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Abstract

The procurement of an innovation involves motivating a research effort to generate

a new idea and then implementing that idea efficiently. If research efforts are unver-

ifiable and implementation costs are private information, a trade-off arises between

the two objectives. The optimal mechanism resolves the tradeoff via two instruments:

a monetary prize and a contract to implement the project. The optimal mechanism

favors the innovator in contract allocation when the value of innovation is above a

certain threshold, and handicaps the innovator in contract allocation when the value

of innovation is below that threshold. A monetary prize is employed as an additional

incentive but only when the value of innovation is sufficiently high.
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1 Introduction

When buyers have specific needs that the products and services available on the market

cannot readily satisfy, they may procure an innovation. This is, however, considerably more

involved than procuring a readily available product. While the latter process can simply focus

on identifying the most qualified provider, the former involves identifying and motivating

a firm to engage in costly research to develop an idea and subsequently identifying a firm

(possibly the same or a different one) to implement that idea. Questions arise as to how to

incentivize a potential innovator. Should the buyer offer a prize? Or should the buyer favor

the innovator when allocating the contract to implement the project?

These questions have triggered intense debates among academics and policy makers alike.

In particular, using contract rights as incentives for innovation remains controversial. If an

innovator happens to be the most efficient at implementing the innovation, he/she should

be selected to perform the job. But there appears no clear justification for favoring the

innovator at the implementation stage above and beyond the level warranted by efficient

allocation. Indeed, intuition suggests that any incentive the buyer can provide via distorting

contract allocation can be provided more efficiently with pure monetary prizes. The purpose

of the current paper is to investigate these questions.

The lack of consensus on this issue is apparent in the treatment of unsolicited proposals.

According to Hodges and Dellacha (2007), public procurement authorities in most coun-

tries would consider unsolicited proposals, but they follow different approaches in rewarding

the proposers. In some countries, public authorities are explicitly prevented from directly

rewarding unsolicited project proposals; hence, the incentive to submit a project proposal

can only come from participation in the tender for its implementation should the public

authority decide to pursue the project. By contrast, other countries, such as Chile, Korea,

Italy, and Taiwan, have adopted specific procedures for unsolicited proposals that grant the

project promoter an advantage at the implementation stage.

Incentivizing unverifiable effort is also central to public procurement of innovation. Eu-

rope is currently developing an explicit strategy of using public procurement to foster demand

for innovative goods and services, but how contract rights should be assigned remains an

open question. In this regard, the European Commission has outlined two different procure-

ment models. Under the “Pre-commercial procurement” (PCP) model, the public authority

procures R&D activities from the solution exploration phase to prototyping and testing, but

it reserves the right to competitively tender the newly developed products or services.1 By

1See EC (2007) and http://cordis.europa.eu/fp7/ict/pcp/home en.html
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contrast, under the “Innovation Partnerships” model, development and production are pro-

cured through one single tender, with the innovator also obtaining the contract rights over

the production of the innovation.2

In this paper, we study the interplay between ex ante incentives for R&D activities, and

ex post efficiency in project implementation. We consider a baseline model in which a single

innovator can generate an idea by investing in a costly research effort. Not only does this

model clearly reveal our insights, but the single-innovator assumption is also quite realistic.

In practice, many innovative projects procured by public agencies are unsolicited, and these

proposals arrive at a given point in time. The value of the idea is verifiable, and higher

research effort leads (stochastically) to better ideas. The innovation gives rise to a project

that can be implemented by a number of firms, including the innovator. As the value of the

proposal is verifiable, the innovator can be rewarded with a monetary prize and, through

the contract, for the implementation of the project. We study how the optimal mechanism

resolves the trade-off between R&D incentives at the innovation stage and allocative efficiency

at the implementation stage.

As mentioned, monetary prizes have no impact on allocative efficiency and, as such,

may appear to be superior to contract rights for providing incentives for innovation. Indeed,

prizes would be preferable in the absence of any agency problem at the implementation stage.

The optimal mechanism would then reward the innovator with a monetary prize when the

buyer finds its project worthy of pursuing, but the right to implement the project would be

based purely on the implementors’ merits. The situation is different when agency problems

generate some rents at the implementation stage, as these rents could then potentially be

used to motivate the innovator at no additional cost to the buyer. Indeed, we show that

contract rights can be a central tool for providing incentives for innovation.

To study this issue, we consider the case in which potential implementors are privately

informed about their costs. We find that the optimal mechanism provides incentives for

research effort through a combination of monetary prizes and implementation contract rights.

The intuition is simple: a standard procurement auction would pick the implementor with

the lowest cost but would also give it an information rent; it is instead optimal to use

this rent to incentivize the innovator. Hence, when the proposal is of sufficient merit, the

innovator is favored in the implementation tender and may thus win the contract even if its

cost is not the lowest. Furthermore, the project may be implemented even when, because of

high costs, it would not be implemented in a standard procurement auction. Conversely, the

2See the EU (2014), the EU Directive 2014/24/EU, available at.http://eur-lex.europa.eu/legal-

content/EN/TXT/?uri=CELEX:32014L0024
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optimal mechanism biases the implementation tender against the innovator when the project

has a low value. Monetary prizes, however, remain valuable: if the project is of particular

merit, the innovator may receive financial compensation in addition to being favored in the

implementation tender. Finally, whenever such a prize is awarded, it is awarded regardless

of whether or not the innovator eventually wins the contract.

Comparative statics reflect the same insights. When firms’ costs are more heterogeneous,

information rents become more significant, which makes it optimal for the buyer to rely more

on contract rights to incentivize innovation. By contrast, the optimal mechanism involves a

prize (that is, contract rights alone are not sufficient) when costs are not very heterogeneous

or when the number of firms is high (as the innovator’s information rent is low) or when the

value of innovation is high (as the information rent may be insufficient to motivate effort).

Equipped with these findings, we extend the model to allow for multiple innovators. This

situation is relevant when the buyer has a clear sense about the type of innovation she needs

and its feasibility. We show that the above insights carry over. First, our results confirm

the optimality of the use of contract rights for rewarding innovations: the project values

affect the optimal allocation of contract rights, with the proposer of a high-value project

being favored at the implementation stage. Second, a “winner-takes-all” principle holds,

in the sense that at most only one project is awarded a prize; this monetary prize is now

warranted when the project is particularly valuable and/or when an innovator’s research

effort is particularly worth incentivizing.

Our analysis also clarifies whether the selection of the project and the choice of the

implementor should be independent or joint decisions. When the choice of the project does

not affect the implementor’s informational rents, the project can be selected independently

of the choice of the implementor; a project is then chosen based solely on its merit, without

regard to which firm will implement it. Still, as in the single-innovator case, the choice of the

implementor remains biased in favor of or against the innovator, depending on the value of

its proposal. When instead, the choice of the project affects the implementor’s information

rents, it can be optimal to distort the project selection as well; in this case, both the project

selection and the choice of implementor should depend on the values of the proposals as well

as on implementation costs.

The paper is organized as follows. In Section 2, we discuss the related literature. In

Section 3, we study the case of a single innovator, which is relevant for unsolicited proposals.

Section 3.1 establishes the model, Section 3.2 presents a number of benchmarks, and section

3.3 develops the main analysis. In Section 4, we extend the analysis to the case of multiple

innovators, which is more relevant for the procurement of innovation. In Section 5, we
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discuss the insights that our analysis offers for the approaches used in practice for unsolicited

proposals and innovation procurement. In Section 6, we make some concluding remarks.

2 Related Literature

On prizes versus property rights to motivate innovation. Our issue of prize vs.

contract is reminiscent of the well-known debate about patent systems as an effective method

of motivating innovation – see Maurer and Scotchmer (2004) and Cabral et al. (2006) for

reviews. Just as in our model, the patent system involves ex post distortion ( in terms

of both too little quantity and foreclosure on competing firms), making prizes apparently

preferable – see, e.g., Kremer, 1998. Yet the literature has shown that, as in this paper, ex

post distortion can be an optimal way to motivate ex ante innovation. The difference lies in

the motivation for the ex post distortion. In the case of Weyl and Tirole (2012), for instance,

the supplier has private information at the ex ante (innovation) stage; he obtains property

rights to facilitate information revelation. In our case, the private information in the ex post

implementation stage, coupled with limited liability, forces the buyer to give up rents to the

winning supplier. These rents can be harnessed as incentives for innovation, but only when

the allocation of the contract rights is shifted in favor the innovator. That is, the distortion

in the allocation of contracts rights arises a way to incentivize innovation.

On bundling sequential tasks. Our analysis is related to the literature on whether

two tasks should be allocated to the same agent (“bundling”) or to two different agents

(“unbundling”). The existing literature finds that this choice can be driven by problems of

adverse selection (see, e.g., Ghatak, 1997; Armendariz and Gollier, 1998), monitoring (Besley

and Coate, 1995; Armendariz, 1999; Rai and Sjöström, 2004), moral hazard (Stiglitz, 1990;

Varian 1990; Holmstrom and Milgrom, 1991; Itoh, 1993), or agents’ limited liability (Laffont

and Rey, 2003). More recently, a second strand of literature has focused more specifically

on sequential tasks, highlighting the role of externalities across tasks (Bennett and Iossa,

2006), budget constraints (Schmitz, 2013), information on the ex post value of the second

task (Tamada and Tsai, 2007), or competition among agents (Li and Yu, 2011). Our paper

contributes to this literature by showing that the implementation decision should depend

on the value of the proposed project(s) as well as on the implementor’s characteristics. Full

unbundling is therefore typically not optimal, while pure bundling is optimal only under

rather specific conditions – namely, when the innovator is in a much better position to

implement its project.

On discrimination and bidding parity in auctions. Our analysis is also related to
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the literature on discrimination in auctions, which finds it optimal to distort the allocation to

reduce the information rents accruing to the bidders: discrimination against efficient types

helps to level the playing field and thus elicits more aggressive bids from otherwise stronger

bidders (Myerson, 1981, and McAfee and McMillan, 1985). In a similar vein, when bidders

can invest in cost reduction, an ex post bias in the auction design can help to foster bidders’

ex ante investment incentives (Bag 1997) or to prevent the reinforcement of asymmetry

among market participants (Arozamena and Cantillon, 2004). Likewise, manipulating the

auction rules can help motivate selfish investment in cost reduction by an incumbent firm

(Laffont and Tirole, 1988) or favor the adoption of an efficient technology by an inefficient

firm (Branco, 2002). We contribute to this literature by showing that when investment is

“cooperative” (in the sense of Che and Hausch, 1999) and directly benefits the buyer, both

favoritism and handicapping are optimal, depending on the value of the proposed project

and on the bidders’ costs.

3 Unsolicited Proposals

We consider here the case in which a single innovator may develop a project, as is often

the case with unsolicited proposals. The decision facing the buyer is whether to adopt the

project and, if so, how to implement it via competition among multiple firms.

3.1 Model

A principal (buyer) oversees a project involving two stages: Innovation and Implementation.

In the first stage, an innovator, say firm 1, invests in developing the project proposal:

exerting effort e ≥ 0 costs the innovator c(e) and leads to a project whose value for the

principal is a random variable v. We assume that c(·) is increasing, strictly convex and twice

differentiable, and satisfies c′(0) = 0. The variable v is drawn from V := [v, v̄] according

to a c.d.f. F (·|e), which admits a twice-differentiable density f (·|e) in the interior. We

assume that raising e shifts the distribution F (·|e) in the sense of a Monotone Likelihood

Ratio Property:
f(v′|e′)
f(v|e′)

>
f(v′|e)
f(v|e)

, for any v′ > v and e′ > e. (MLRP )

We assume that although the effort choice e by the innovator is unobservable to all parties

other than firm 1, the value v of the resulting project is publicly observable and verifiable,

once the project proposal is unveiled. The verifiability of v is a reasonable assumption in

6



many procurement contexts, where the project the buyer wishes to procure is described in

the tender documents using precise functional and performance terms. For example, the

request for proposal (RFP) may specify technology improvements for faster medical tests,

transport units with lower energy consumption, information and communication technology

(ICT) systems with interoperability characteristics, and so on. In these cases, v may capture

respectively a speed increase for the medical test, the degree of energy efficiency of the trans-

port unit, the interoperability features of the ICT system, or other technical functionalities

specified in the tender and verified in the submitted prototypes.

In the second stage, n potential firms, including the innovator, compete to implement

the project. Each firm i ∈ N := {1, ..., n} faces a cost θi, which is privately observed and

drawn from Θ :=
[
θ, θ
]

according to a c.d.f. Gi(·), which admits density gi(·) in the interior.

