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ties of ESS

0.1 The cardinality of ∆

1 General proper

Proposition 1.1 (Haigh, 1975) The set ∆ is finite.

Proof sketch:

1. If  ∈ ∆ then its support contains no other ESS



2. The game has finitely many pure strategies and hence finitely many

possible supports

• Recall that the empty set is finite and that some games have no ESS

• Recall that all finite games have Nash equilibria (in pure or mixed
strategies) and that this set may be infinite



1.1 Uniform invasion barrier

• Each ESS has a uniform invasion barrier :

Proposition 1.2  ∈ ∆ is an ESS⇒ ∃ ̄ ∈ (0 1) such that for all  ∈ (0 ̄)
and all  6= :

 [  + (1− )]   [  + (1− )] 

• Conceptually important because any real population is finite. In a

population of size  , the smallest mutant population share is 1



1.2 Local superiority

• Note that an interior ESS earns a higher payoff against all mutants

than these earn against themselves: a form of ”global superiority”

Definition 1.1  ∈ ∆ is locally superior if it has a neighborhood  s.t.

( )  ( ) ∀ 6=   ∈ .

Proposition 1.3 (Hofbauer, Schuster and Sigmund)  ∈ ∆ ⇔  is

locally superior.



1.3 Relations to non-cooperative solution concepts

• Evolutionary stability not only implies Nash equilibrium:

Proposition 1.4  ∈ ∆ ⇒  undominated.

• Hence:  ∈ ∆ ⇒ ( ) (”trembling hand”) perfect equilibrium

• One can also prove the following result:

Proposition 1.5  ∈ ∆ ⇒ ( ) proper equilibrium.



• Perfect equilibrium (Selten, 1975) requires robustness to small proba-

bilities of mistakes.

• Proper equilibrium (Myerson, 1978) is a refinement of perfection that

requires robustness to small probabilities to mistakes, when less costly

mistakes are an order of magnitude more likely than more costly mis-

takes

• Every finite game has at least one proper equilibrium (and hence also

at least one perfect equilibrium)

• van Damme (1984) proved the amazing result that, given any finite
normal-form game, and any proper equilibrium in the game: the proper

equilibrium induces a sequential equilibrium (Kreps and Wilson, 1982)

in every extensive-form game with that normal form (see also Kohlberg

and Mertens, 1986)



2 Other evolutionary stability concepts

2.1 Neutral stability

• Weak payoff inequality instead of strict:

Definition 2.1  ∈ ∆ is a neutrally stable strategy (NSS) if for every

strategy  ∃ ̄ ∈ (0 1) such that for all  ∈ (0 ̄):

 [  + (1− )] ≥  [  + (1− )] 

• Sometimes neutral stability is called weak evolutionary stability (and
sometimes these are mixed up)

• Clearly ∆ ⊂ ∆ ⊂ ∆



• There are games with no NSS:

Example 2.1

 =

⎛⎜⎝ 1 1 0
0 1 1
1 0 1

⎞⎟⎠
In this game a strategy that is a best reply to itself is a worse reply to its

alternative best replies than they are to themselves.



2.2 Robustness against equilibrium entrants

• Requiring robustness only against ”rational” mutants, mutants that
are optimal in the post-entry population

Definition 2.2 (Swinkels, 1992)  ∈ ∆ is robust against equilibrium en-

trants (REE) if ∃ ̄ ∈ (0 1) such that for all  ∈ (0 ̄) and  6= :

 ∈ ∗ [ + (1− )]

• There are games with no REE (for example, when all payoffs are the
same)

• Since ESS have uniform invasion barriers:

∆ ⊂ ∆ ⊂ ∆



2.3 Evolutionarily stable sets of strategies

• Thomas (1985)

Definition 2.3 A non-empty and closed set  is an evolutionarily stable

set (an ES set) if there each  ∈  has some neighborhood  such

 ( ) ≥  ( ) for all  ∈ , with strict inequality if  ∈ .

• {∗} is an ES set iff ∗ ∈ ∆ (since ESS is equivalent with local

superiority)

•  evolutionarily stable ⇒  ⊂ ∆

Proposition 2.1 (i)  ⊂ ∆ ⇒  is an ES set, (ii)  0 ES sets ⇒
 ∪ 0is an ES set, (iii)  ∪0is an ES set and  ∩0 6= ∅, then  and

0 are ES sets.



2.4 Equilibrium-evolutionary stable sets

• Setwise robustness against “equilibrium entrants:”

Definition 2.4 (Swinkels, 1993) A set  ⊂ ∆ is an equilibrium evolution-

arily stable (EES) if it is minimal with respect to the following property:

 is a non-empty and closed subset of ∆ for which ∃ ̄ ∈ (0 1)

such that if  ∈ ,  ∈ ∆,  ∈ (0 ̄) and  ∈ ̃ [ + (1− )], then

 + (1− ) ∈ .



