Lecture 2 EVOLUTIONARY GAME THEORY Toulouse School of Economics

Jörgen Weibull

November 14, 2012

ties of ESS

0.1 The cardinality of Δ^{ESS}

1 General proper

Proposition 1.1 (Haigh, 1975) The set Δ^{ESS} is finite.

Proof sketch:

1. If $x \in \Delta^{ESS}$ then its support contains no other ESS

2. The game has finitely many pure strategies and hence finitely many possible supports

• Recall that the empty set is finite and that some games have no ESS

• Recall that all finite games have Nash equilibria (in pure or mixed strategies) and that this set may be infinite

1.1 Uniform invasion barrier

• Each ESS has a uniform invasion barrier:

Proposition 1.2 $x \in \Delta$ is an ESS $\Rightarrow \exists \ \overline{\varepsilon} \in (0,1)$ such that for all $\varepsilon \in (0,\overline{\varepsilon})$ and all $y \neq x$:

$$\pi [x, \varepsilon y + (1 - \varepsilon)x] > \pi [y, \varepsilon y + (1 - \varepsilon)x].$$

ullet Conceptually important because any real population is finite. In a population of size N, the smallest mutant population share is 1/N

1.2 Local superiority

• Note that an *interior* ESS earns a higher payoff against all mutants than these earn against *themselves*: a form of "global superiority"

Definition 1.1 $x \in \Delta$ is locally superior if it has a neighborhood B s.t. $\pi(x,y) > \pi(y,y) \ \forall y \neq x, y \in B$.

Proposition 1.3 (Hofbauer, Schuster and Sigmund) $x \in \Delta^{ESS} \Leftrightarrow x$ is locally superior.

1.3 Relations to non-cooperative solution concepts

• Evolutionary stability not only implies Nash equilibrium:

Proposition 1.4 $x \in \Delta^{ESS} \Rightarrow x$ undominated.

- Hence: $x \in \Delta^{ESS} \Rightarrow (x, x)$ ("trembling hand") perfect equilibrium
- One can also prove the following result:

Proposition 1.5 $x \in \Delta^{ESS} \Rightarrow (x, x)$ proper equilibrium.

- Perfect equilibrium (Selten, 1975) requires robustness to small probabilities of mistakes.
- Proper equilibrium (Myerson, 1978) is a refinement of perfection that requires robustness to small probabilities to mistakes, when less costly mistakes are an order of magnitude more likely than more costly mistakes
- Every finite game has at least one proper equilibrium (and hence also at least one perfect equilibrium)
- van Damme (1984) proved the amazing result that, given any finite normal-form game, and any proper equilibrium in the game: the proper equilibrium induces a *sequential equilibrium* (Kreps and Wilson, 1982) in every extensive-form game with that normal form (see also Kohlberg and Mertens, 1986)

2 Other evolutionary stability concepts

2.1 Neutral stability

Weak payoff inequality instead of strict:

Definition 2.1 $x \in \Delta$ is a neutrally stable strategy (NSS) if for every strategy $y \exists \bar{\varepsilon}_y \in (0,1)$ such that for all $\varepsilon \in (0,\bar{\varepsilon}_y)$:

$$\pi [x, \varepsilon y + (1 - \varepsilon)x] \ge \pi [y, \varepsilon y + (1 - \varepsilon)x].$$

- Sometimes neutral stability is called weak evolutionary stability (and sometimes these are mixed up)
- ullet Clearly $\Delta^{ESS}\subset\Delta^{NSS}\subset\Delta^{SNE}$

• There are games with no NSS:

Example 2.1

$$A = \left(egin{array}{ccc} 1 & 1 & 0 \ 0 & 1 & 1 \ 1 & 0 & 1 \end{array}
ight)$$

In this game a strategy that is a best reply to itself is a worse reply to its alternative best replies than they are to themselves.