We assume that θ < v. If the project is not implemented, all parties obtain zero payoff. We

assume that Gi(θi)/gi(θi) is nondecreasing in θi, for each i ∈ N .

Suppose that the innovator has made an effort e and generates an innovation worth v. If

the principal pays t for the project, then the principal internalizes the welfare of

v − t.

By the revelation principle, we can formulate the problem facing the principal as that of

choosing a direct revelation mechanism. A direct mechanism is denoted by: (x, t) : V ×Θn →
∆n ×Rn, which specifies the probability xi(v, θ) that firm i implements the project and the

transfer payment ti(v, θ) that it receives, when the project developed by firm 1 has value v

and firms report types θ := (θ1, ..., θn), where ∆n := {(x1, ..., xn) ∈ [0, 1]n|
∑

i∈N xi ∈ [0, 1]}.
The dependence of the mechanism on the project value v reflects its verifiability, whereas

the absence of the argument e arises from its unobservability to the principal.

For each v ∈ V , let

ui(v, θ
′
i|θi) := Eθ−i [ti(v, (θ

′
i, θ−i)))− θixi(v, (θ′i, θ−i)))]

denote the interim expected profit that firm i could obtain by reporting a cost θ′i when it

actually faces a cost θi, and let

Ui(v, θi) := ui(v, θi|θi)

denote firm i’s expected payoff under truthful revelation when its type is θi.

Then, the revelation principle requires the direction mechanism (x, t) to satisfy incentive

compatibility:

Ui(v, θi) ≥ ui(v, θ
′
i|θi), ∀i ∈ N,∀v ∈ V, ∀ (θi, θ

′
i) ∈ Θ2. (IC)
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The timing of the game is as follows:

1. The principal offers a direct revelation mechanism specifying the allocation decision

(i.e., whether the project will be implemented and, if so, by which firm) and a payment

to each firm, as functions of firms’ reports on their costs.

2. The innovator chooses e; the value v is realized and observed by all parties.

3. Firms observe their costs and decide whether to participate.

4. Participating firms report their costs, the project is implemented (or not), and transfers

are made according to the procedure.

Note that firms participate only after learning their cost. In particular, this means that

the principal cannot force the firms to participate in before the project is developed by the

innovator. This is a natural assumption in many settings and particularly so in the case

of unsolicited proposals because until the nature of the project—its value and the costs of

implementing it—is determined, the identities of the candidates capable of executing the

project will not be known. This makes it difficult for the principal to solicit the relevant

firms and to force them to buy in. This feature requires the direct mechanism (x, t) to satisfy

individually rationality :

Ui(v, θi) ≥ 0, ∀i ∈ N,∀v ∈ V, ∀θi ∈ Θ, (IR)

It will be seen that this requirement together with (IC) will cause the principal to give up

information rents to a firm at the implementation stage.3 In the same vein, we assume that

the payment to the innovator must be non-negative: i.e., t1(v, θ) ≥ 0 for all (v, θ). [I think

this is needed as an additional assumption, or else the innovator will be charged a fee, which

will be refunded only when v > ṽ.]

We also assume that the principal must at least break even for each realized value v of the

project. In other words, a feasible mechanism (x, t) must satisfy limited liability condition:

Eθ [w (v, θ)] ≥ 0, ∀v ∈ V, (LL)

3In the absence of the individual rationality constraint, the principal could implement the project without

any rents accruing to the firms because the firms could be required to “buy-in” to a contract via an upfront

fee. As a result, the first best could be achieved at the implementation stage, and there would be no gain

from using contract rights to reward the innovator; monetary prizes would indeed be preferable.
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where

w (v, θ) :=
∑
i∈N

[xi (v, θ) v − ti (v, θ)]

denotes the principal’s surplus upon realizing the value v of the project. Public projects are

scrutinized by various stake-holders such as legislative body, project evaluation authority,

consumer advocacy groups, and media, which reject a project that is likely to run a loss.

Limited liability may arise from such a political feasibility constraint. It is not crucial that

the constraint is of the particular form assumed in (LL); the general thrust of our analysis

carries through as long as there there is some cap on either the maximum loss the principal

can sustain or the maximum payment she can make to the firm.4

Finally, since the as the innovator chooses effort e in its best interest, the mechanism

must also satisfy the following moral hazard condition:

e ∈ arg max
ẽ
{Ev,θ [U1(v, θ1) | ẽ]− c(ẽ)} . (MH)

The principal’s problem is to choose an optimal mechanism satisfying these constraints.

More formally, she solves the problem:

[P ] max
x,t,e

Ev,θ [w (v, θ) | e] ,

subject to

(IR), (IC), (LL), and (MH)

3.2 Benchmarks

Before solving [P ], it is useful to begin with two benchmarks.

No adverse selection ex post. In this benchmark, we shut off the adverse selection prob-

lem by assuming that that the principal observes the firms’ implementation costs. Formally,

the problem facing the principal will then be the same as [P ], except that the constraint (IC)

is absent. We label such the relaxed problem [P − FB]. In this problem, once the principal

approves the project, she can have any firm i implement the project by simply paying its true

cost θi. In other words, the implementing firm does not command any information rents.

4Without any constraint on the maximum payment the principal can make to the firm, the optimal

mechanism would not be well defined: the principal would find it desirable to pay an arbitrarily large bonus

to the innovator only for a vanishingly set of projects with values close to v. Such a scheme may be of

theoretical interest but is unreasonable and unrealistic.
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As will be formally stated shortly, this feature implies that the principal finds no reason to

rely on contracting rights to provide incentive for the innovator. Hence, to deal with the

moral hazard problem (MH), the principal will solely rely on the monetary prize. The logic,

which conforms to the conventional wisdom, is clear: monetary prize is distortion-free, while

contracting rights do involve distortion.

Thus, the solution to [P − FB] is characterized as follows:

Proposition 1. (First-Best) There exist λFB and eFB, both strictly positive, such that the

optimal mechanism solving [P −FB] awards firm i a contract to implement the project with

probability:

xFBi (v, θ) :=

{
1 if θi < min {v,minj 6=i θj} ,

0 otherwise,

with a transfer that simply compensates the winning firm’s cost, except that firm 1 is paid

additionally a monetary prize equal to

ρFB1 (v) :=

{
Eθ
[∑

i∈N x
FB
i (v, θ) [v − θi)]

]
> 0 if v > v̂FB,

0 if v < v̂FB,

where v̂FB solves βFB(v̂FB) = 1,

βFB(v) := λFB
fe(v|eFB)

f(v|eFB)
,

and eFB satisfies (MH) with equality.

Proof. See Appendix A. �

The manner in which the optimal mechanism awards the cash prize is intuitive, and

follows the familiar logic from the moral hazard literature (e.g., Holmstrom (1979)). The

key variable is βFB(v) := λFB fe(v|eFB)
f(v|eFB)

, which captures incentive benefit from paying an

additional dollar to the innovator at the optimum for v. The realized project value v is an

informative signal for the innovator’s effort, and paying an additional dollar to the innovator

for a project with value v relaxes (MH) by fe(v|eFB)
f(v|eFB)

. Multiplied with the shadow value λFB of

relaxing (MH), βFB (v) = λFB fe(v|e)
f(v|e) gives the incentive benefit to the principal by relaxing

(MH) at the optimum.5 Naturally, the optimal mechanism calls for paying the maximal

feasible prize to the innovator if βFB (v) > 1 and zero prize otherwise. Given (MLRP ),

5The reader may recall that this term also figures prominently in the moral hazard literature, starting

with Holmstrom (1979), denoting the incentive the principal provides to the agent to motivate the latter’s

effort.
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the incentive benefit fe(v|eFB)
f(v|eFB)

is strictly increasing in v, so the threshold value v̂FB is well-

defined. Simply put, the optimal mechanism calls for paying as much as possible to the

innovator whenever the project value v is high enough to indicate that the incentive benefit

exceeds the cost, and nothing otherwise. In the former case, (LL) must be binding, so the

maximal feasible prize is given by the net surplus the project generates after reimbursing

the implementing firm.

In sum, given no adverse selection, the principle never uses contracting rights to motivate

the innovating firm.

No moral hazard ex ante. In this benchmark, we shut off the moral hazard problem by

assuming that the project value follows some exogenous distribution F (v) which does not

depend on effort. Formally, the problem facing the principal in this benchmark coincides with

[P ] except that the moral hazard constraint (MH) is absent and the distribution function

F (v|e) is replaced by some exogenous distribution F (v). The resulting problem, labeled

[P − SB], conforms to the standard optimal auction design problem, except for the (LL)

constraint. Ignoring the latter, the optimal auction solution, labeled the optimal second-

best mechanism, is familiar from Myerson (1981). Indeed, one can easily see that that

solution satisfies (LL), and thus constitutes an optimal solution to [P − SB] as well. Since

the associated analysis is standard, we provide the characterization of the optimal solution

without a proof.

Proposition 2. (Myerson) The optimal second-best mechanism awards firm i the contract

to implement the project with probability:

xSBi (v, θi) :=

{
1 if Ji(θi) ≤ min {v,minj 6=i Jj(θj)} ,

0 otherwise,

where Ji(θi) := θi + Gi(θi)
gi(θi)

is firm i’s virtual cost.

3.3 Optimal Mechanism

We now consider our main problem in which the principal faces ex post adverse selection

with respect to firms’ implementation costs as well as an ex ante moral hazard problem

with respect to the innovator’s effort. As in the standard auction problem just considered,

Throughout the analysis, we assume that an optimal mechanism exists, which induces an

interior effort level e∗. The following Proposition characterizes this optimal mechanism:

11



Proposition 3. There exists λ∗ > 0 and e∗ > 0 such that the optimal mechanism solving

[P ] is characterized as follows:

(i) The mechanism assigns a contract to firm i = 1, ..., n to implement the project with

probability

x∗i (v, θ) =

{
1 if Ki(v, θi) ≤ min {v,minj 6=iKj(v, θj)} ,
0 otherwise,

where

Ki(v, θi) :=

{
Ji (θi)−min {β (v) , 1} Gi(θi)

gi(θi)
if i = 1

Ji (θi) if i 6= 1
, with β (v) := λ

fe(v|e∗)
f(v|e∗)

.

(ii) The mechanism awards firm i a transfer

t∗i (v, θi) := ρi(v) +

∫ θ

θi

X∗i (v, s)ds,

where X∗i (v, θi) = Eθ−i [x∗i (v, (θi, θ−i))], and the transfer includes no cash prize (ρ∗i (v) :=

0) for a non-innovator i 6= 1 and involves a cash prize to the innovator i = 1:

ρ∗1(v) :=

{
Eθ
[∑

i∈N x
∗
i (v, θ) [v − Ji(θi)]

]
> 0 if β (v) > 1,

0 if β (v) < 1.

(iii) The optimal mechanism induces firm 1 to choose innovation effort e∗ > 0 which satisfies∫
v

∫
θ

[
ρ1(v) +

G1(θ)

g1(θ)
x∗1(v, θ)

]
g(θ)dθfe(v|e∗)dv = c′(e∗).

Proof. See Appendix B. �

To gain more intuition about this characterization, it is useful to decompose the princi-

pal’s payment to each firm into two components. The first component is the information rent

that she must pay to elicit the firm’s private information. By the standard envelope theorem

argument, this component is uniquely tied to—and should therefore be interpreted as being

necessitated by—the awarding of the contract to a firm. We thus call this contract payment.

The second component is the constant amount paid to all cost types of a firm, including the

highest cost type θ. As this component is not warranted by contract assignment, we call it

the cash prize and denote it by ρ∗i (v). Obviously, the principal would never pay any cash

prizes to non-innovating firms i = 2, ..., n. For the innovating firm i = 1, however, a cash
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prize may be necessary. The question is how the principal should combine these two types

of payments to encourage innovation.

The key observation in answering this question hinges on the incentive benefit β(v) =

λfe(v|e)
f(v|e) . As explained earlier, this term represents the value of paying a dollar to the innovator

for develop a project worth v—more precisely, the effect fe(v|e)
f(v|e) of relaxing (MH) and its worth

λ to the principal. If moral hazard is not a concern, as in the second-best benchmark, then

λ = 0 and β (v) = 0, in which case the optimal mechanism would reduce to the optimal

second-best auction mechanism described in Proposition 2.

However, the above characterization shows that the moral hazard constraint is binding.

