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Abstract. This paper develops a generalized supervised learning methodology for inferring roll call
scores for incumbent and non-incumbent candidates from campaign contribution data. Rather than use
unsupervised methods to recover the latent dimension that best explains patterns in giving, donation
patterns are instead mapped onto a target measure of legislative voting behavior. Supervised learning
methods applied to contribution data are shown to significantly outperform alternative measures of ide-
ology in predicting legislative voting behavior. Fundraising prior to entering office provides a highly
informative signal about future voting behavior. Impressively, contribution-based forecasts based on
fundraising as a non-incumbent predict future voting behavior with the same accuracy as that achieved
by in-sample forecasts based on votes casts during a legislator’s first two years in Congress. The com-
bined results demonstrate campaign contributions are powerful predictors of roll-call voting behavior
and resolve an ongoing debate as to whether contribution records can be used to make accurate within-
party comparisons.
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Spatial maps of preferences have become a standard tool for the study of politics in re-

cent decades. As scaling methods are applied to an increasingly diverse set of political actors

and types of data, political scientists have come to view DW-NOMINATE and related roll call

scaling models as benchmark measures of ideology (Poole and Rosenthal, 2007; Clinton, Jack-

man, and Rivers, 2004). Part of the appeal of these measures is their ability to summarize the

lion’s share of congressional voting behavior with a single dimension. Indeed, the predictive

power of spatial models of voting have shaped our understanding of Congress as fundamentally

one-dimensional. This has in turn aided in testing a variety of theories about representation,

accountability, and legislative behavior and has fostered their widespread adoption.1

A well known limitation of roll call-based measures of ideology is that they are confined to

voting bodies. This precludes estimating scores for non-incumbent candidates prior to taking

office, which is arguably where such predictions would be most valuable (Tausanovitch and

Warshaw, 2016). Only quite recently has the focus on scaling Congress begun to give way as

political scientists have sought to extend ideal point estimation to a wider set of institutions and

contexts. In recent years, scaling methods have been applied to a ever more varied types of data,

including voter evaluations of candidates (Maestas, Buttice, and Stone, 2014; Hare et al., 2015;

Ramey, 2016), legislative speech (Beauchamp, 2012; Lauderdale and Herzog, 2015), social

media follower networks (Barberá, 2015; Barberá et al., 2015; Bond and Messing, 2015), and

campaign contributions (Bonica, 2013, 2014; Hall, 2015).

As the most widely used measure of ideology, DW-NOMINATE remains a common thread

in the literature on ideal point estimation. Benchmarking measures based on comparisons with

DW-NOMINATE is a standard practice. Although comparisons with an established measure

are useful for establishing face validity, it can encourage scholars to misinterpret roll call es-

timates as the “true” or definitive measures of ideology. In practice, ideal point estimation

is typically performed using unsupervised data reduction techniques.2 The output of roll call

scaling models is most accurately understood as a relative ordering of individuals along a pre-

1According to Google Scholar, Poole and Rosenthal’s combined work on NOMINATE has generated nearly
10,000 cites.

2Partial exceptions include Gerrish and Blei (2012), Lauderdale and Clark (2014), and Bonica (2016) which
use semi-supervised methods to identify the dimensionality of roll calls based on issue weights from topic models.
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dictive dimension that best explains voting behavior in a given voting body. Although widely

understood as measures of ideology, this is an interpretation given by the researcher and not

reflective of any defined objective built into the model.

In a recent paper, Tausanovitch and Warshaw (2016) evaluate several alternative measures

of ideology recovered from survey data, campaign contributions, and social media data with

based on comparisons with DW-NOMINATE. They find that most measures successfully sort

legislators by party but are less successful in distinguishing between members of the same-

party. This leads the authors question the usefulness of these measures for testing theories of

representation and legislative behavior or in predicting how non-incumbent candidates would

behave in office. In addition to the obvious implications for researchers, this has important

policy implications. One of the main rationales for campaign finance disclosure laid out by the

Supreme Court in Buckley v. Valeo (424 US 1 [1976]) is that it conveys useful information that

would allow “voters to place each candidate in the political spectrum more precisely than is

often possible solely on the basis of party labels and campaign speeches.” In a recent study,

Ahler, Citrin, and Lenz (Forthcoming) cast doubt on the ability of voters to discern ideological

differences between moderate and extreme candidates of the same party, suggesting that the

disclosure laws have thus far failed to inform voters along the lines outlined in Buckley. Mean-

while, other studies have directly challenged the informational benefits of campaign finance

disclosure Primo (2013); Carpenter and Milyo (2012). Finding that even sophisticated statisti-

cal methods are unable to leverage the informational value of campaign contributors to generate

accurate predictions about how candidates would behave if elected would further undermine an

important policy rationale for campaign finance disclosure laws.