Example 2.2 Entry with veto right to a prisoner’s dilemma (let   4):
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Pure-strategy normal form payoffmatrix (A=abstain, E=enter, C=cooperate,

D=defect):

   
 2 2 2 2
 2 2 2 2
 2 2 4 0
 2 2  1

• To play A, that is to say ”no thank you” to the suggestion to play the
PD, seems reasonable, but:

1. Is A compatible with ESS? NSS? [no, because mutants who say ”yes

please” and play C in the PD can invade]

2. Is A compatible with EES? [yes, because the above mutants are not

behaving optimally in the post-entry population]



3 The replicator dynamic

[Taylor and Jonker, 1978]

• Domain of analysis the same as for ESS: finite and symmetric two-
player games



Heuristically:

1. A population of individuals who are recurrently and randomly matched

in pairs to play the game

2. Individuals use only pure strategies (like in Nash’s mass-action inter-

pretation)

3. A mixed strategy is now interpreted as a population state, a vector of

populations shares

4. Population shares change, depending on the current average payoff to

each pure strategy

5. The changes are described by a system of ordinary differential equations



Formally:

• Again a large (continuum) population playing a symmetric finite game

• But now each individual always plays a pure strategy

• At each time  ∈ R, and for each  ∈ , let () be the population

share of -strategists (individuals who use pure strategy )

• Population state: () = (1()  ()) ∈ ∆



• Expected payoff to pure strategy  at a random match (with  ∈ ∆

denoting the  unit vector):

( ) =  ·

• Population average payoff :

( ) =
X
∈

(
 )



The replicator dynamic:

̇ =
h
( )− ( )

i
·  ∀ ∈ 

• Growth rate of population shares:

̇ = ( )− ( )

• Better (worse) than-average strategies grow (decline) and best replies
have the highest growth rate



3.1 Solving the replicator dynamic

• Polynomial vector field

() =
h
( )− ( )

i


• Picard-Lindelöf Theorem: ∃! (global) solution  : R×∆→ ∆ through

any initial state  ∈ ∆

• Here  =  ( ) is the population state at time  if the initial state

was 



Dynamic stability concepts

• A population state  is Lyapunov stable if small perturbations does not
initiate a movement away from . [Formally: for every neighborhood

 of  there should exist a subneighborhood  ⊂  of  such that

if  ∈  then  ( ) ∈  for all   0.]

• A population state is asymptotically stable if it is Lyapunov stable and,
moreover, the population returns asymptotically (over time) towards

 after any sufficiently small perturbation. [Formally: in addition to

Lyapunov stability,  should have a neighborhood  such that  ∈
⇒  ( )→  as → +∞.]



3.2 Connection to ESS

Proposition 3.1 If  ∈ ∆, then  is asymptotically stable in the repli-

cator dynamic

• The converse holds for 2× 2 games, but not in general

• Counter-example in class



3.3 Connections to non-cooperative game theory

Proposition 3.2 (a)  ∈ ∆ Lyapunov stable ⇒  ∈ ∆, (b)  ∈
 (∆) ∧ lim→+∞  ( ) =  ⇒  ∈ ∆, (c)  ∈  strictly

dominated ⇒ lim→+∞  ( 
) = 0 ∀ ∈  (∆).

• Note that the third result

— does not presume that the solution trajectory converges

— can be strengthened to  ∈  not rationalizable

• Hence, it is as if, asymptotically over time, CK[game+rationality]
would hold!



Proof sketch for (c): Suppose  ∈  is strictly dominated by  ∈ ∆

1. By continuity

min
∈∆

h
 ( )− ( )

i
=   0

2. Let  : (∆)→ R be defined by

 () =
X
∈

 ln()− ln()

3. Then

̇ () =
X
∈

 ()


̇ =

X
∈

̇


− ̇

≥  ∀ ∈ ∆

4. Hence,  increases towards +∞ along the solution trajectories, so
 ( 

)→ 0 for all  ∈ (∆).



Other results for the replicator dynamic:

Proposition 3.3 (a)  ∈ ∆ asymptotically stable⇒ ( ) is a (“trembling-

hand”) perfect equilibrium, (b)  ∈ ∆ ⇒  Lyapunov stable, (c) 

an ES set ⇒  asymptotically stable (as a set).



THE END

Literature: Chapter 9 in van Damme (1991) or Chapters 2, 3 in Weibull

(1995).