The simple intuition is that the optimal second-best mechanism extracts part of the benefit

from the effort, leaving the innovator unable to capture the full benefit from her effort. Given

that the procurer does not bear the cost of the effort, at the effort level the innovator finds

optimal, the procurer prefers to induce a higher effort.

Given λ∗ > 0, the incentive benefit β(·) is nonzero, so the optimal mechanism assigns

a contract different from the optimal second-best mechanism. In particular, the optimal

contract assignment depends on the realized value of the contract. Specifically, the contract

assignment depends on the shadow cost Ki(v, θi). For a non-innovating firm (i.e., i 6= 1), the

shadow cost is the same as virtual cost, Ji(θi), just as in the second-best benchmark. For

the innovator, however, the shadow cost differs from this virtual cost by β(v)G1(θ1)
g1(θ1)

. This

can be explained as follows. Awarding the contract to the innovator with type θ by an

additional unit of probability necessitates giving information rent to types below θ, paying
G1(θ1)
g1(θ1)

in expectation to the innovator ex ante, and each dollar paid to the innovator yields

the incentive benefit of β(v).

By (MLRP ), β (v) = λfe(v|e)
f(v|e) increases in v: intuitively, rewarding the innovator for a

low-value project (evidence of low effort) hurts innovation incentives, whereas rewarding the

firm for a high-value project (evidence of high effort) enhances its incentive for innovation.

Consequently, there exists a unique ṽ ∈ (v, v) such that β (ṽ) = 0.

Consider first the realized project with value v < ṽ. Rewarding the innovator in this

case reduces its innovation incentive: β (v) < 0. Hence, it is not optimal for the principal to

award a cash prize to the innovator. For the same reason, each dollar paid as information

rents harms the innovator’s incentive, causing the shadow cost K1(v; θ1) of assigning the

contract to the innovator to exceed its virtual cost J1(θ1), by −β (v)Gi(θi)/gi(θi) (> 0).

Hence, the optimal mechanism calls for biasing the contract allocation against the innovator

in comparison with the second-best.
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Consider next a project worth v > ṽ. There are two possibilities. Suppose first that

v < v̂ := sup {v ∈ V | β (v) ≤ 1}. In this case, the incentive benefit β (v) of paying a

dollar to the innovator is positive but less than one. Hence, it is still optimal to award no

cash prize, as this would entail a net loss for the principal. However, a fraction β (v) of

the information rent accruing to the innovator goes toward its innovation incentive, which

reduces the shadow cost K1(v, θ1) of assigning the contract to the innovator below its virtual

cost J1(θ1) by β (v)Gi(θi)/gi(θi). Hence, compared with the second-best benchmark, the

optimal mechanism distorts allocation of the contract in favor of the innovator.

Finally, suppose v > v̂. In this case, a dollar payment to the firm yields more than

a dollar incentive benefit. A cash prize is then clearly beneficial, which is why ρ∗1(v) > 0.

Hence, it pays the principal to transfer any surplus she collects, either through the cash prize

or through the information rent; that is, (LL) is binding. Any increase in information rents

for the innovator simply crowds out the cash prize by an equal amount. Hence, the entire

information rent paid to the innovator goes toward incentivizing his innovation effort, due to

this crowding-out effect, its incentive benefit is at most one 1 (and not β (v) > 1). Therefore,

the shadow cost K1(v, θ1) reduces to the production cost θ1. Compared with the second-best,

the optimal mechanism distorts allocation of the contract in favor of the innovator to such

an extent that the innovator is treated as an “in-house” supplier. Any further distortion in

favor of the innovator reduces the total “pie” – and thus the cash prize to the innovator –

more than it increases the information rent to that firm, and it is thus suboptimal.

We state these observations more formally as follows:

Corollary 1. There exists ṽ and v̂, with v < ṽ < v̂ ≤ v, such that the optimal mechanism

has the following characteristics:

• If v < ṽ, then no prize is awarded and x∗1(v, θ) ≤ xSB1 (v, θ), whereas x∗i (v, θ) ≥ xSBi (v, θ)

for all i 6= 1;

• If ṽ < v < v̂, then no prize is awarded but x∗1(v, θ) ≥ xSB1 (v, θ), whereas x∗i (v, θ) ≤
xSBi (v, θ) for all i 6= 1;

• If v > v̂, then a prize is awarded to the innovator and x∗1(v, θ) ≥ xSB1 (v, θ), whereas

x∗i (v, θ) ≤ xSBi (v, θ) for all i 6= 1.

Whether it is optimal to award a monetary prize (i.e., v̂ < v̄) depends on how much efforts

need to be incentivized and on how much incentive would already have been provided by

the information rents stemming from a standard second-best auction. We show, for instance,
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in Appendix C that awarding a prize can be optimal when the set of possible values is

large (as innovation incentives then matter a lot) as well as when there is either little cost

heterogeneity or a large number of firms (in which case the procurement auction does not

generate much in information rents).

Corollary 1 shows that the optimal mechanism departs from a standard second-best

auction in different ways for high-value and low-value projects. This mechanism can moreover

be easily implemented in practice using simple variants to common procurement designs.

• v > ṽ: Bonus. In this range, the contract allocation is biased in favor of the innovator,

so the innovator may implement the project despite not being the most efficient firm.

In practice, this could be achieved by giving the innovator a bidding credit in the

tendering procedure. Bidding credits can take many forms, but most commonly, they

consist of additional points in the score of the original proponent’s bid or of financial

support for bidding purposes. This system is, for example, adopted in Chile and Korea.

• v < ṽ: Handicap. In this range, the contract allocation is biased against the innovator,

who may not implement the project despite being the most efficient firm. We are

not aware of the use of such a bias for procuring innovative projects; however, such

handicap systems are used, for example, when governments want to favor domestic

industries.6 We discuss this further below (see the remark on handicaps).

We note further that in the region where a monetary prize is optimal, the mechanism

can be implemented in a very familiar and simple manner:

• v > v̂: Full delegation. In this region, the innovator is awarded a monetary prize

ρ∗1 (v) equal to the full value of the project (net of information rents) and is allocated

the contract if θ1 < min {v,mini 6=1 Ji(θi)}. This can be achieved by delegating the

procurement to the innovator for a fixed price equal to the value of the project. Indeed,

suppose that the principal offers a payment v to the innovator to deliver the project

either by itself or by subcontracting with a different firm. The innovator then acts as a

prime contractor with the authority to assign production. Facing the price v > v̂ and

given θ1, the innovator chooses (x(v, ·), t(v, ·)) : Θn → ∆× Rn−1 so as to solve:

max
x,t

Eθ−1

[
(v − θ1)x1(v, θ1, θ−1) +

∑
i 6=1

{vxi(v, θ1, θ−1)− ti(v, θ1, θ−1)}

]
,

6Under “preferential price margins”, purchasing entities accept bids from domestic suppliers over foreign

suppliers as long as the difference in price does not exceed a specific margin of preference. The price preference

margin can result from an explicit “buy local policy,” e.g., the “Buy America Act.”
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subject to

(IR) and (IC).

The standard procedure of using the envelope theorem and changing the order of

integration results in the optimal allocation x solving

max
x,t

Eθ−1

[
(v − θ1)x1(v, θ1, θ−1) +

∑
i 6=1

[v − Ji(θi)]xi(v, θ1, θ−1)

]
,

or implementing the optimal allocation x∗ for the case of v > v̂.

The above results also have implications for whether or not to implement a project. For

instance, for n = 1, we have:

• For v < v < ṽ, K(v, θ) > J(θ) (> θ): Compared with the first-best, there is a downward

distortion – under-implementation of the project – which is even more severe than in

the standard second-best.

• For ṽ < v < v̂, J(θ) < K(v, θ) < θ: There is still a downward distortion compared

with the first-best, but it is less severe than in the standard second-best.

• For v ≥ v̂, we have J(θ) < K(v, θ) = θ: There is no distortion anymore; the project is

implemented whenever it should be, from a first-best standpoint.

Remark: On the feasibility of handicaps. The optimal mechanism relies on a “stick and

carrot” approach: it rewards good proposals by conferring an advantage in the procure-

ment auction (possibly together with a monetary prize) and punishes weak proposals with a

handicap in the procurement auction. Yet in practice, while many innovation procurement

mechanisms involve innovation prizes or distort the contract allocation in favor of the inno-

vators, handicaps for weak projects do not appear to be used. This may stem from the risk of

manipulation: an innovator with a low-value project may, for instance, strategically choose

to participate in the implementation tender through a different firm to avoid the handicap.

To see how the mechanism would need to be adjusted if handicaps were explicitly ruled

out, suppose that the innovator cannot be left worse off than under the standard second best

allocation.7 That is, the mechanism must take into account the additional constraint:

x1(v, θ) > xSB1 (v, θ).

7It can be checked that this indeed ensures that the innovator is never worse off than a pure contractor

– see Online Appendix A.
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In the Online Appendix, we show that, keeping constant the multiplier λ for the innovator’s

incentive constraint, ruling out handicaps has no impact on the contract right for high-value

projects (namely, those with v ≥ ṽ), as x∗1(v, θ) > xSB1 (v, θ) in this case. By contrast, for

low-value projects (i.e., those with v < ṽ), the no-handicap constraint is binding and the

contract right increases from x∗1(v, θ) to xSB1 (v, θ). Interestingly, the no-handicap constraint

does not affect the size of the prize. Of course, removing the “stick” raises the cost of

providing innovation incentives, and thus we would expect an increase in the multiplier

of the incentive constraint λ (implying that the favorable bias for a high-value project is

larger and that the monetary prize is more often awarded) and a reduction in the optimal

innovation effort.

Illustration. To illustrate the above insights, consider the following example: (i) imple-

mentation costs are uniformly distributed over Θ = [0, 1]; (ii) the innovator can exert an effort

e ∈ [0, 1] at cost c (e) = γe; and (iii) the value v is distributed on [0, 1] according to the density

f (v|e) = e+(1− e) 2 (1− v); that is, exerting effort increases value in the MLRP sense, from

a triangular density peaked at v = 0 for e = 0 (where, in particular, f (1|0) = 0) to a better

(in fact, uniform) distribution for e = 1. Note that fe (v|e) = 2v − 1 ≷ 0⇐⇒ v ≷ ṽ = 1/2.

The linearity of the cost and benefits ensures that it is optimal to induce maximal effort

(e∗ = 1) as long as the unit cost γ is not too high. Conversely, as long as e∗ = 1, the

Lagrangian multiplier λ increases with the cost γ.

Consider first the case in which only the innovator can implement its project (i.e., n = 1).

Figure 1 depicts the range of the firm’s costs for which the project is implemented under

optimal contract for different project values v. Figure 1-(a) depicts the case of λ = 0.8,

whereas Figure 1-(b) shows the case of λ = 4.8 Since the cost is uniformly distributed,

the highest cost for which the project is implemented also equals the probability of the

project being implemented p∗ (v) := Eθ [x∗1(v, θ)]. Compared with the second best case,

whose critical cost is depicted by the dashed line, our optimal mechanism implements the

project for a smaller range of project costs (thus with a lower probability) when the project

has a low value v < ṽ = 1/2 and for a larger range of costs (thus with a higher probability)

when the project has a high value v > ṽ = 1/2. When λ = 4 (Figure 1-(b)), there is a range

of values v > v̂ > ṽ for which (LL) is binding so that the procurer exhausts the contracting

as means of incentive and starts offering a cash prize. As noted, in such a case the optimal

assignment coincides with that under firs-best—a fact seen by the critical cost being identical

to the 45 degrees line (depicted as a dotted line).

8Note in the current example, different values of λ’s correspond to different values of cγ inducing e∗ = 1.
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Suppose now a second firm can implement the project as well (i.e., n = 2). Figure 2

depicts, for instance, the outcome of the implementation tender for the case n = 2 (where

firm 2’s cost is also uniformly distributed over Θ = [0, 1]):

• For v < v < ṽ (see Figure 2-(a), where λ = 4 and v = 1/4): Compared with the

first-best or the standard second-best, where the more efficient implementor would be

selected, it is now optimal to bias the allocation of the contract against the innovator.

In particular, there are two effects. First, the innovator obtains the contract less

often and the other contractor obtains it more often than in the standard second-best.

Graphically, this change in the identity of the implementor is shown by the triangular

shaded area. Second, the project is implemented less often than in the second-best (and

thus, a fortiori, than in the first-best). Figure 2-(a) shows that the optimal mechanism

has shifted the boundary of firm 1’s selection leftward from that under the second best

mechanism (depicted by the dashed lines).