This paper introduces a new methodological approach for forecasting legislative voting be-

havior for candidates who have yet to compile a voting record. Rather than using unsupervised

methods to recover the dimension that best explains patterns in the behavior at hand, data on

revealed preferences are instead mapped directly onto a target measure of legislative voting

behavior—in this case, DW-NOMINATE scores. This is done using supervised machine learn-

ing methods similar to those used by many social scientists for text analysis (Grimmer and

Stewart, 2013; Laver, Benoit, and Garry, 2003). Supervised machine learning methods excel

at this task because they are able to “learn” the mapping between predictor variables and the

target variable when the target function is unobserved.

The paper proceeds as follows. It begins by motivating the supervised learning approach
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with a discussion that highlights a disconnect the ideal point literature between theory and

estimation. This is followed by a brief introduction of supervised learning methods and a

presentation of the results. The remaining sections discuss issues raised by the results regarding

benchmarking and validation unsupervised models.

2 Statement of the Problem

The spatial theory underlying ideal point estimation models is known as two-space theory (Ca-

hoon, Hinich, and Ordeshook, 1976). The theory builds on a concept known as issue constraint

first defined by Converse (1964) as “a configuration of ideas and attitudes in which the ele-

ments are bound together by some form of constraint or functional interdependence.” Practi-

cally speaking, the presence of issue constraint means preferences are correlated across issues.

If provided with the knowledge of one or two of an individual’s issue positions, an observer

should be able to predict the remaining positions with considerable accuracy.3 Two-space the-

ory holds that issue constraint implies the existence of a higher-dimensional space that contains

positions on all distinct issue-dimensions known as the “action space” and a lower-dimensional

mapping of issue preferences onto one or two latent ideological dimensions known as the “ba-

sic space.” In practice, we only directly observe positions in the action space, leaving the

ideological dimensions to be estimated as latent variables.

Enelow and Hinich (1984) and later Hinich and Munger (1996) extend the two-space model

to explain how voters can use ideology as an informational shortcut in deciding between can-

didates. These models begin with the assumption that voters have preferences over an n-

dimensional issue space. The issue positions of candidates are assumed to be “linked” to an

underlying ideological dimension. Given a shared understanding of how issues map on the ide-

ological dimension, voters are able to use ideological cues to infer where candidates locate on

issue dimensions. From this perspective, ideology is understood as a mechanism for efficiently

summarizing and transmitting information about political preferences.

In recent years, a trend has emerged towards viewing ideal point estimation as directly

analogous to a class of latent trait models used in the educational testing literature. Although

clear parallels exist with respect to estimation, the analogy quickly wears thin. Educational

tests are predicated on the notion that individuals possess latent abilities related to intelligence

3As explained by Poole (2005), “in contemporary American politics the knowledge that a politician opposes
raising the minimum wage makes it virtually certain that she opposes universal health care, opposes affirmative
action, and so on. In short, taht she is a conservative and almost certainly a Republican.”
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or aptitude that generate responses to test questions. What distinguishes the most intelligent

individuals is an enhanced cognitive ability that allows them identify the correct answers to a

series of carefully designed test questions.

Conceptualizing spatial models of politics in similar terms requires making strong assump-

tions about the data-generating process. To see why, let Y be the n by k matrix of issue posi-

tions of n individuals on k issue dimensions and X be the n by s matrix of individuals’ ideal

points on the s ideological dimensions. The presence of issue constraint implies that all issue

positions can be represented as X� =) Y, where � is a projection matrix that maps ideal

points onto issue dimensions. This implies the existence of a latent ideological space that is

exogenous to the preferences and choices it influences. If X generates all the issue positions in

Y, the relative importance or weighting of issues should have no bearing on the dimensionality

of ideology. Neither issue salience nor the frequency upon which issues are voted on should

matter to how ideal points project onto issue dimensions, which strictly depends on X�. This

might be referred to as the holographic interpretation of ideology in that issue preferences are

understood as a higher-dimensional representation of information existing in a low dimensional

ideological space.