2.2 Robustness against equilibrium entrants

• Requiring robustness only against "rational" mutants, mutants that are optimal in the post-entry population

Definition 2.2 (Swinkels, 1992) $x \in \Delta$ is robust against equilibrium entrants (REE) if $\exists \ \overline{\varepsilon} \in (0,1)$ such that for all $\varepsilon \in (0,\overline{\varepsilon})$ and $y \neq x$:

$$y \notin \beta^* \left[\varepsilon y + (1 - \varepsilon) x \right]$$

- There are games with no REE (for example, when all payoffs are the same)
- Since ESS have uniform invasion barriers:

$$\Delta^{ESS} \subset \Delta^{REE} \subset \Delta^{SNE}$$

2.3 Evolutionarily stable sets of strategies

• Thomas (1985)

Definition 2.3 A non-empty and closed set X is an **evolutionarily stable** set (an **ES** set) if there each $x \in X$ has some neighborhood B such $\pi(x,y) \ge \pi(y,y)$ for all $y \in B$, with strict inequality if $y \notin X$.

- $\{x^*\}$ is an ES set iff $x^* \in \Delta^{ESS}$ (since ESS is equivalent with local superiority)
- X evolutionarily stable $\Rightarrow X \subset \Delta^{NSS}$

Proposition 2.1 (i) $X \subset \Delta^{ESS} \Rightarrow X$ is an ES set, (ii) X, X' ES sets $\Rightarrow X \cup X'$ is an ES set, (iii) $X \cup X'$ is an ES set and $X \cap X' \neq \emptyset$, then X and X' are ES sets.

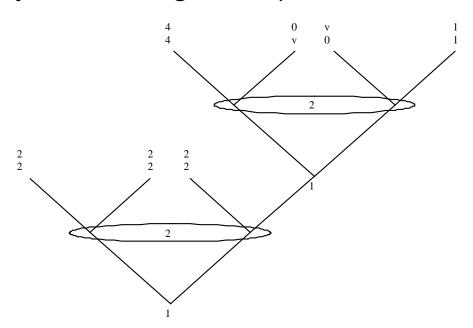
2.4 Equilibrium-evolutionary stable sets

• Setwise robustness against "equilibrium entrants:"

Definition 2.4 (Swinkels, 1993) A set $X \subset \Delta$ is an equilibrium evolutionarily stable (EES) if it is minimal with respect to the following property:

X is a non-empty and closed subset of Δ^{SNE} for which $\exists \ \overline{\varepsilon} \in (0,1)$ such that if $x \in X$, $y \in \Delta$, $\varepsilon \in (0,\overline{\varepsilon})$ and $y \in \widetilde{\beta} [\varepsilon y + (1-\varepsilon)x]$, then $\varepsilon y + (1-\varepsilon)x \in X$.

Example 2.2 Entry with veto right to a prisoner's dilemma (let v > 4):



Pure-strategy normal form payoff matrix (A=abstain, E=enter, C=cooperate, D=defect):

- To play A, that is to say "no thank you" to the suggestion to play the PD, seems reasonable, but:
- 1. Is A compatible with ESS? NSS? [no, because mutants who say "yes please" and play C in the PD can invade]
- 2. Is A compatible with EES? [yes, because the above mutants are not behaving optimally in the post-entry population]

3 The replicator dynamic

[Taylor and Jonker, 1978]

• Domain of analysis the same as for ESS: finite and symmetric twoplayer games

Heuristically:

- 1. A population of individuals who are recurrently and randomly matched in pairs to play the game
- 2. Individuals use only *pure strategies* (like in Nash's mass-action interpretation)
- 3. A mixed strategy is now interpreted as a *population state*, a vector of populations shares
- 4. Population shares change, depending on the *current average payoff* to each pure strategy
- 5. The changes are described by a system of ordinary differential equations

Formally:

- Again a large (continuum) population playing a symmetric finite game
- But now each individual always plays a pure strategy
- At each time $t \in \mathbb{R}$, and for each $h \in S$, let $x_h(t)$ be the population share of h-strategists (individuals who use pure strategy h)
- Population state: $x(t) = (x_1(t), ..., x_m(t)) \in \Delta$