• For ṽ < v < v̂ (see Figure 2-(b), where λ = 4 and v = 7/12): Compared with the first-

best or the standard second-best, it is now optimal to bias the allocation of the contract

in favor of the innovator at the expense of the other implementor; as a result, the

project is also implemented more often than in the standard second-best (rectangular

shaded area). Figure 2-(b) shows that the set of (θ1, θ2)’s for which firm 1 is selected

is expanded beyond the dashed lines (representing the second-best allocation).
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• Finally, for v ≥ v̂ (see Figure 2-(c), where λ = 4 and v = 0.8): The innovator’s

shadow cost corresponds to its actual cost; the allocation of the contract thus favors the

innovator even more over the other firm; the project is also implemented substantially

more often than in the standard second-best (in particular, it is now implemented

whenever θ1 < c) but is still implemented less often than in the first-best (e.g., when

θ2 < v < θ1, J (θ2) = 2θ2). Figure 2-(c) shows that the set of types leading firm 1 to

be selected is further expanded.

4 Procuring Innovation from Multiple Suppliers

We now assume that several firms may innovate and propose projects as well as implement

them. This case captures the problem of a buyer who has a specific need that readily available

products or services cannot satisfy, and who decides to procure an innovation to satisfy this

need. Illustrative examples include the Norwegian Department of Energy procuring a new

technology for carbon capture and storage;9 or the Scottish Government procuring low-

cost, safe and effective methods of locating, securing and protecting electrical array cables

in Scottish sea conditions.10 In both instances, the public authority put out a RFP, and

multiple firms responded with different projects.

9http://ted.europa.eu/udl?uri=TED:NOTICE:214787-2011:TEXT:EN:HTML&src=0
10http://ted.europa.eu/udl?uri=TED:NOTICE:436615-2013:TEXT:EN:HTML&src=0
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For the sake of exposition, we will suppose from now on that each firm k = 1, ..., n can

come up with a project of value vk, which is publicly observable and distributed over V

according to a c.d.f. F k(vk|ek) with density fk(vk|ek), where ek denotes firm k’s innovation

effort.11 We assume that firms decide on these efforts simultaneously, and denote by e =

(e1, ..., en) the profile of the efforts. The alternative projects correspond to competing ways

to fulfill a common social need, so they are perfect substitutes, meaning that the planner

will choose one project at most. The previous setting corresponds to the special case where

F k is concentrated on v for all k 6= 1.

In practice, a firm’s cost of implementing a project may depend on the innovator of the

chosen innovation project. In some cases, the innovator has cost advantages in implementing

the projects. In other cases, the innovator has cost disadvantage in implementation; an ex-

ample is when the innovation is an R&D specialty firm that lacks manufacturing capabilities

necessary for implementing of its R&D. To accommodate such an interdependency between

innovation and implementation, we assume that firm i’s cost of implementing project k is

given by θi + ψki , where:

• as before, θi is an idiosyncratic shock, privately observed by firm i and distributed

according the c.d.f. Gi;

• ψki represents an additional cost, potentially both project- and firm-specific, which for

simplicity is supposed to be common knowledge.

Without loss of generality, we consider a direct revelation mechanism that specifies an

allocation and a payment to each firm as a function of realized project values, v = (v1, ..., vn),

and of reported costs. Note that an allocation involves a decision as to which project is

selected as well as who implements that project.

A mechanism is thus of the form (x, t) : V n × Θn → ∆n2 × Rn. The problem facing the

principal can therefore be expressed as:

max
x,t,e

Ev,θ [w (v, θ) | e] ,

where the ex post net surplus is now equal to

w (v, θ) =
∑
k,i∈N

[
vkxki (v, θ)− ti (v, θ)

]
,

11While formally all implementors are also innovators, the case of “pure contractors” can be accommo-

dated by setting the density to zero for v > v.
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subject to (IR) and (IC), where now firms’ interim expected profits when lying and reporting

the truth are given by

ui(v, θ
′
i|θi) = Eθ−i [ti(v, θ′i, θ−i)−

∑
k∈N

(θi + ψki )xki (v, θ
′
i, θ−i)] and Ui(v, θi) = ui(v, θi|θi),

and are subject to the limited liability and moral hazard constraints, which respectively

become:

Eθ [w (v, θ) | e] ≥ 0, ∀v ∈ V n,

ei ∈ arg max
ẽi

Ev,θ

[
U(v, θi) | ẽi, e−i

]
− ci(ẽi), ∀i ∈ N.

The following Proposition provides a partial characterization of the optimal mechanism:

Proposition 4. There exists a profile of efforts e∗ ≥ 0 and λ = (λ1, ..., λn) ≥ 0 such that

the optimal mechanism solving [P ] induces e∗, and

• selects firm i to implement project k with probability

xk∗i (v, θ) =

{
1 if vk −Ki(v, θi)− ψki ≥ max

{
0,max(l,j) 6=(k,i) v

l −Kj(v, θj)− ψlj
}

,

0 otherwise,

where

Ki(v, θi) := Ji(θi)−
(

βi(vi)

max{maxk βk(vk), 1}

)(
Gi(θi)

gi(θi)

)
, and βi(vi) := λi

f ie(v
i|ei∗)

f i(vi|ei∗)
.

• awards each firm i a transfer

t∗i (v, θ) := ρ∗i (v) +
∑
k∈N

ψkiX
k∗
i (v, θi) +

∫ θ

θi

∑
k∈N

Xk∗
i (v, s)ds,

where Xk∗
i (v, θi) = Eθ−i [xk∗i (v, θi, θ−i)]; and the transfer includes a cash prize

ρ∗i (v) := Eθ

[∑
k,i∈N

xk∗i (v, θ)
{
vk − ψki − Ji(θi)

}]
,

which is positive only if βi(vi) > max {maxj∈N β
j(vj), 1}.

Proof. See Appendix D. �

To interpret this characterization, consider first the case in which known implementation

cost differences are additively separable across implementors and projects: ψki = ψi +ψk for
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all i and k. Then, the project selection is simply based on the “net values” of the projects,

vk − ψk, without regard for who is awarded the contract to implement the chosen project.12

Hence, there is no need to wait until the realization of the costs before selecting the project.

However, the realized project values still do affect the choice of the implementor through

their impact on virtual costs – the Ki(v, θi)s, which depend on all realized values, including

those of unselected projects.13 In particular, an increase in vk raises both the probability

that project k is selected and the probability that firm k is chosen to implement it, even

when a project j 6= k is selected. In this sense, there is again a bias in favor of a contract

with high-value innovation.

If the separability condition is not satisfied, the choices of the project and of the imple-

mentor are more intimately linked. Suppose, for instance, that ψkk = 0 < ψki = ψ̄ for all

k and i 6= k. In this case, each firm has a cost advantage of ψ̄ for the project it proposes

vis-à-vis other firms. For instance, imagine that there are two firms, and v1 > v2. If θ2 is

significantly lower than θ1, the desire to exploit this cost advantage may lead the principal

to choose project 2 because it comes with the additional cost advantage of ψ̄.

A few other observations are worth making. First, as intuition suggests, the optimal

allocation xk∗i (v, θ) is nondecreasing in (vi, θ−i) and nonincreasing in (v−i,k, θi). In addition,

as all firms are now potential innovators, each virtual cost Ki(v, θi) is characterized by two

cutoffs, ṽi and v̂i, defined as in the previous section but with somewhat different implications.

As before, each innovator benefits from a bias at the implementation stage when vi > ṽi :=

β−1
i (0) and is instead handicapped when vi < ṽi. To what extent a firm will actually

benefit from this bias or be harmed by the handicap, however, now depends on the relative

magnitude of the shadow values βi(vi) across firms and thus depends also on the values

brought by the other projects, v−i.

Second, a “winner-takes-all” principle holds in the sense that generically at most one firm

is awarded a prize. As in the case of one innovator, a prize is worth giving only when the

incentive benefit βi (vi) exceeds one. But with multiple innovators, there may be multiple

firms i for which βi (vi) > 1. Due to the limited liability of the buyer, an additional dollar

paid to a firm is one less dollar available to reward another firm. As the incentive benefit

of a dollar is proportional to βi (vi), the marginal benefit of the prize is maximized by

12To see this, note that the difference in surplus when a contractor i implements project k or project l is

given by (
vk −Ki − ψk − ψi

)
−
(
vl −Ki − ψl − ψi

)
=
(
vk − ψk

)
−
(
vl − ψl

)
,

and thus does not depend on which contractor i is selected.
13Note that for a “pure contractor,” Ki (v, θi) = Ji (θi), as in a standard second-best auction.
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concentrating the prize to firm with the highest shadow value of incentive βi (vi). Splitting

the available cash across firms is never optimal for the same reason that it was never optimal

to give less than the maximal prize to the innovator in the single innovator case. In the same

vein, even if βi (vi) > 1 for several firms, only firm ı̂ := maxi∈N{βi(vi)} will face undistorted

virtual cost Kı̂(v, θı̂) = θı̂; the others will instead face a distorted virtual cost equal to

Ki(v, θi) = θi +

[
1− βi (vi)

β ı̂ (v ı̂)

]
Gi (θi)

gi (θi)
> θi.

Finally, note that if firms are ex ante symmetric (i.e., fk (.) = f (.) and ψki = ψ), then

from MLRP, the highest βi (vi) corresponds to the highest vi; hence, the best project is

selected, and only that project can ever be awarded a prize. By contrast, if firms are not

ex ante symmetric, then the prize will instead be given to the firm whose effort was most

worth incentivizing (i.e., the firm with the highest βi (vi)), even if it is not the one with the

best project (i.e., the highest vi).

5 Discussion

5.1 Unsolicited Proposals

As mentioned in the Introduction, some countries do not allow public authorities to directly

reward unsolicited proposals. Our analysis suggests instead that it can be optimal to reward

valuable proposals through contract rights and possibly by monetary prizes. Hodges and

Dellacha (2007) describe three alternative ways used in practice:

◦ Bonus system. The system gives the original project proponent a bonus in the tendering

procedure. A bonus can take many forms but most commonly involves additional points in

the score of the original proponent’s technical or financial offer. This system is, for example,

adopted in Chile and Korea. For example, the first two unsolicited proposals for airport

concessions in Chile obtained a bonus equal to 20 percent points of the allowed score, whilst

the third airport proposal received 10 percent points. [What year, which airport, which

agency?]

◦ Swiss challenge system. The Swiss challenge system gives the original proposer the

right to counter-match any better offers. It is most common in the Philippines and is also

used in Guam, India, Italy, and Taiwan. Under this procedure, the original proposer will

counter the lowest rival bid and win the contract if and only if his cost is less than that

bid. Anticipating this, the rival bidders will optimally shade their bids above their costs in
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response. Hence, in equilibrium the system distorts the contract allocation in favor of the

proposer (who wins the contract even when his cost is above the rivals’ costs and for sure

when his costs is less than theirs). But the degree of the favoritism implemented by the

system does not match that required by our optimal mechanism (see Proposition 3); the

system often goes too far in favoring the proposer.14

◦ Best and final offer system. Here, the key element is multiple rounds of tendering, in

which the original proponent is given the advantage of automatically participating in the

final round. It is used in Argentina and South Africa.

Our analysis suggests that these mechanisms have some merit, as biasing the implemen-

tation stage in favor of the innovator may indeed promote innovation. The bonus system also

has the additional merit of allowing the advantage to be linked to the value of the proposed

project, with higher project values resulting in greater advantages. By contrast, the Swiss

challenge system and the best and final offer system grant an unconditional advantage to the

innovator, which in our analysis is sub-optimal. Note that none of these systems provides

for explicit handicapping.

5.2 Bundling R&D and Implementation

In the practice of innovation procurement, we observe two polar cases.

First, there is pure bundling, where the firm whose project is selected also implements it.

This approach was, for instance, followed in US Defense Procurement in the 1980s, where

the winner of the technical competition for the best prototype was virtually assured of being

awarded the follow-on defense contract (see Lichtenberg, 1990; and Rogerson, 1994). More

14To illustrate this point, suppose n = 2 and firm 1 is the innovator as in our baseline model. In that

case, firm 1 counters any bid b2 by firm 2 if and only if θ2 < b2. Knowing this, firm 2 picks its bid b2 to solve

max
b2

(1−G(b2))(b2 − θ2),

whose first-order condition is:

b2 −
1−G(b2)

g(b2)
= θ2.