There is reason to doubt such an interpretation. The crux of the problem is that the sources

of constraint remains a “black-box” (Poole, 2005). We observe that issue positions are corre-

lated across individuals but lack a basic understanding of why issues are bundled or how issue

dimensions map onto the ideological space. More to the point, the holographic interpretation

is at odds with statistical methods used to scale ideology. In practice, scaling models work in

reverse, starting with data on revealed preferences on issues that are mapped onto a low di-

mensional predictive space, Y =) X�. The objective is not necessarily to measure some

underlying “true” ability or trait expressed in Y but rather to construct a low dimensional rep-

resentation of the information contained in Y. In this respect, these models are more similar to

multidimensional scaling and related ordination techniques. The most faithful interpretation of

X is as whatever dimension best explains variation in Y. Consequently, changes to the number

or relative importance of issue dimensions contained in Y can result in changes to X. If we

allow issue dimensions to be weighted with respect to salience, their relative importance to

policy outcomes, or simply the frequency they are voted on, some issues will matter more in

defining X. Simply put, an issue that is voted on a hundred times will have greater influence

on the dimension recovered from a scaling model than an issue that is only voted on once, or
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not at all.

Implications for validation and prediction. In practice, the output of scaling models is the

dimension that best explains variation in the patterns of behavior in the data. In this sense, these

models are primarily descriptive in nature as opposed to being designed to measure a target

concept. This makes direct comparisons between alternative measures of ideology problematic

because neither the mapping function nor the issue weights are observed. As a result, it is

difficult to determine whether differences across measures result from measurement error or

from systematic differences in how issues are mapped onto the latent dimensions.

To illustrate, consider a simplified issue space comprised of two issue dimensions. In this

example, one issue dimension relates to economic policy and the other relates to social con-

servatism. Interest group ratings compiled by the US Chamber of Congress (CCUS) and the

National Abortion and Reproductive Rights League (NARAL) provide estimates of legislator

positions on each issue dimension.4 Factor analytic techniques can be used to project legisla-

tors onto a latent dimension that best explains variation in issue preferences. The somewhat

noisier relationship between the CCUS and NARAL scores suggests relatively weak levels of

constraint.

Figure 1 compares ideal points projected on the latent dimension recovered using weighted

factor analysis under four hypothetical weighting profiles. The two corner scenarios assume

that a single issue receives 100 percent of the weight. In the other two scenarios, one issue

dimension receives 75 percent of the weight while the other receives 25 percent. Comparing

ideal points across scenarios illustrates just how sensitive scaling models can be to how issues

are weighted. Depending on the issue weights, the distributions of ideal points on the latent

dimension can look very different.

One application where the weighting of issue dimensions comes into play is in bridging

across voting bodies. A common identification strategy uses legislators who served in one

legislature before entering another as bridge observations. Linear projections are used to re-

scale ideal points recovered from voting in state legislatures to the same actors’ ideal points

recovered from voting in Congress (Shor, Berry, and McCarty, 2010; Windett, Harden, and

Hall, 2015). This approach rests on the assumption that the dimension that best explains roll call

4The adjusted interest group ratings are provided by Groseclose, Levitt, and Snyder (1999) and cover Congress
members who served between 1979 and 2008. The scores are averaged across periods so that each legislator is
assigned a single score.
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Figure 1: Pairwise comparisons of interest group ratings under different weighting assump-
tions
Note: The points for legislators are color coded with respect to party. The upper-right panels

report the Pearson correlation coefficients between measures overall and within party. The

diagonal panels list the weights assigned to each issue dimension and plot the ideal point

distributions by party.
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voting in a given state legislature is identical to the dimension that best explains roll call voting

in Congress and that, after rescaling, differences in ideal points recovered from each voting

body are simply a matter of measurement error. If the issue weightings in state legislatures

differ from those in Congress, the shared dimensionality assumption will likely be violated.

