Theorem 1.1 (Young (1998)) Let  be a finite game with the NDBR

property. If  is small and  large, then the unperturbed process con-

verges with probability one to a minimal CURB set. Moreover, ∗ has
support on those minimal CURB sets that have minimal stochastic poten-

tial. For generic payoffs this singles out a unique minimal CURB set.

• The potential is a concept defined for so-called perturbed Markov
chains, essentially captures both the ”size” (and ”depth”) of ”basins

of attraction”, see

Freidlin M. and A. Wentzell (1984): Random Perturbations of Dynam-

ical Systems, Springer.



Example 1.1 (Coordination game)

 
 2 2 0 0
 0 0 1 1

Two minimal curb sets, {}×{} and {}×{}. Young’s model predicts
(). This has a ”bigger basin of attraction” than (), and hence

() is stochastically stable. The mixed NE is unstable.



• In any symmetric 2× 2-coordination game, () is said to risk dom-
inate () if () is the best reply to  = ((12 12)  (12 12))

[Harsanyi and Selten,1988]

Example 1.2 (Risk dominance) Consider the following coordination game,

in which () Pareto dominates (), but () risk dominates ():

 
 2 2 3 0
 0 3 4 4

This game has the same best-reply correspondence as the preceding exam-

ple. Hence, Young’s model gives the same prediction: () as in that

game.



Example 1.3 The game with a unique Nash equilibrium, that, moreover,

was strict:

  
 7 0 2 5 0 7
 5 2 3 3 5 2
 0 7 2 5 7 0

The unique minimal curb set is {}×{} and hence the unique stochas-
tically stable strategy-profile is ().



• Application to the Nash demand game: Young (1993), “An evolution-
ary model of bargaining”, Journal of Economic Theory 59, 145-168.

• The Nash demand game (Nash, 1953): A simultaneous-move two-

player game, where each player submits a bid, 1 2 ∈ [0 1], with

payoffs

 () =

(
 if 1 + 2 ≤ 1
0 otherwise

• Young (1993): Discretize [0 1] in order to obtain a finite game: 1 =
2 = {0 1 2  (− 1) 1}. Then let → +∞. Remarkable
and beautiful result, the generalized Nash Bargaining Solution, where

the parties’ sample sizes, 1 and 2, determine their bargaining power!



2 Preference evolution

• ”Indirect evolution”, initiated by Güth and Yaari (1992): ”An evolu-
tionary approach to explain reciprocal behavior in a simple strategic

game”

• As if ”nature” delegates to individuals to make decisions, but gives
them utility functions

• Symmetric two-player games. Random matching of pairs from a large

population, treated as a continuum.

• Assume that paired individuals play a Nash equilibrium of the game

defined in terms of their utility functions and information



• Utility functions that obtain high average payoffs to their carriers are
selected for

Two basic information settings:

1. Preference evolution under complete information (”perfect signals about

types”)

2. Preference evolution under incomplete information (”no signals”)



• Under complete information: one’s utility function can serve as a com-
mitment device.

— Recall initial (verbal) example of Cournot duopoly where managers

were given incentive contracts that gave weight to sales, not only

profit

— Utility functions that are not perfectly aligned with payoffs may well

be evolutionarily stable (tough bargainers, overconfident competi-

tors etc.)

• Under incomplete information: there no such commitment effect



2.1 Quick glimpses of two models

• Alger, I. and J. Weibull (2010): “Kinship, incentives and evolution,”
American Economic Review 100, 1725-1758.

• Alger, I. and J. Weibull (2012): “Homo moralis - Preference evolution
under incomplete information and assortative matching,” TSE WP 12-

281.



2.1.1 Alger and Weibull (2010): Kinship, incentives and evolution

1. Symmetric two-stage games, stochastic production followed by volun-
tary ex-post transfers

2. Pairs of siblings

3. Biological and/or cultural inheritance from parent generation

4. Type space: family ties defined as degree  ∈ (−1 1) of sibling altru-
ism/spitefulness:

 ( ) =  ( ) +  ·  ( )

5. Complete information (siblings arguably know each other well...).

6. Each pair plays the unique Nash equilibrium, given their preferences



• Main result: the evolutionarily stable degree of sibling altruism (family

ties) depends on the ”harshness” of the “production climate”: stronger

in milder climates (Italy vs. Sweden)



2.1.2 Alger and Weibull (2012): Homo moralis

1. Symmetric two-player games,  : 2 → R continuous,  compact

and convex set

2. Type space: all continuous functions,  : 2→ R

3. Random matching, but not necessarily uniform. Matching probabilities

may depend on types.

4. Incomplete information: paired individuals do not know each other’s

individual preferences, but behave as if they knew the type distribution

in their own matches



Definition 2.1 In a population state  = (   ) with two types   ∈ Θ in

population shares 1− and , a strategy pair (∗ ∗) ∈ 2 is a (Bayesian)

Nash Equilibrium if(
∗ ∈ argmax∈ Pr [| ] ·  ( ∗) + Pr [ | ] ·  ( ∗)
∗ ∈ argmax∈ Pr [| ] ·  ( ∗) + Pr [ | ] ·  ( ∗) 

Definition 2.2 A type  ∈ Θ is evolutionarily stable against a type  ∈ Θ

if there exists an ̄  0 such that the average payoff to type  is higher

than that to type  in all Nash equilibria (∗ ∗) in all population states
 = (   ) with  ∈ (0 ̄).



Main result: under certain regularity conditions, the following preferences

emerge as evolutionarily stable:

 ( ) = (1− ) ( ) +  ·  ( )

for some  ∈ [0 1]

• Such individuals are torn between two goals:

— to maximize own payoff

— to ”do the right thing” (cf. Immanuel Kant’s categorical impera-

tive)



• We call individuals with such preferences, , homo moralis, where
 ∈ [0 1] is their degree of morality

• We prove that  = , the so-called index of assortativity of the match-

ing process

( = 0 under uniform random matching,  = 12 between siblings if

they inherit their preferences from their parents)



THE VERY END

Thanks for your attention, good questions & comments!