Given firm 1’s behavior, this means that the contract is allocated to firm 1 if and only if

θ1 −
1−G(θ1)

g(θ1)
< θ2,

conditional on the project being implemented at all. In the case G is uniform on [0, 1], this boils down to

θ1 <
1+θ2
2 , or θ2 > 2θ1−1. Comparing with Figure 2, the resulting allocation tends to involve more excessive

favoritism toward firm 1 than the optimal allocation.
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recently, the European Procurement Directive 2014/24/EU has introduced so-called ”Inno-

vation Partnerships” for the joint procurement of R&D services and large-scale production.

Second, there is unbundling, where project selection and implementation are kept entirely

separate; therefore, the firm whose project was selected is treated exactly the same way as

any other firm at the implementation stage. Examples include research contests or the

European Pre-commercial Procurement (PCP) model. In both cases, firms compete for

innovative solutions at the innovation stage, and the best solution(s) may receive a prize.

The procurer does not commit itself to acquire the resulting innovations.

Our analysis identifies the circumstances in which the two extreme cases are optimal.

Corollary 2. 1. Pure bundling is optimal if for each k ∈ N , ψkk = 0 < ψki = ψ̄ for

i 6= k, where ψ̄ > supθi,θj ,i,j∈N(Ji(θi)− θj).

2. Unbundling is optimal if there exists N1, N2 ⊂ N with N1 ∪N2 = N and N1 ∩N2 = ∅
such that, for each i = N1, ψji = ∞,∀j and that for each k ∈ N2, i ∈ N1, ψkj = ∞, ∀j
and ψik = 0. In this case, the optimal mechanism selects the project k from N1 with

the highest value vk if vk ≥ minj Jj(θj), rewards the innovator i ∈ N1 with the highest

βi(vi) > 1, and awards the implementation contract to a firm j ∈ N2 with the lowest

virtual cost Jj(θj) < vk.

Pure bundling can be optimal when there are large economies of scope between R&D

and implementation as described by the condition in (i). For example, in the procurement of

complex IT systems, the knowledge advantage of the software developer typically translates

into a considerable cost advantage on the management and upgrading of the software. In

this case, selecting the same firm for both R&D and implementation is likely to be better.

However, even in that case, our results stress that project selection should be based on

both value and cost considerations; hence, the procurer should take cost considerations into

account when selecting the project.

By contrast, unbundling is optimal when firms specialize in either innovation or in im-

plementation (e.g., manufacturing or construction). Corollary 2-(ii) describes such a case:

firms are partitioned into two groups so that one specializes in innovation and the other

specializes in implementation. In that case, the optimal mechanism selects the project and

rewards the innovator from the former group, according to the first-best scheme in Proposi-

tion 1, and awards the implementation contract to a firm in the second group according to

the second-best scheme in Proposition 2.

Unbundling is sometimes prescribed as an affirmative action policy toward so-called small

and medium enterprises (SMEs). In both Europe and the US, procurement programs aimed
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at stimulating R&D investment from SMEs provide for separation between the R&D stage

and the implementation stage, with funding provided based on firms’s project proposals. The

Small Business Innovation Research (SBIR) program in the US or the UK’s Small Business

Research Initiative (SBRI) are characterized by this separation between project selection and

implementation.15 Such a policy can be justified based on Corollary 2-(ii) on the ground that

small or medium R&D firms often lack manufacturing capabilities and thus would at a clear

disadvantage when the R&D competition is bundled with the contract implementation. For

instance, the SMEs may comprise group N1 and non-SMEs may comprise N2, in which case

the government wishes to promote research effort specifically from SMEs and bans non-SMEs

from proposing a project (as under SBIR and SBRI).

A similar reasoning suggests that when base university research may play a key role in

R&D activities, separation between selection and implementation may also help to promote

their participation.

6 Conclusions

Procuring innovative projects requires incentivizing potential innovators’ research efforts as

well as an efficient implementation of the selected projects. Our analysis highlights a trade-off

between these two objectives when implementors have private information about their costs.

To solve this trade-off, the optimal mechanism relies on contract rights (possibly combined

with monetary prizes).

A number of issues are worth exploring further. First, we have focused on situations in

which the value of the proposals can be contracted upon. This is a plausible assumption when,

for instance, the proposal involves a prototype or when performance measures – operational

or productivity indicators, energy consumption, emissions, etc. – are available and can be

used in the tender documents; yet another possibility is to rely on evaluation committees. In

other situations (e.g., base research), however, the difficulty of describing the project and/or

non-verifiability issues may make it impossible to contract ex ante on the ex post value of

the projects. Extending the analysis to these situations is beyond the scope of this paper

but clearly constitutes an interesting avenue for future research.

Second, we have ignored the costs of participating in procurement tenders. In practice,

submitting a tender bid may require tender development costs (e.g., complex estimations and

legal advice) that involve significant economic resources, in which case biasing the tender

15See, respectively, http://www.sbir.gov/ and https://sbri.innovateuk.org.

26



in favor of the innovator may discourage potential implementors from participating in the

tender. It would therefore be worth endogenizing participation in the tender and exploring

how the optimal mechanism should be adjusted to account for these development costs.
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Appendix

A Proof of Proposition 1

To solve [P − FB], we focus on the relaxed problem:

[P ′ − FB] max
x,t

Ev,θ[v
∑
i

xi(v, θ)− ti(v, θ)|e]

subject to

(LL), (MH),

Eθ[ti(v, θ)− θixi(v, θ)] ≥ 0, ∀v, i. (IR′′)

This problem is a relaxation of [P − FB] since (IR′′) requires (IC) to hold only on

average. At the same time, whenever a mechanism satisfies (IR′′), one can construct at least

one mechanism that satisfies (IC), without affecting other constraints. Hence, there is no

loss in restricting attention to [P ′ − FB]. To solve [P ′ − FB], we first observe that for each

i 6= 1, the constraint (IR′′) must bind. If not, one can always lower the expected payment

to increase the value of the objective without tightening any constraints. Next, write

ρ1(v, θ) := Eθ[t1(v, θ)− θ1x1(v, θ)].

Then, we can weaken [P ′ − FB] further to:

[P ′′ − FB] max
x,t

Ev,θ[
∑
i

(v − θi)xi(v, θ)− ρ1(v)|e]

subject to

ρ1(v) ≥ 0, ∀v, (IR′′′)

Eθ[
∑
i

(v − θi)xi(v, θ)] ≥ ρ1(v), ∀v, (LL′′)

Ev [ρ1(v)|e] ≥ c′(e). (MH ′′)

Note that the weakening occurs with the moral hazard constraint: (MH ′′) is a first-order

necessary condition of (MH).
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Let ν(v), µ(v), and λ denote the multipliers for constraints (IR′′′), (LL′′) and (MH ′′),

respectively. Then, the Lagrangian (more precisely its integrand) is given by:

L(v, θ, e) := [1 + µ(v)]

{∑
i

[v − θi)]xi(v, θ)

}
− ρ1(v) [1 + µ(v)− ν(v)− β (v)]− λc′ (e) ,

where

β (v) := λ
fe(v|e)
f(v|e)

.

The optimal solution (e, x (v, θ) , ρ1 (v) , λ, µ (v) , ν (v)) must satisfy the following neces-

sary conditions.

First, since the Lagrangian is linear in xi’s, the optimal solution xi(v, θ) is characterized

by xFBi (v, θ) defined in Proposition 1.

Next, the Lagrangian L is also linear in ρ1(v); hence, its coefficient must be equal to zero:

1 + µ(v)− β (v)− ν(v) = 0. (1)

Next, the optimal effort e must satisfy

∂

∂e
Ev,θ[L(v, θ, e)|e] = 0.

Finally, complementary slackness implies that, for each v,

ν(v)ρ1(v) = 0, (2)

µ(v)

{
Eθ[
∑
i∈N

xi(v, θ) [v − θi|e]− ρ1(v)

}
= 0, (3)

and

λ

[∫
v

ρ1(v)fe(v|e)dv − c′(e)
]

= 0. (4)

We first prove λ > 0 at the optimal solution. Suppose not. Then, β(v) = 0 for all v ∈ V .

It then follows from (1) that ν(v) > 0 for all v ∈ V . By (2), this means that ρ1(v) ≡ 0.

Since xi ≡ xFVi , it then follows from (3) that for any v > θ, µ(v) = 0. Collecting these facts

together, we conclude that

Eθ[L(v, θ, e)] = Eθ[max{0,max
θi

(v − θi)],

which is strictly increasing in v. By (MLRP ), this means that at the optimal solution

∂

∂e
Ev,θ[L(v, θ, e)|e] > 0,
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a contradiction to (A). We thus conclude that at the optimal solution λFB > 0.

Consider any v < v̂. Then, β(v) < 1. Then, 1+µ(v)−β(v) > 0. Hence, by (1), ν(v) > 0.

And by (2), we have ρ1(v) = 0. It intern follows from (3) that µ(v) = 0 provided that v > θ.

Consider next v > v̂. In this case, β(v) > 1. Hence, 1 − β(v) − ν(v) < 0. Hence, by by

(1), µ(v) > 0. Then, by (3), we must have

ρi(v) = Eθ

[∑
i∈N

xi(v, θ) [v − θi|e]

]
,

as claimed in Proposition 1.

Next, we show that we must have v > v̂ with positive probability (i.e., λFB cannot be

too small). Suppose to the contrary that β(v) < 1 for all v ∈ V . Then, as argued above

ρ1(v) = µ(v) = 0 for all v ∈ V . In this case, by the convexity of c(·), we must have eFB = 0,

or else we obtain a contradiction to (4). But then, we get

L(v, θ, e = 0) = max{0,max
θi

(v − θi)},

which is increasing in v (strictly for a positive measure of v). We thus get a contradiction

to (A).

Finally, we prove that eFB > 0. Given λFB > 0, it follows from (4) that∫
v

ρ1(v)fe(v|e)dv = c′(e).

Since v > v̂ for a positive measure of v, the left side is strictly positive. This implies that

eFB > 0, or else the right side vanishes since c′(0) = 0.

B Proof of Proposition 3

To solve [P ], we first reformulate (IC) in terms of interim allocation and payment rules. For

each i ∈ N and for any v ∈ V and any θi ∈ Θi, let Xi(v, θi) :=
∫
θ−i

xi (v, θ) dG−i (θ−i) and

Ti(v, θi) :=
∫
θ−i

ti (v, θ) dG−i (θ−i) denote the interim allocation and payment for firm i and

Ui(v, θi) := Ti(v, θi)− θiXi(v, θi) (5)

denote firm i’s expected profit. For each i ∈ N , (IC) then can be stated as

Ti(v, θi)− θiXi(v, θi) ≥ Ti(v, θ
′
i)− θiXi(v, θ

′
i), ∀v, θi, θ′i.
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The associated envelope condition then yields

Ui(v, θi) = ρi (v) +

∫ θ

θi

Xi(v, θ)dθ, (6)

where

ρi (v) := Ui(v, θ)

is the rent enjoyed by firm i when its cost is highest. Using (6), we can express firm i’s

expected rent as ∫
θi

Ui(v, θi)dθi =

∫
θi

[
ρi(v) +

∫ θ

θi

Xi(v, s)ds

]
dGi (θi)

= ρi(v) +

∫
θi

Xi(v, θi)
Gi (θi)

gi (θi)
dGi (θi) . (7)

For each i 6= 1, the rent ρi(v) does not help to relax any constraint and reduces the surplus

for the principal, so it is optimal to set ρi(v) = 0 for all v.

Using (5) and (7), the total expected transfer to the firms can be expressed as:∫
θ

∑
i∈N

ti (v, θ) dG (θ) =
∑
i∈N

∫
θi

Ti(v, θi)dθi

=
∑
i∈N

∫
θi

[Ui(v, θi) + θiXi(v, θi)] dθi

=
∑
i∈N

{
ρi(v) +

∫
θi

Xi(v, θi)Ji(θi)dGi (θi)

}
= ρ1(v) +

∫
θ

∑
i∈N

xi (v, θi) Ji(θi)dG (θ) , (8)

where Ji(θi) := θi + Gi(θi)
gi(θi)

denotes firm i’s virtual cost.

Substituting (8) into the principal’s objective function, we can rewrite (LL) as follows:

∀v ∈ V,
∫
θ

{∑
i∈N

xi(v, θi) [v − Ji(θi)]

}
dG(θ) ≥ ρ1(v). (LL′)

Let µ(v) ≥ 0 denote the multiplier associated with this constraint.

The innovating firm’s individual rationality simplifies to

∀v ∈ V, ρ1(v) ≥ 0. (IR′)
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We let ν(v) ≥ 0 denote the multiplier associated with this constraint.