It is doubtful that the shared dimensionality assumption would hold in most cases. Voting

within a legislature is a narrow and somewhat peculiar task. Further complicating matters,

the set of questions that legislators are asked to consider is largely endogenous to the voting

institution. Both the set of bills that are penned into existence and the subset of those which

ultimately make it to the floor are the products of a highly strategic and closely managed agenda

setting process (see for example Cox and McCubbins (2006)). Moreover, many issues that are

central to state policy, such as education policy, are less of a focus for Congress. On the

flip-side, issues related to defense, foreign policy, and trade are almost strictly the domain of

Congress.

This problem complicated even further when bridging across measures derived from dif-

ferent types of preference data. In any given Congress, it is rare to see more than a dozen roll

call votes on issues directly relating to socially-charged issues such as abortion and same-sex

marriage. In contrast, these same issues feature prominently in campaign rhetoric and are a

frequent subject of ballot initiatives. PACs and ballot committees that focus on social issues

consistently draw large numbers of donors. The likely consequence of this is that positions on

social issues will receive more weight when scaling contributions and less weight when scaling

Congressional roll calls.

One way researchers have attempted to get around the comparability problem is to use

National Political Awareness Test (NPAT) candidate surveys as an intermediary (Shor and Mc-

Carty, 2011). First, state legislators and members of Congress are jointly scaled using their

NPAT responses. Congress and state legislatures are then each scaled separately using roll call

data and projected onto the NPAT common space via an error-in-variables regression model.

While this greatly increases the number of available bridge observations and addresses some of

the issues related to assumptions about the consistency of behavior when bridge actors move

from one chamber to another, the identification strategy still rests on the assumption that scaling

models applied to the various legislatures all recover positions along the same latent ideological

dimension.

In what follows, I propose a general methodology for mapping revealed preference data
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generated in one context onto a target latent dimension recovered from data generated in a

different context.

3 Supervised Learning Algorithms for Predicting

Congressional Voting

This section outlines the methodology for inferring DW-NOMINATE scores for candidates

based on non-roll call sources of data. The idea underlying supervised machine learning is that

given a target data set where outcomes are either observed or have been systematically assigned

by human coders, an algorithm can "learn" to predict outcomes by recognizing patterns in a

corresponding feature set (i.e. matrix of predictor variables).

Two main tasks are involved in using supervised learning models for this purpose. The

first is to identify a common source of data that is shared by incumbent and non-incumbents.

Nearly all candidates engage in fundraising, making contribution data ideal for this purpose.

This positions the modeling strategy developed here to generalize well beyond Congress to the

general population of candidates and political elites across the nation. The second task is to

determine which supervised learning algorithms are best suited for the data. In this case, the

target variable (DW-NOMINATE) is measured along a continuous dimension, which suggests

a regression based modeling approach.

Machine learning methods have become an increasingly popular tool in recent years for

social scientists dealing with data sets with many hundreds or thousands of variables (Hain-

mueller and Hazlett, 2014; Grimmer and Stewart, 2013; Cantú and Saiegh, 2011). By far, the

most common application for these models has been text analysis. In a typical scenario, a

researcher might begin with a sample of a few hundred hand-coded documents sorted into a

predefined set of topics. The hand-coded documents are used to train a supervised machine

learning model. The trained model can then be used to infer the topics for remaining docu-

ments. This provides an efficient means of topic coding large corpuses of text. In an alternative

arrangement, a model might be trained to classify legislators by party or ideological groupings

based on a corpus of legislative text, where each document associated with a legislator (Yu,

Kaufmann, and Diermeier, 2008; Diermeier et al., 2012).

The supervised machine learning task undertaken here can be thought of in a similar vein.

The candidate-contributor matrix takes on a nearly identical structure to that of a document-

term matrix, where the contribution profiles associated with candidates can be thought of as
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documents and contributors as words. Given a training set of candidates that have been as-

signed DW-NOMINATE scores, the model will attempt to discern the ideological content of

contributors, just as models applied to legislative text attempt discern the ideological content

of words.