• Expected payoff to pure strategy h at a random match (with $e^h \in \Delta$ denoting the h^{th} unit vector):

$$\pi(e^h, x) = e^h \cdot Ax$$

• Population average payoff:

$$\pi(x,x) = \sum_{h \in S} x_h \pi(e^h, x)$$

The replicator dynamic:

$$\dot{x}_h = \left[\pi(e^h, x) - \pi(x, x)\right] \cdot x_h \quad \forall h \in S$$

• Growth rate of population shares:

$$\dot{x}_h/x_h = \pi(e^h, x) - \pi(x, x)$$

• Better (worse) than-average strategies grow (decline) and *best* replies have the highest growth rate

3.1 Solving the replicator dynamic

Polynomial vector field

$$f_h(x) = \left[\pi(e^h, x) - \pi(x, x)\right] x_h$$

- ullet Picard-Lindelöf Theorem: $\exists !$ (global) solution $\xi: \mathbb{R} \times \Delta \to \Delta$ through any initial state $x^o \in \Delta$
- Here $x = \xi(t, x^o)$ is the population state at time t if the initial state was x^o

Dynamic stability concepts

- A population state x is Lyapunov stable if small perturbations does not initiate a movement away from x. [Formally: for every neighborhood B of x there should exist a subneighborhood $B^o \subset B$ of x such that if $x^o \in B^o$ then $\xi(t, x^o) \in B$ for all t > 0.]
- A population state is asymptotically stable if it is Lyapunov stable and, moreover, the population returns asymptotically (over time) towards x after any sufficiently small perturbation. [Formally: in addition to Lyapunov stability, x should have a neighborhood A such that $x^o \in A \Rightarrow \xi(t, x^o) \to x$ as $t \to +\infty$.]

3.2 Connection to ESS

Proposition 3.1 If $x \in \Delta^{ESS}$, then x is asymptotically stable in the replicator dynamic

- ullet The converse holds for 2 imes 2 games, but not in general
- Counter-example in class

3.3 Connections to non-cooperative game theory

Proposition 3.2 (a) $x \in \Delta$ Lyapunov stable $\Rightarrow x \in \Delta^{SNE}$, (b) $x^o \in int(\Delta) \wedge \lim_{t \to +\infty} \xi(t, x^o) = x \Rightarrow x \in \Delta^{SNE}$, (c) $h \in S$ strictly dominated $\Rightarrow \lim_{t \to +\infty} \xi_h(t, x^o) = 0 \ \forall x^o \in int(\Delta)$.

- Note that the third result
 - does not presume that the solution trajectory converges
 - can be strengthened to $h \in S$ not rationalizable
- Hence, it is as if, asymptotically over time, CK[game+rationality]
 would hold!

Proof sketch for (c): Suppose $k \in S$ is strictly dominated by $y \in \Delta$

1. By continuity

$$\min_{x \in \Delta} \left[\pi(y, x) - \pi(e^k, x) \right] = \delta > 0$$

2. Let $V: int(\Delta) \to \mathbb{R}$ be defined by

$$V(x) = \sum_{h \in S} y_h \ln(x_h) - \ln(x_k)$$

3. Then

$$\dot{V}(x) = \sum_{h \in S} \frac{\partial V(x)}{\partial x_h} \dot{x}_h = \sum_{h \in S} \frac{y_h \dot{x}_h}{x_h} - \frac{\dot{x}_k}{x_k} \ge \delta \quad \forall x \in \Delta$$

4. Hence, V increases towards $+\infty$ along the solution trajectories, so $\xi_k(t, x^o) \to 0$ for all $x^o \in int(\Delta)$.

Other results for the replicator dynamic:

Proposition 3.3 (a) $x \in \Delta$ asymptotically stable \Rightarrow (x,x) is a ("trembling-hand") perfect equilibrium, (b) $x \in \Delta^{NSS} \Rightarrow x$ Lyapunov stable, (c) X an ES set $\Rightarrow X$ asymptotically stable (as a set).

THE END

Literature: Chapter 9 in van Damme (1991) or Chapters 2, 3 in Weibull (1995).