We next focus on the first-order condition for the effort constraint.∫
v

∫
θ

[
ρ1(v) +

G1(θ1)

g1(θ1)
x1(v, θ)

]
dG(θ)fe(v|e)dv ≥ c′(e). (MH ′)

Note that we formulate the condition as a weak inequality to ensure the nonnegativity of

the multiplier. Let λ ≥ 0 be the associated multiplier.

Then, [P ] can more succinctly be reformulated as follows:

max
e,x(v,θ),ρ1(v)

∫
v

{∫
θ

[∑
i∈N xi(v, θ) (v − Ji(θi))

]
dG(θ)− ρ1(v)

}
f(v|e)dv

subject to

(LL′) , (IR′) , and (MH ′) .

The integrand of the Lagrangian is given by:

L(v, θ, e) := [1 + µ(v)]

{[
v − θ1 −

(
1− β (v)

1 + µ(v)

)
G1(θ1)

g1(θ1)

]
x1(v, θ) +

∑
j 6=1

[v − Jj(θj)]xj(v, θ)

}
− ρ1(v) [1 + µ(v)− ν(v)− β (v)]− λc′ (e) ,

where

β (v) := λ
fe(v|e)
f(v|e)

.

The optimal solution (e, x (v, θ) , ρ1 (v) , λ, µ (v) , ν (v)) must satisfy the following neces-

sary conditions. First, observe that the Lagrangian L is linear in ρ1(v); hence, its coefficient

must be equal to zero:

1 + µ(v)− β (v)− ν(v) = 0. (9)

The Lagrangian is also linear in xi’s, so the optimal allocation must satisfy, for every

i, v, θ:

xi(v, θ) =

{
1 if i ∈ arg minj

{
K̃j(v, θj)

}
and K̃i (v, θi) ≤ v,

0 otherwise,

where

K̃i(v, θi) :=

{
Ji (θi)− β(v)

1+µ(v)
Gi(θi)
gi(θi)

if i = 1,

Ji (θi) if i 6= 1,

where β (v) := λfe(v|e)
f(v|e) .
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Next, the optimal effort e must satisfy

∂

∂e

∫
v

∫
θ

L(v, θ, e)f(v|e)dvdG (θ) = 0. (10)

Finally, complementary slackness implies that, for each v,

ν(v)ρ1(v) = 0, (11)

µ(v)

{∫
θ

∑
i∈N

xi(v, θ) [v − Ji(θi)] dG(θ)− ρ1(v)

}
= 0, (12)

and

λ

[∫
v

∫
θ

[
ρ1(v) +

G1(θ)

g1(θ)
x1(v, θ)

]
g(θ)dθfe(v|e)dv − c′(e)

]
= 0. (13)

We now provide the characterization. Again, there are two cases depending on the value

of v. Consider first the case v < v̂, where β (v) < 1. Hence, 1 +µ(v)−β (v) > µ(v) ≥ 0, and

(9) thus implies ν(v) > 0. The complementary slackness condition (11) then yields ρ1(v) = 0.

This, together with Lemma 4 (see Appendix D) and the complementary slackness condition

(12), implies that µ(v) = 0. Hence, K̃1(v, θ1) = J1 (θ1)− β (v)G1(θ1)/g1(θ1) = K1(v, θ1).

Let us now turn to the case v > v̂, where β (v) > 1. Hence, 1− β (v)− ν(v) < 0, and (9)

thus implies that µ(v) > 0; from the complementary slackness condition (12), we thus have

ρ1(v) =

∫
θ

∑
i∈N

xi (v, θ) [v − Ji(θi)] dG(θ),

and Lemma 4 thus implies ρ1(v) > 0 in the case n ≥ 2 or in the case ν(v) > 0. The

complementary slackness condition (11) then yields ν(v) = 0. It follows now from (9) that

1 + µ(v) = β (v). We therefore conclude that K̃1(v, θ1) = θ1 = K1(v, θ1).

The transfer payment t∗ follows from (8), with ρ∗j(v) as described above and ρ∗j(v) = 0 for

all j 6= 1. The above characterization is valid only when the optimal allocation is monotonic

(another necessary condition from incentive compatibility). This follows the assumption that
Gi(θi)
gi(θi)

is nondecreasing in θi, which implies that Ki(v, θi) = Ji(θi), for i 6= 1, and

K1(v, θ1) := J1 (θ1)−min {1, β (v)} G1(θ1)

g1(θ1)
= θ1 + max {0, 1− β (v)} G1(θ1)

g1(θ1)
,

are all nondecreasing in θi.

We next prove that λ∗ > 0. Suppose λ∗ = 0. Then, β(v) ≡ 0, so (9) again implies that

ν(·) > 0 and µ(·) = ρ1(·) = 0. Hence,

L(v, θ, e) = max{0, v −min
i
Ji(θi)},
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which increases for a positive measure of v. It follows that

∂

∂e

∫ v

v

∫
θ

L(v, θ, e)dG(θ)f(v|e)dv =

∫ v

v

∫
θ

(max{0, v −min
i
Ji(θi)})dG(θ)fe(v|e)dv > 0,

which contradicts (10).

Next, we show that e∗ > 0. It follows from (13) and λ∗ > 0 that∫
v

∫
θ

[
ρ1(v) +

G1(θ)

g1(θ)
x∗1(v, θ)

]
g(θ)dθfe(v|e)dv = c′(e).

The left side is strictly positive, which implies that e∗ > 0, or else the right side vanishes

since c′(0) = 0.

C Optimality of Offering a Prize (v̂ < v̄)

Fix a given environment, namely, a distribution F (·|e) for the value v and, for each firm

i ∈ N , a distribution Gi (·) of its cost, and suppose that there exists an optimal mechanism

with no monetary reward: ∀v ∈ V , ρ∗ (v) = 0, which amounts to

λ < λ̄ :=
f (v̄|e)
fe (v̄|e)

(14)

and implies that µ (v) = 0 for any v ∈ V . The optimal allocation is such that xi (v, θ) = 0

for any v ≤ θ and for v > θ:

x∗1 (v, θ) =

{
1 if K∗1 (θ1) < min {v, J2 (θ2) , ..., Jn (θn)} ,
0 otherwise.

The objective of the principal, as a function of e, can thus be expressed as:∫ v̄

θ

∫ θ̄

θ

∑
i∈N

x∗i (v, θ) [v − Ji (θi)] dG (θ) dF (v|e)

+ λ

{∫ v̄

θ

∫ θ̄

θ

X∗1 (v, θ1)G1 (θ1) fe(v|e)dθ1dv − c′ (e)

}
,

where the innovator’s expected probability of obtaining the contract is given by:

X∗1 (v, θ1) =

∫
θ−1

x∗1 (v, θ) dG−1 (θ−1) .
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The first-order condition with respect to e yields:∫ v̄

θ

∫ θ̄

θ

∑
i∈N

x∗i (v, θ) [v − Ji (θi)] dG (θ) fe (v|e∗) dv

= λ

{
c′′ (e∗)−

∫ v̄

θ

∫ θ̄

θ

X∗1 (v, θ1)G1 (θ1) fee(v|e∗)dθ1dv

}
. (15)

The optimal effort e∗ moreover satisfies the innovator’s incentive constraint c′ (e∗) = b (e∗),

where the innovator’s expected benefit is given by:

b (e) :=

∫ v̄

θ

∫ θ̄

θ

X∗1 (v, θ1)G1 (θ1) fe(v|e)dθ1dv.

We now consider several variations of the environment for which the optimal mechanism

must involve a prize.

C.1 Reducing Cost Heterogeneity

Suppose first that costs become increasingly less heterogeneous: distributions are now pa-

rameterized by m in such a way that for each firm i ∈ N , its cost becomes distributed

according to a distribution Gm
i (θi) over the range Θm

i =
[
θ, θ̄m = θ +

(
θ̄ − θ

)
/m
]
. For every

m ∈ N∗. We will denote by em, λm, Km
1 (θ1) and Xm

1 (v, θ1) the values associated with the

optimal mechanism.

We first note that as m goes to infinity, the innovator’s effort tends to the lowest level, e:

Lemma 1. em tends to e as m goes to infinity.

Proof. The innovator’s expected benefit becomes

bm (e) :=

∫ v̄

θ

∫ θ̄m

θ

Xm
1 (v, θ1)Gm

1 (θ1) fe(v|e)dθ1dv,

and satisfies:

|bm (e)| ≤
∫ v̄

θ

∫ θ+ θ̄−θ
m

θ

dθ1 |fe(v|e)| dv =

(
θ̄ − θ

) ∫ v̄
θ
|fe(v|e)| dv
m

.

Therefore, as m goes to infinity, the expected benefit bm (e) converges to 0, and the innova-

tor’s effort thus converges to the minimal effort, e. �

Furthermore:
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Lemma 2. As m goes to infinity:

• The left-hand side of (15) tends to

B∞ :=

∫ v̄

θ

(v − θ) fe (v|e) dv > 0.

• In the right-hand side of (15), the terms within brackets tend to c′′ (e).

Proof. The left-hand side of (15) is of the form
∫ v̄
θ
hm1 (v) dv, where

hm1 (v) := fe (v|em)

∫ θ̄m

θ

∑
i∈N

xmi (v, θ) [v − Ji (θi)] dGm (θ) .

Furthermore, for any v > θ, Ĵ (θ) := mini∈N {Ji (θi)} < v for m is large enough (namely, for

m such that θ̄m < v or m >
(
θ̄ − θ

)
/ (v − θ)), and so

hm1 (v) = fe (v|em)

∫ θ̄m

θ

[
v − Ĵ (θ)

]
dGm (θ) ,

which is bounded:

|hm1 (v)| <
∣∣∣max

e
fe (v|em)

∣∣∣max {v − θ, 0} ,

and converges to

lim
m−→∞

hm1 (v) = (v − θ) fe (v|e) .

Using Lebesgue’s dominated convergence theorem, we then have:

lim
m−→∞

∫ v̄

θ

hm1 (v) dv =

∫ v̄

θ

lim
m−→∞

hm1 (v) dv = B∞.

We now turn to the right-hand side (15). The terms within brackets are

c′′ (em)−
∫ v̄

θ

∫ θ̄m

θ

Xm
1 (v, θ1)Gm

1 (θ1) fee(v|em)dθ1dv,

where the first term tends to c′′ (e) and the second term is of the form
∫ v̄
θ
hm2 (v) dv, where

hm2 (v) = fee (v|em)

∫ θ̄m

θ

Xm
1 (v, θ1)Gm

1 (θ1) dθ1

satisfies:

|hm2 (v)| < max
e
|fee (v|e)|

∫ θ̄m

θ

dθ1 =

(
θ̄ − θ

)
maxe |fee (v|e)|
m
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and thus tends to 0 as m goes to infinity. �

To conclude the argument, suppose that for any m, the optimal mechanism never involves

a prize. Condition (15) should thus hold for anym, and in addition, the Lagrangian multiplier

λm should satisfy the boundary condition (14). We should thus have:∫ v̄

θ

∫ θ̄m

θ

∑
i∈N

xmi (v, θ) [v − Ji (θi)] dG (θ) fe (v|em) dv

<
f (v̄|em)

fe (v̄|em)

{
c′′ (em)−

∫ v̄

θ

∫ θ̄m

θ

Xm
1 (v, θ1)G1 (θ1) fee(v|em)dθ1dv

}
.

Taking the limit as m goes to infinity, this implies:

B∞ =

∫ v̄

θ

(v − θ) fe (v|e) dv < f (v̄|e)
fe (v̄|e)

c′′ (e) ,

which is obviously violated when the return on effort is sufficiently high (e.g., c′′ (e) is low

enough).

C.2 Increasing the Number of Firms

Let us now keep the cost distributions fixed, and suppose instead that m additional firms are

introduced in the environment with the same cost distribution as the innovator: Gk (θk) =

G1 (θk) for k = n+ 1, ..., n+m. Let us again denote by em, λm, Km
1 (θ1) and Xm

1 (v, θ1) the

values associated with the optimal mechanism.

By construction, Km
1 (θ1) (> θ1) > θ for any θ1 > θ, whereas the lowest Jj (θj) becomes

arbitrarily close to J1 (θ) = θ as m increases; it follows that the probability of selecting the

innovator, Xm
1 (v, θ1), tends to 0 as m goes to infinity:

Lemma 3. Xm
1 (v, θ1) tends to 0 as m goes to infinity.