In this framework, the set of candidates with DW-NOMINATE scores are used to train

the model. Insofar as information relevant for predicting roll call behavior is present in the

contribution matrix, it becomes a matter of training a model to learn from the observed patterns

of giving. To state the problem more formally, suppose there are Ntrain candidates for whom

DW-NOMINATE scores are observed (i = 1, ..., Ntrain) and another Ntest candidates for whom

DW-NOMINATE scores are not available. Let Ytrain be an Ntrain-length vector of observed

DW-NOMINATE scores and let Wtrain be an Ntrain ⇥m matrix of contribution amounts. The

remaining Ni2test candidates represents values to be predicted. The model assumes there is

some unobserved target function, f(.), that best describes the relationship between Ytrain and

Wtrain,

Ytrain = f(Wtrain). (1)

The supervised learning algorithm attempts to learn this relationship by estimating a function,

ˆ

f(.), that approximates f(.). ˆ

f(.) is then used to infer values of Ytest from Wtest,

Ŷtest =
ˆ

f(Wtest). (2)

Although several regression-based supervised machine learning methods would be applicable

here, support vector regression (Drucker et al., 1997; Smola and Schölkopf, 2004) and random

forests (Breiman, 2001) are particularly well-suited for the task at hand.

Support vector regression. Support vector regression is a generalization of support vector

machines (SVM) to real-valued functions. The objective of support vector regression is to find

a function ˆ

f(.) that minimizes the number predicted values with residuals larger than ✏. This

differs from standard regression models in that the loss function tolerates deviations where

|ŷ � y|  ✏, with only deviations |ŷ � y| > ✏ being penalized. This is known as an epsilon-

insensitive loss function,

|ˆ⇠i|✏ =
(
0 if |ŷ � y|  ✏

|ŷ � y|� ✏ if |ŷ � y| > ✏

(3)
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where the value of ✏ either set a priori or, as is more commonly the case, treated as a tuning

parameter during computation. To estimate a linear regression,

f(x) =

NtrainX

i=1

(↵

⇤
i � ↵i)k(xi, x) + b (4)

where k(.) is the kernel function and b is the “bias” term. A linear kernel k(xi, xj) = x

>
i xj

is used because it suits contribution data well. The SVM algorithm solves the constrained

optimization problem,

argmax

↵⇤
W (↵

⇤
) =

NtrainX

i=1

(↵

⇤
i � ↵i)(↵

⇤
j � ↵j)k(xi, xj),

subject to
NtrainX

i=1

(↵

⇤
i � ↵i) = 0,

↵

⇤ 2

0,

C

M

�
,

NtrainX

i=1

(↵

⇤
i � ↵i) < C · v.

(5)

Random forests. Random forests are an ensemble approach to supervised learning that oper-

ates by constructing many random decisions trees from the input data and aggregating over the

output to generate predictions. The main advantages of random forests are efficiency with large

datasets, resistance to overfitting, and built-in estimates of variable importance, which aids in

feature analysis. (See Breiman (2001) for an overview.)

4 Model Training

Constructing the training set. The analysis here focuses on candidates running for fed-

eral office during the 1980-2014 election cycles. The common-space DW-NOMINATE scores,

which provide estimates from a joint scaling of the House and Senate for the 1-113th Con-

gresses, are used as the target variable. Unlike chamber-specific scalings of the House or Sen-

ate that model dynamic legislator ideal points, the common-space scores are static. The data

on campaign contributions is from the Database on Ideology, Money in Politics, and Elections

(DIME) Bonica (2016). The DIME data covers a period from 1980-2014 and contains records

for 72,065 candidates from state and federal elections (1,718 of whom have DW-NOMINATE

scores). In addition, indicator variables for three basic candidate traits—party, home state, and

gender—are included in the feature matrix.
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Feature selection. Given the large size of the potential feature set, donors that did not meet

the threshold of giving to at least 15 distinct candidates included in the training set (e.g. that

have DW-NOMINATE scores) were thinned from the feature set. This reduces the number of

features to 63,992. Recursive feature elimination techniques, which rely on iterative methods

to narrow the feature set, were also used in building the model.

While feature selection allows for improved handling of the sparsity in the contribution

matrix, it does risk excluding potentially useful information from the millions of less active

donors. In order to as to avoid discarding information from donors who do not meet the thresh-

old for inclusion, I employ feature extraction methods. Specifically, I construct an n ⇥ m

matrix that summarizes the percentage of funds a candidate raised from donors that fall within

m = 10 ideological quantiles. This is done by calculating contributor coordinates from the

dollar-weighted ideological average of contributions based on the DW-NOMINATE scores of

the recipients and then binning the coordinates into deciles. The contributor coordinates are

calculated in a manner consistent with the cross-validation scheme by removing rows for can-

didates in the held-out set for each round. With the coarsened contributor scores in hand, I then

calculate the proportions of contribution dollars raised by each candidate from each decile of

donors. The resulting n by 10 matrix of decile shares is then included in the feature set.5

Model fitting. The random forest regression was trained using the caret package in R (Kuhn,

2008). The support vector regression model was trained using the Liblinear library Fan et al.

