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ties of ESS

0.1 The cardinality of AZ55

1 General proper

Proposition 1.1 (Haigh, 1975) The set AEF55 s finite.

Proof sketch:

1. If z € AESS then its support contains no other ESS



2. The game has finitely many pure strategies and hence finitely many
possible supports

e Recall that the empty set is finite and that some games have no ESS

e Recall that all finite games have Nash equilibria (in pure or mixed
strategies) and that this set may be infinite



1.1 Uniform invasion barrier

e Each ESS has a uniform invasion barrier:

Proposition 1.2 x € A jsan ESS = 3 € (0,1) such that for all € € (0, €)
and all y # x:

wlz, ey + (1 —e)x] > 7y, ey + (1 — €)x] .

e Conceptually important because any real population is finite. In a
population of size N, the smallest mutant population share is 1/N



1.2 Local superiority

e Note that an interior ESS earns a higher payoff against all mutants
than these earn against themselves: a form of " global superiority”

Definition 1.1 x € A is locally superior if it has a neighborhood B s.t.
m(z,y) > 7(y,y) Vy # z, y € B.

Proposition 1.3 (Hofbauer, Schuster and Sigmund) =z € AFSS o ¢ s
locally superior.



1.3 Relations to non-cooperative solution concepts

e Evolutionary stability not only implies Nash equilibrium:

Proposition 1.4 = € AP55 = ¢ undominated.

e Hence: z € AESS = (z, ) ("trembling hand”) perfect equilibrium

e One can also prove the following result:

Proposition 1.5 = € AFSS = (x,x) proper equilibrium.



Perfect equilibrium (Selten, 1975) requires robustness to small proba-
bilities of mistakes.

Proper equilibrium (Myerson, 1978) is a refinement of perfection that
requires robustness to small probabilities to mistakes, when less costly
mistakes are an order of magnitude more likely than more costly mis-
takes

Every finite game has at least one proper equilibrium (and hence also
at least one perfect equilibrium)

van Damme (1984) proved the amazing result that, given any finite
normal-form game, and any proper equilibrium in the game: the proper
equilibrium induces a sequential equilibrium (Kreps and Wilson, 1982)

in every extensive-form game with that normal form (see also Kohlberg
and Mertens, 1986)



2 Other evolutionary stability concepts

2.1 Neutral stability

e Weak payoff inequality instead of strict:

Definition 2.1 z € A is a neutrally stable strategy (NSS) if for every
strategy y 3 &y € (0,1) such that for all € € (0,&y):

mlz,ey + (1 —e)z] > m[y,ey + (1 — &)a].

e Sometimes neutral stability is called weak evolutionary stability (and
sometimes these are mixed up)

o Clearly AESS ¢ ANSS « ASNE



e There are games with no NSS:

Example 2.1
1 10
A=1011
1 01
In this game a strategy that is a best reply to itself is a worse reply to its
alternative best replies than they are to themselves.



2.2 Robustness against equilibrium entrants

e Requiring robustness only against "rational” mutants, mutants that
are optimal in the post-entry population

Definition 2.2 (Swinkels, 1992) x € A is robust against equilibrium en-
trants (REE) if 3 € € (0,1) such that for all € € (0,8) and y # x:

y & B [ey+ (1 —e)a]

e There are games with no REE (for example, when all payoffs are the
same)

e Since ESS have uniform invasion barriers:

AESS C AREE C ASNE



2.3 Evolutionarily stable sets of strategies

e Thomas (1985)

Definition 2.3 A non-empty and closed set X is an evolutionarily stable
set (an ES set) if there each x € X has some neighborhood B such
w(x,y) > 7 (y,y) for all y € B, with strict inequality if y ¢ X.

o {z*} is an ES set iff z* € AESS (since ESS is equivalent with local
superiority)

e X evolutionarily stable = X ¢ ANVSS

Proposition 2.1 (i) X C A¥55 = X is an ES set, (ii) X, X' ES sets =
X UX'is an ES set, (iii)) X UX'is an ES set and X N X' # &, then X and
X' are ES sets.



2.4 Equilibrium-evolutionary stable sets

e Setwise robustness against “equilibrium entrants:”

Definition 2.4 (Swinkels, 1993) A set X C A is an equilibrium evolution-
arily stable (EES) if it is minimal with respect to the following property:

X is a non-empty and closed subset of ASNE for which 3 & € (0,1)
such that ifx € X, y € A, € € (0,8) and y € Bley+ (1 —¢)x], then
ey+(1l—¢)r e X.