Proof. The probability of selecting the innovator satisfies:

Xm
1 (v, θ1) ≤ Pr

[
Km

1 (θ1) ≤ min
j=n+1,...,n+m

{J1 (θj)}
]

≤ Pr

[
θ1 ≤ min

j=n+1,...,n+m
{J1 (θj)}

]
=

[
1−G1

(
J−1

1 (θ1)
)]m

, (16)

where the second inequality stems from Km
1 (θ1) ≥ θ1, and the last expression tends to 0

when m goes to infinity. �
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It follows that Lemma 1 still holds, that is, the innovator’s effort tends to the lowest

level, e, as m goes to infinity. To see this, it suffices to note that the innovator’s expected

benefit, now equal to

bm (e) =

∫ v̄

θ

∫ θ̄

θ

Xm
1 (v, θ1)G1 (θ1) fe(v|e)dθ1dv,

satisfies:

|bm (e)| ≤
∫ v̄

θ

h (v) dv,

where

h (v) := |fe(v|e)|
∫ θ̄

θ

Xm
1 (v, θ1) dθ1

is bounded (by
(
θ̄ − θ

)
maxv,e {|fe(v|e)|}) and, from the previous Lemma, tends to 0 as m

goes to infinity. Hence, as m goes to infinity, the expected benefit bm (e) converges to 0, and

the innovator’s effort thus tends to e.

Likewise, Lemma 2 also holds; that is,

• The left-hand side of (15) tends to B∞. To see this, it suffices to follow the same steps

as before, noting that hm1 (v), now given by

hm1 (v) =

∫ θ̄

θ

∑
i∈N

xmi (v, θ) [v − Ji (θi)] dG (θ) fe (v|em) ,

is still bounded:

|hm1 (v)| < max {v − θ, 0}
∣∣∣max

e
fe (v|e)

∣∣∣ ,
and tends to v − θ for any v > θ:

– Ĵ (θ) = mini∈N {Ji (θi)} is almost always lower than v when m is large enough.

Indeed, for any ε > 0, we have:

Pr
[
Ĵ (θ) ≤ θ + ε

]
≥ Pr

[
min

i=n+1,...,n+m
{Ji (θi)} ≤ θ + ε

]
= Pr

[
min

i=n+1,...,n+m
{θi} ≤ J−1

1 (θ + ε)

]
= 1−

[
1− F

(
J−1

1 (θ + ε)
)]m

,

where the last expression converges to 1 as m goes to infinity. Therefore, for any

ε > 0, there exists m̂1 (ε) such that for any m ≥ m̂1 (ε),

Pr
[
Ĵ (θ) ≤ θ + ε

]
≥ 1− ε.
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– Hence, for m ≥ m̂1 (ε):

v − θ ≥
∫ θ̄

θ

∑
i∈N

xmi (v, θ) [v − Ji (θi)] dG (θ) ≥ (1− ε) (v − θ − ε) ,

where the right-hand side converges to v − θ as ε tends to 0.

The conclusion then follows again from Lebesgue’s dominated convergence theorem.

• In the right-hand side of (15), the terms within brackets tend to c′′ (e). To see this, it

suffices to note that hm2 (v), now given by

hm2 (v) = fee (v|em)

∫ θ̄

θ

Xm
1 (v, θ1)G1 (θ1) dθ1

– is still bounded:

|hm2 (v)| < max
e
|fee (v|e)|

∫ θ̄

θ

Xm
1 (v, θ1) dθ1

≤ max
e
|fee (v|e)|

∫ θ̄

θ

[
1−G1

(
J−1

1 (θ1)
)]m

dθ1.

– and converges to 0: Indeed, for any ε > 0,

|hm2 (v)| < max
e
|fee (v|e)|

{∫ θ+ ε
2

θ

dθ1 +

∫ θ̄

θ+ ε
2

[
1−G1

(
J−1

1 (θ + ε)
)]m

dθ1

}
< max

e
|fee (v|e)|

{ε
2

+
(
θ̄ − θ

) [
1−G1

(
J−1

1 (θ + ε)
)]m}

.

But there exists m̂2 (ε) such that, for any m ≥ m̂2 (ε):(
θ̄ − θ

) [
1−G1

(
J−1

1 (θ1)
)]m ≤ ε

2
,

and thus

|hm2 (v)| < max
e
|fee (v|e)| ε.

– It follows that the second term converges again to 0:

lim
m−→∞

∫ v̄

θ

hm2 (v) dv =

∫ v̄

θ

lim
m−→∞

hm2 (v) dv = 0.

The conclusion follows, using the same reasoning as before.
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C.3 Increasing the Value of the Innovation

Let us now keep the supply side (number of firms and their cost distributions) fixed and

suppose instead that:

• v is initially distributed over V = [v, v̄]; for the sake of exposition, we assume v � θ̄,16

so that the innovation is always implemented.

• For everym ∈ N∗, the value vm becomes distributed over V m = [v, v̄m = v +m (v̄ − v)],

according to the c.d.f. Fm (vm|e) = F (v + (vm − v) /m|e).

As before, let em, λm, Km
1 (θ1), and Xm

1 (v, θ1) denote the values associated with the

optimal mechanism.

We first note that the virtual costs remain invariant here: Km
i (vm, θi) = Ki (v, θi) =

Ji (θi) for i > 1 and, as

βm (vm) = λ
fme (vm|e)
fm(vm|e)

= λ
fe(v|e)
f(v|e)

,

we also have

Km
1 (vm, θ1) = J1 (θ1)−min {βm (vm) , 1} G1 (θ1)

g1 (θ1)

= J1 (θ1)−min {β (v) , 1} G1 (θ1)

g1 (θ1)

= K1 (v, θ1) .

As by assumption, the innovation is always implemented in this variant, the probability of

obtaining the contract only depends on these virtual costs and thus also remains invari-

ant: xmi (vm, θ) = x∗i (v, θ) for any i ∈ N . It follows that, in the right-hand side of (15),

the terms within brackets also remained unchanged: using Xm
1 (vm, θ1) = X∗1 (v, θ1) and

fmee (vm|e) dvm = fee (v|e) dv, we have:

c′′ (e)−
∫ v̄m

v

∫ θ̄

θ

Xm
1 (vm, θ1)G1 (θ1) fmee (vm|e) dθ1dv

m = Γ∗ (e) ,

where

Γ∗ (e) := c′′ (e)−
∫ v̄

v

∫ θ̄

θ

X∗1 (v, θ1)G1 (θ1) fee (v|e) dθ1dv.

16Namely, v > mini∈N
{
Ki

(
v, θ̄
)}

.
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By contrast, the left-hand side of (15) is unbounded asm goes to infinity: using
∑

i∈N x
∗
i (v, θ) =

1 (as by assumption, the innovation is always implemented here), fme (v|e) dvm = fe (v|e) dv
and

∫ v̄
v
fe (v|e) dv = 0, we have:∫ v̄m

v

∫ θ̄

θ

∑
i∈N

xmi (vm, θ) [vm − Ji (θi)] dG (θ) fme (vm|e) dvm

=

∫ v̄

v

∫ θ̄

θ

∑
i∈N

x∗i (v, θ) [v +m (v − v)− Ji (θi)] dG (θ) fe (v|e) dv

= mB∗ (e)− C∗ (e) ,

where:

B∗ (e) =

∫ v̄

v

∫ θ̄

θ

∑
i∈N

x∗i (v, θ) vdG (θ) fe (v|e) dv =

∫ v̄

v

vfe (v|e) dv,

C∗ (e) =

∫ v̄

v

∫ θ̄

θ

∑
i∈N

x∗i (v, θ) Ji (θi) dG (θ) fe (v|e) dv.

To conclude the argument, suppose that for any m, the optimal mechanism never involves

a prize. Condition (15) should thus hold for anym, and in addition, the Lagrangian multiplier

λm should satisfy the boundary condition (14). We should thus have:

mB∗ (e) < C∗ (e) +
f (v̄|e)
fe (v̄|e)

Γ∗ (e) ,

which is obviously violated for a large enough m.

D Proof of Proposition 4

As earlier, the incentive compatibility constraint can be replaced by the envelope condition:

Ui(v, θi) = ρi(v) +

∫ θ

θi

Xi(v, θi)dθi, ∀(v, θi) ∈ V N ×Θ,∀i ∈ N, (17)

where

Xi(v, θi) = Eθ−i

[∑
k∈N

xki (v, θi, θ−i)

]
.

Using condition (17), we can rewrite the limited liability constraint as:

Eθ

[∑
k,i∈N

xki (v, θ)
{
vk − Ji(θi)

}]
≥
∑
i∈N

ρi(v), ∀v ∈ V n. (LL)
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Let µ(v) ≥ 0 denote the multiplier associated with this constraint.

Also, from (17), individual rationality boils down to

ρi(v) ≥ 0, ∀v ∈ V n,∀i ∈ N. (IR)

We let νi(v) ≥ 0 denote the multiplier associated with this constraint.

Finally, using (6), firm i’s expected rent and the total expected transfer to the firms can

respectively be expressed as∫
θi

Ui(v, θi)dGi(θi) = ρi(v) +

∫
θi

Xi(v, θi)
Gi(θi)

gi(θi)
dGi(θi), (18)

and ∫
θ

∑
i∈N

ti(v, θ)dGi(θi) =
∑
i∈N

ρi(v) +

∫
θ

∑
i∈N

xki (v, θi)(Ji(θi) + ψki )dGi(θi), (19)

and the moral hazard constraint can be replaced by the associated first-order condition,

which, using (17), (18), and (19), can be expressed as:17

Ev,θ

[
ρi(v) +

Gi(θi)

gi(θi)

∑
k

xki (v, θ)

∣∣∣∣∣ ei, e−i
]
≥ c′(ei), ∀i ∈ N. (MH)

We formulate again these conditions as weak inequalities to ensure the nonnegativity of the

associated multipliers, which we will denote by λ = (λ1, ..., λn).

The principal’s problem can then be more succinctly reformulated as follows:

[P ] max
x,(ρi),e

Ev,θ

[∑
k,i∈N x

k
i (v, θ)

(
vk − Ji(θi)− ψki

)
−
∑

i∈N ρi(v)
∣∣∣ e]

subject to (LL), (IR), and (MH).

The analysis of this problem follows the same steps as for the case of a single innovator,

and we only sketch them here. The integrand of the Lagrangian is now given by:

L(v, θ, e) := [1 + µ(v)]

{∑
k,i∈N

[
vk − θi −

(
1− βi(vi)

1 + µ(v)

)
Gi(θi)

gi(θi)
− ψki

]
xki (v, θ)

}
−
∑
i∈N

ρi(v)
[
1 + µ(v)− νi(v)− βi(vi)

]
−
∑
i∈N

λic′(ei),

where

βi(vi) := λi
f ie(v

i|e)
f(vi|e)

.

17For simplicity, we normalize the firms’ efforts in such a way that firms face the same cost c(e); any

asymmetry can, however, be accommodated through the distributions F k(vk|e).
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The first-order conditions for the monetary prize ρi(v) and for the probability xki (v, θ) yield,

respectively:

1 + µ(v)− νi(v)− βi(vi) = 0, ∀v ∈ V n,∀i ∈ N, (20)

and

xki (v, θ) =

{
1 if vk − K̃i(v, θi)− ψki ≥ max

{
max(l,j) 6=(k,i) v

l − K̃j(v, θj)− ψlj, 0
}

,

0 otherwise,
(21)

where

K̃i (v, θi) := Ji(θi)−
βi(vi)

1 + µ(v)

Gi(θi)

gi(θi)
.

Note that K̃i (v, θi) can be expressed as

θi +

[
1− βi(vi)

1 + µ(v)

]
Gi(θi)

gi(θi)
,

where (20) and νi(v) ≥ 0 together imply that the term within brackets is non-negative. It

follows that

K̃i (v, θi) ≥ θi (22)

and that K̃i (v, θi) increases with θi.

The complementary slackness associated with (LL) implies that for every v ∈ V n,

µ(v)

{
Eθ

[∑
k,i∈N

xki (v, θ)
{
vk − Ji(θi)

}]
−
∑
i∈N

ρi(v)

}
= 0, (23)

whereas the complementary slackness associated with (IR) implies that for every i ∈ N and

every v ∈ V n,

νi(v)ρi(v) = 0. (24)

We now prove the following result:

Lemma 4. Fix any v such that maxk,i
{
vk − ψki

}
> θ. We have

Eθ

[∑
k,i∈N

xki (v, θ)
[
vk − ψki − Ji(θi)

]]
> 0, (25)

if either (i) n ≥ 2 or (ii) n = 1 and either v1 − ψ1
1 > θ or ν1 (v1) > 0.
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Proof. We first focus on the case in which n ≥ 2. Fix any v such that vl − ψlj − θ > 0

for some l, j. Further, fix any k such that
∑

i x
k
i (v, θ) > 0 for a positive measure of θs (a

project that does not satisfy this property is never adopted with positive probability and

can be ignored).