(2008). Repeated k-fold cross-validation is used in training (k = 10). This is done by partition-

ing the sample into k groups and repeatedly fitting the model each time with one of the k-sets

held out-of-sample. This process is repeated five times on different partitions of the data and

results are averaged over rounds.

One thing to note is that the DW-NOMINATE scores are treated as known quantities despite

being measured with error. This makes assessing model fit slightly less straightforward as it

is unclear the extent to which cross-validation error reflects measurement error in the target

variable. The presence of measurement error is relatively common for supervised machine

learning exercises, especially those that rely on human coding to generate a training the set.

Although measurement error in the target variable can lead to overfitting, regularized kernel-

regression methods and random forests are less prone overfitting in the presence of low levels

of measurement error.

5Alternatively, using common-space CFscores for feature extraction performs nearly as well.
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5 Results

This section reports results to assess the predictive performance of the support vector regres-

sion model. For purposes of comparison, fit statistics are reported for common-space CFscores,

another set of contribution-based scores estimated using a structural model applied to federal

PAC contributions (IRT CFscores), Turbo-ADA interest group ratings compiled by Americans

for Democratic Action and normalized by Groseclose, Levitt, and Snyder (1999), NPAT scores

based on candidate surveys from the 1996 elections (Ansolabehere, Snyder, and Stewart, 2001),

Shor and McCarty (2011) state legislator ideal points based on roll call voting in state legisla-

tures, and two alternative roll call measures developed by Bailey (2013) and Nokken and Poole

(2004).

Lastly, I report results from a supervised version of the CFscore model that is estimated in

a manner akin to the Wordscores algorithm (Laver, Benoit, and Garry, 2003), where candidates

with DW-NOMINATE scores act as the reference documents. To estimate the scores, donors

are assigned ideal points based on the dollar-weighted average DW-NOMINATE score of their

recipients. The process is then reversed and scores for candidates are calculated based on

the dollar-weighted average of their contributors. Similar to the other supervised models, and

10-fold cross-validation is used to assess model performance. The scores reported below are

predicted out-of-sample so that a legislator’s DW-NOMINATE score does not factor into the

estimates for their contributors.6

Several of the alternative roll call measures rely on the same underlying data as DW-

NOMINATE to scale legislators but make different modeling assumptions. The Bailey scores

are estimated use a scaling model similar to that of DW-NOMINATE but incorporate additional

data on position-taking by non-legislative actors to bolster identification. The Nokken-Poole

scores are a period-specific measure derived from DW-NOMINATE scores. Using the set of roll

call parameter estimates recovered from DW-NOMINATE to fix the issue space, the technique

estimates congress-specific ideal points for legislators based on voting during each two-year pe-

riod. As such, these scores represent in-sample estimates of DW-NOMINATE based on subsets

of a legislator’s voting history. The Nokken-Poole estimates appear twice in the results. First

with the observations spanning the course of legislators’ careers then as a fixed score based

on a legislator’s first term in Congress.7 The first term Nokken-Poole DW-NOMINATE scores

6This scaling model is similar to the one used by Hall (2015).
7Only first term scores for legislators that served in more than one Congress are included.
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All Cands Dem Cands Rep Cands
R RMSE N R RMSE N R RMSE N

Cross-validated

Random Forest 0.97 0.10 1718 0.81 0.10 874 0.82 0.10 838
Support Vector Regression 0.96 0.11 1718 0.78 0.11 874 0.77 0.11 838
Supervised CFscores 0.94 0.14 1718 0.67 0.15 874 0.75 0.13 838
In-Sample

Random Forest 0.99 0.04 1718 0.98 0.04 874 0.98 0.04 838
Support Vector Regression 0.99 0.05 1718 0.96 0.05 874 0.97 0.04 838
Roll Call Measures