Example 2.2 Entry with veto right to a prisoner’s dilemma (let v > 4):




Pure-strategy normal form payoff matrix (A=abstain, E=enter, C=cooperate,
D—=defect):

AC AD EC ED

AC 2 2 2 2
AD 2 2 2 2
EC 2 2 4 0
ED 2 2 v 1

e To play A, that is to say "no thank you" to the suggestion to play the
PD, seems reasonable, but:

1. Is A compatible with ESS? NSS? [no, because mutants who say "yes
please” and play C in the PD can invade]

2. Is A compatible with EES? [yes, because the above mutants are not
behaving optimally in the post-entry population]



3 The replicator dynamic

[Taylor and Jonker, 1978]

e Domain of analysis the same as for ESS: finite and symmetric two-
player games



Heuristically:

1. A population of individuals who are recurrently and randomly matched
in pairs to play the game

2. Individuals use only pure strategies (like in Nash's mass-action inter-
pretation)

3. A mixed strategy is now interpreted as a population state, a vector of
populations shares

4. Population shares change, depending on the current average payoff to
each pure strategy

5. The changes are described by a system of ordinary differential equations



Formally:

e Again a large (continuum) population playing a symmetric finite game

e But now each individual always plays a pure strategy

e At each time t € R, and for each h € S, let z,(t) be the population
share of h-strategists (individuals who use pure strategy h)

e Population state: x(t) = (z1(t),...,zm(t)) € A



e Expected payoff to pure strategy h at a random match (with el e A
denoting the h* unit vector):

r(e, z) = e Az

e Population average payoff :

m(z,z) = ) zpm(el, z)

heS



The replicator dynamic:

Ty, = [W(eh,x) — W(x,x)] -xp, VYhesS

e Growth rate of population shares:

jjh/xh — ﬂ-(eha 33) - 7'('(513, QE)

e Better (worse) than-average strategies grow (decline) and best replies
have the highest growth rate



3.1 Solving the replicator dynamic

e Polynomial vector field

ful@) = [n(e",2) = m(a, )| 2y,

e Picard-Lindelof Theorem: 3! (global) solution £ : RxA — A through
any initial state z° € A

e Here x = £ (t,x°) is the population state at time t if the initial state

was z°



Dynamic stability concepts

e A population state x is Lyapunov stable if small perturbations does not
initiate a movement away from z. [Formally: for every neighborhood
B of x there should exist a subneighborhood B° C B of x such that
if z° € B then £ (t,2°) € B for all t > 0.]

e A population state is asymptotically stable if it is Lyapunov stable and,
moreover, the population returns asymptotically (over time) towards
x after any sufficiently small perturbation. [Formally: in addition to
Lyapunov stability, x should have a neighborhood A such that x° &
A= &(t,x°) —» x as t — +o0.]



3.2 Connection to ESS

Proposition 3.1 If z € AESS | then z is asymptotically stable in the repli-
cator dynamic

e The converse holds for 2 X 2 games, but not in general

e Counter-example in class



3.3 Connections to non-cooperative game theory

Proposition 3.2 (a) € A Lyapunov stable = x € ASNE (b) 20 ¢
int (A) Alimi_ 400 é(t,2°) =2 = = € ANE (c) h € S strictly
dominated = limy_, o &, (¢, 2°) = 0 Va© € int (A).

e Note that the third result

— does not presume that the solution trajectory converges

— can be strengthened to h € S not rationalizable

e Hence, it is as if, asymptotically over time, CK[game-rationality]
would hold!



Proof sketch for (c): Suppose k € S is strictly dominated by y € A

1. By continuity

arjr%ig [77 (y,x) — W(ek,az)] =0>0

2. Let V :int(A) — R be defined by
V(z) = ) ypIn(zs) — In(zy)

heS

3. Then

V()= VL) 5, = DL SVAYEN
hes 0%h hes Tho Tk

4. Hence, V increases towards +oo along the solution trajectories, so
¢ (t,2°) — 0 for all z° € int(A).



Other results for the replicator dynamic:

Proposition 3.3 (a) x € A asymptotically stable = (x, x) is a ( “trembling-
hand”) perfect equilibrium, (b) x € AN®5 = x Lyapunov stable, (c) X
an ES set = X asymptotically stable (as a set).



THE END

Literature: Chapter 9 in van Damme (1991) or Chapters 2, 3 in Weibull
(1995).