Consider first the particular case in which project k is always implemented and allocated

to the same firm i: xki (v, .) = 1 (this can, for instance, happen when vk is large and ψkj is

prohibitively high for j 6= i). In that case:

Eθ

[∑
i∈N

xki (v, θ)
[
vk − ψki − Ji(θi)

]]

=

∫ θ

θ

[
vk − ψki − Ji(θi)

]
dGi(θi)

=vk − ψki − θ
>0,

where the inequality stems from (21), applied to θi = θ,18 and (22).

Let us now turn to the case in which no firm is selected with probability 1 to implement

project k (because project k is not always implemented and/or different firms are selected

to implement it). By (21), the optimal allocation rule is then such that

Xk
i (v, θi) := Eθ−i

[
xki (v, θi, θ−i)

]
is nonincreasing in θi for all θi ≤ vk − ψki and equals zero for any θi > vk − ψki . Further, it

is strictly decreasing in θi for a positive measure of θi if Xk
i (v, θi) > 0, and by the choice of

k, there is at least one such firm.

Now, for every i define

X̄k
i (v, θi) =

{
z̄ki if θi ≤ vk − ψki
0 if θi > vk − ψki ,

where z̄ki is a constant in (0, 1) chosen so that∫ θ

θ

X̄k
i (v, θi)dGi(θi) = z̄kiGi(v

k − ψki ) =

∫ θ

θ

Xk
i (v, θi)dGi(θi).

Clearly, z̄ki , and hence X̄k
i (v, ·), is well defined.

18Generically, this condition implies vk − ψki > K̃i

(
v, θ
)
; we ignore here the non-generic case vk − ψki =

K̃i

(
v, θ
)
.
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We have:

Eθ

[∑
i∈N

xki (v, θ)
[
vk − ψki − Ji(θi)

]]

=
∑
i

∫ θ

θ

Xk
i (v, θi)

[
vk − ψki − Ji(θi)

]
dGi(θi)

=
∑
i

∫ min{θ,vk−ψki }

θ

Xk
i (v, θi)

[
vk − ψki − Ji(θi)

]
dGi(θi)

>
∑
i

∫ min{θ,vk−ψki }

θ

X̄k
i (v, θi)

[
vk − ψki − Ji(θi)

]
dGi(θi)

=
∑
i

z̄ki

∫ min{θ,vk−ψki }

θ

[
vk − ψki − Ji(θi)

]
dGi(θi)

=
∑
i

z̄ki
(
max{vk − ψki − θ, 0}

)
≥0.

The second equality stems from the fact that Xk
i (v, θi) = 0 for θi > vk − ψki , and the strict

inequality follows from the fact that vk − ψki − Ji(θi) is strictly decreasing in θi and, in the

relevant range
[
θ,min{θ, vk − ψki }

]
, Xk

i (v, θi) is nonincreasing in θi and strictly decreasing

in θi for a positive measure of θi for some i, whereas by construction, X̄k
i (v, ·) is constant

and ∫ min{θ,vk−ψki }

θ

X̄k
i (v, θi)dGi(θi) =

∫ min{θ,vk−ψki }

θ

Xk
i (v, θi)dGi(θi).

Summing the above string of inequalities over all k, we obtain the desired result.

Next consider the case in which n = 1. In this case, X1
1 (v, θ1) = x1

1(v, θ1) = 1 for

K̃1(v1, θ1) ≤ v1 and zero otherwise. Because Xk
i (v, θi) is constant when it is strictly positive,

the strict inequality above does not follow from the above argument. But the strict inequality

does still hold if v1 − ψ1
1 > θ or if ν1 (v1) > 0.

In the former case, the last inequality above becomes strict, thus yielding the desired

result. To consider the latter case, assume without loss v1 − ψ1
1 ≤ θ. Because ν1 (v1) > 0,

we have β1(v1) < 1 + µ(v1), so K̃1 (v1, θ1) > θ1, which implies that there exists θ̃ < v1 − ψ1
1

such that x1
1(v, θ1) = 1 for θ1 < θ̃ and x1

1(v, θ1) = 0 for θ1 > θ̃. Let θ̌ := sup{θ ≤
θ|v1 − ψ1

1 − J1(θ) ≥ 0}. If θ̃ ≤ θ̌, then

Eθ
[
x1

1(v, θ)
[
v1 − ψ1

1 − J1(θ1)
]]

=

∫ θ̃

θ

[
v1 − ψ1

1 − J1(θ1)
]
dG(θ1) > 0.
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If θ̃ < θ̌, the same result holds because

Eθ
[
x1

1(v, θ)
[
v1 − ψ1

1 − J1(θ1)
]]

=

∫ θ̃

θ

[
v1 − ψ1

1 − J1(θ1)
]
dG(θ1)

>

∫ θ̃

θ

[
v1 − ψ1

1 − J1(θ1)
]
dG1(θ1) +

∫ v1−ψ1
1

θ̃

[
v1 − ψ1

1 − J1(θ1)
]
dG1(θ1)

=

∫ v1−ψ1
1

θ

[
v1 − ψ1

1 − J1(θ1)
]
dG1(θ1)

=0,

where the strict inequality holds because v1−ψ1
1 − J1(θ1) < 0 for θ1 ∈ (θ̃, v1−ψ1

1) (which in

turn holds because θ̌ < θ̃ < v1−ψ1
1), and the last equality follows from integration by parts.

�

Without loss of generality, assume n ≥ 2 (otherwise, there would be a single innovator,

a case studied earlier). There are two cases. Consider first the case in which βi(vi) < 1 for

every i ∈ N . By (20), we must then have

νi(v) = 1 + µ(v)− βi(vi) > 0,

and the complementary slackness condition (24) thus yields ρi(v) = 0 for every firm i ∈
N . This, together with (25) and the complementary slackness condition (23), implies that

µ(v) = 0, and thus

K̃i(v, θ1) = Ji(θi)− βi(vi)
Gi(θi)

gi(θi)
:= Ki(v, θ1).

Consider next the case in which maxi∈N {βi(vi)} > 1. Let Î = arg maxi∈N {βi(vi)} for

the firms that have the highest βi(vi). Applying (20) to i ∈ Î then yields

µ(v) = νi(v) + βi(vi)− 1 > νı̂(v) ≥ 0, (26)

whereas applying (20) to firm j 6∈ Î yields

1 + µ(v)− νi(v) = βi(vi) > βj(vj) = 1 + µ(v)− νj(v).

It follows that νj(v) > νi(v) ≥ 0 for i ∈ Î , j 6∈ Î. Therefore, by complementary slackness

(24), ρj(v) = 0, so that only firms i ∈ Î can receive a positive monetary prize: ρ∗j(v) = 0 for

j 6∈ Î. Finally, the complementary slackness condition (23) yields∑
i∈Î

ρ∗i (v) =
∑
j∈N

ρ∗j(v) = Eθ

[∑
k,i∈N

xki (v, θ)
{
vk − Ji(θi)

}]
.
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By Lemma 4, the total prize must be strictly positive for all v such that vk > ψki +θ for some

k, i. Given the atomlessness of Fi(·|e) for all e, we note that Î is almost always a singleton,

i.e., with probability one. In other words, for any v such that vk > ψki + θ for some k, i, and

maxi{βi(vi)} > 1, only one firm receives the monetary prize with probability one.

Last, we derive the characterization of the optimal allocation rule. By the above argu-

ment, there exists at least one firm i ∈ Î such that ρ∗i (v) > 0, and for that firm, (24) yields

νi(v) = 0. However, then (20) applied to all j ∈ Î along with the fact that βi(vi) = βj(vj)

for i, j ∈ Î means that νi(v) = 0 for all i ∈ Î. It then follows that

1 + µ(v) = max
i
{βi(vi)}.

We thus conclude that

K̃i(v, θ1) = Ji(θi)−
(

βi(vi)

maxk βk(vk)

)(
Gi(θi)

gi(θi)

)
:= Ki(v, θ1).
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A Forbidding Handicaps

Suppose that the innovator cannot be handicapped compared to its second best allocation.

That is, for every v and θ:

x1(v, θ) ≥ xSB1 (v, θ), (NH)

where:

xSB1 (v, θ) :=

{
1 if J1(θ1) ≤ min {v,minj 6=1 Jj(θj)} ,

0 otherwise.

Letting α(v, θ) ≥ 0 be the multiplier of the no-handicap constraint (NH), the Lagrangian

becomes

L(v, e) := [1 + µ(v)]

{[
v − J1 (θ1) +

β (v)

1 + µ (v)

G1(θ1)

g1(θ1)
+

α (v, θ)

1 + µ (v)

]
x1(v, θ) +

∑
j 6=1

[v − Jj(θj)]xj(v, θ)

}
− ρ1(v) [1 + µ(v)− ν(v)− β (v)]− λc′ (e) + α(v, θ)[x1(v, θ)− xSB1 (v, θ)]

and the additional complementary slackness is

α(v, θ)
[
x1(v, θ)− xSB1 (v, θ)

]
= 0. (27)

The Lagrangian is still linear in xi’s, so the optimal allocation must satisfy, for every

i, v, θ:

x̄i(v, θ) =

{
1 if i ∈ arg minj

{
K̄j(v, θj)

}
and K̄i (v, θi) ≤ v,

0 otherwise,

where the shadow cost is now given by:

K̄i(v, θi) :=

{
Ji (θi)− β(v)

1+µ(v)
Gi(θi)
gi(θi)

− α(v,θ)
1+µ(v)

if i = 1,

Ji (θi) if i 6= 1,
with β (v) := λ

fe(v|e)
f(v|e)

.

When v > ṽ, K̄1(v, θ1) < J1 (θ1), and we can thus ignore the constraint (NH); hence

α(v, θ) = 0, implying K̄1(v, θ1) = K1(v, θ1) and x̄1(v, θ) = x∗1(v, θ). Let us now consider the

case v < ṽ. If α (v, θ) = 0, the above characterization yields again x̄1(v, θ) = x∗1(v, θ), and

v < ṽ then implies K̄1(v, θ1) > J1(θ1) and thus x̄1(v, θ) < xSB1 (v, θ) for at least some θs,
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contradicting (NH); therefore, we must have α (v, θ) > 0, and the complementary slackness

condition (27) thus implies x̄1(v, θ) = xSB1 (v, θ), and thus K̄1(v, θ1) = J1(θ1).

The other constraints are unaffected; thus the optimal effort e must satisfy

∂

∂e

∫
v

∫
θ

L(v, θ, e)f(v|e)dvdG (θ) = 0,

and complementary slackness implies that, for each v,

ν(v)ρ1(v) = 0,

µ(v)

{∫
θ

∑
i∈N

x̄i(v, θ) [v − Ji(θi)] dG(θ)− ρ1(v)

}
= 0,

and

e

[∫
v

∫
θ

[
ρ1(v) +

G1(θ)

g1(θ)
x̄1(v, θ)

]
g(θ)dθfe(v|e)dv − c′(e)

]
= 0.

Going through the same steps as before and summing up, we have:

• For v < ṽ, α (v, θ) = −β (v)G1(θ1)/g1 (θ1) (> 0) and K̄i(v, θi) = Ji(θi) for all i (and

thus, x̄i(v, θ) = xSB (θ) for all i as well).

• For v > ṽ, α (v, θ) = 0 and x̄i(v, θ) = x∗i (v, θ) for all i.

In addition:

• For v < v̂, ν (v) = 1− β (v) > 0 and thus ρ1 (v) = 0 and µ (v) = 0.

• For v > v̂, ν (v) = 0 and β (v) = 1 + µ (v), and thus K̄1(v, θ1) = θ1 and

ρ1(v) =

∫
θ

∑
i∈N

x̄i (v, θ) [v − Ji(θi)] dG(θ).

Finally, for v > v̂, we have x̄1(v, θ) = x∗1(v, θ), which is based on K1 (v, θ1) = θ1 and

Ki (v, θi) = Ji (θi) for i 6= 1; this implies that forbidding handicaps does not affect the size

of the monetary prize – even when it affects the multiplier λ.
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