Nokken-Poole (Dynamic) 0.97 0.09 9200 0.91 0.07 4954 0.83 0.11 4227
Nokken-Poole (First Term) 0.96 0.10 1488 0.87 0.09 763 0.84 0.12 721
Bailey Scores (Dynamic) 0.92 0.16 12724 0.78 0.15 6523 0.64 0.16 6161
Bailey Scores (Mean) 0.89 0.18 1662 0.80 0.17 844 0.66 0.18 814
Turbo-ADA 0.90 0.17 1444 0.69 0.18 762 0.59 0.15 681
Shor-McCarty 0.93 0.17 226 0.58 0.17 105 0.51 0.16 121
Alternative Measures

Common-space CFscores 0.91 0.17 1718 0.52 0.19 874 0.68 0.14 838
IRT CFscores 0.89 0.18 1275 0.63 0.19 668 0.53 0.17 605
NPAT (1996) 0.92 0.16 257 0.77 0.16 115 0.63 0.16 142

Table 1: Predicting DW-NOMINATE Scores: Fit statistics for alternative measures of ideology.

are a particularly informative benchmark for assessing predictive accuracy. It tells us how well

voting patterns observed during the first two year in Congress predicts voting behavior over the

course of a legislative career.

Table 1 reports comparisons with DW-NOMINATE for the supervised methods and several

alternative measures of ideology. Note that model fit is defined here in terms of similarity

with DW-NOMINATE scores. For the supervised models, cross-validated and in-sample fit

statistics are reported separately. (For the remainder of the paper, the cross-validated estimates

are used throughout.) For all other measures, the fit statistics are based on comparisons after

being projected onto the DW-NOMINATE scores.

The supervised models perform well in explaining DW-NOMINATE scores, overall and

within party, with the random forest regression model doing best overall. The supervised learn-

ing models significantly outperforms both common-space CFscores and the PAC-based IRT

CFscores, both of which are based on campaign contributions. The predictive accuracy of the

supervised models even exceeds that of measures derived from congressional roll call votes.

They outperform the Turbo-ADA and Bailey scores by sizable margins.8 Of the included roll

calls measures, the Shor-McCarty scores are the only measures based on non-congressional

vote data. They also exhibit the weakest within party correlations, speaking to the challenges

inherent in bridging across institutions even when we observe bridge actors engaging in the

8Note that model performance is narrowly defined here in terms of similarity with DW-NOMINATE. The
lower classification rates associated with the Bailey scores reflects a deliberate departure from the modeling as-
sumptions of DW-NOMINATE.
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Figure 2: Comparing measures of legislator ideology against DW-NOMINATE scores.
Note: The scales for non-supervised methods have been rescaled for purposes of comparison.

Linear trend lines are fit separately for each party.

same type of behavior in both settings.

Perhaps most telling is that the supervised models are on par with the Nokken-Poole first

term estimates in terms of predictive accuracy. This demonstrates that it is possible to infer

a legislator’s DW-NOMINATE score from her contribution records just as accurately as we

can from observing how she votes during her first two years in Congress.

Figure 2 presents the relationships between measures as a series of scatter plots. The

shaded trend lines show the linear fit by party. As compared with DW-NOMINATE, all of
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the independent measures exhibit increased levels of partisan overlap.9 This suggests that DW-

NOMINATE may tend to overstate the extent to which the parties in Congress have polarized.

In contrast, both supervised measures appear to successfully capture the gap between parties

present in DW-NOMINATE, which helps to explain their higher overall correlations.

Classifying roll call votes. Another way to compare predictive accuracy across ideal point

measures is to calculate the percentage of votes that can be correctly predicted with a linear

classifier (Poole, 2000; Poole and Rosenthal, 2007).10 Table 2 reports the percentage of votes

correctly classified and the aggregate proportional reduction in error (APRE) for roll call vot-

ing in the House and Senate for the 96-113th Congresses. Only measures for which scores

are available for the majority of the period are included. The table also includes the classi-

fication rate associated with a partisan model that assumes each legislator always votes with

the majority of her party. This provides a baseline for evaluating how well a given measure

improves classification over partisan affiliation. At the other extreme, the classification rate

associated with the first dimension of DW-NOMINATE provides an effective upper limit for

how well a single dimension can successfully predict vote choices. Legislators who switched

parties during this period are excluded from the analysis. (DW-NOMINATE assigns separate

ideal points based on votes casts before and after a legislator switched parties, but most of the

other measures do not.) Following Poole and Rosenthal (2007), lopsided votes with winning

margins greater than 97.5 percent are excluded.

The table orders measures with respect to their success in classifying roll call outcomes,

from best to worse. It shows the random forest model to be second only to DW-NOMINATE

itself, even outperforming other roll call measures that are estimated in-sample. Notably, the

random forest model outperforms the first term Nokken-Poole scores in predicting roll call

behavior. The difference in classification rate between DW-NOMINATE and the random forest

model is about half a percentage point.

Figure 3 tracks correct classification (joint with the House and Senate) for the partisan

model, DW-NOMINATE, and the random forest model across time. The model fit associated

with the random forest model relative to DW-NOMINATE has remained more or less stable

over the period. Also of note is that while the partisan model provides a natural baseline,

9One possible explanation for this pattern is the high percentage of procedural votes taken on the floor which
are often voted on along party lines (Roberts and Smith, 2003).

10For each roll call, the cutting-line procedure draws a maximally classifying line through the ideological map
that predicts that those voting "yea" are on one side of the line and those voting "nay" are on the other.
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House Senate
DW-NOMINATE 0.9 0.887

(0.703) (0.662)
Random Forest 0.894 0.881

(0.687) (0.644)
Nokken-Poole (First Term) 0.892 0.879

(0.68) (0.638)
Support Vector Regression 0.891 0.875

(0.677) (0.626)
Supervised CFscores 0.884 0.877

(0.657) (0.633)
Common-space CFscores 0.883 0.874

(0.653) (0.623)
Bailey Scores (Mean) 0.879 0.852

(0.641) (0.558)
Turbo-ADA 0.873 0.857

(0.621) (0.575)
Party 0.87 0.844

(0.616) (0.536)

Table 2: Percentage of Votes Correctly Classified (96th - 113th Congresses)
Note: Aggregate proportional reduction in error (APRE) is in parentheses.

it is far from static during the period of analysis. The correct classification rate for the House

associated with the partisan model increased from 0.80 to 0.92 during the 96-113th Congresses.

The increase was even more pronounced in the Senate, growing from 0.76 to 0.91 over the

same period. Meanwhile the boost in classification associated with DW-NOMINATE over the

partisan model has shrunk from 0.045 to 0.018 in the House and from 0.065 to 0.033 in the

Senate.

6 Forecasting Congressional Roll Call Measures

A core objective of the supervised learning approach is to forecast future voting behavior of

non-incumbents based on data generated observed prior entering Congress. Bonica (2014) finds

that scores assigned to non-incumbents based on their fundraising prior to entering office are

highly correlated with scores assigned based on fundraising after entering office. This suggests

that fundraising before and after entering office conveys much of the same information about

candidate locations.

Since the availability of DW-NOMINATE scores is restricted to candidates who have served

in Congress, model performance is assessed based on the relationship with future DW-NOMINATE

scores for successful candidates. To facilitate comparisons, I separate out contributions made
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Figure 3: Correct Classification by Congress

to candidates before and after they entered Congress. In this setup, candidates who transition

from non-incumbents to incumbents enter the data twice as independent row observations. I

then retrained the models on fundraising by incumbents, with the rows for non-incumbents

held completely out of sample. The non-incumbent scores were then inferred from the model

trained on incumbents.

Figure 5 plots the predictions for the held-out sample of non-incumbents against their future

DW-NOMINATE scores. Table 3 reports the same fit statistics as above for the held-out sample

of non-incumbents. The first row reports the fit for the out-of-sample predictions from the

supervised models. The results are in line with those presented in Table 1. They show that

fundraising prior to entering office can accurately predict future DW-NOMINATE scores. The

overall correlation is 0.97 for both measures. Again, this compares favorably with the Nokken-

Poole first term estimates.

Examining the residuals for outliers proves informative. Among the largest outliers are

Greg Laughlin (D-TX), Zell Miller (D-GA), and Ben Nighthorse Campbell (D-CO). Laughlin

and Nighthorse Campbell both were originally elected as Democrats before joining the Re-
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Figure 4: Non-incumbent estimates of candidate and future DW-NOMINATE scores

publican Party. Zell Miller ran for unsuccessfully for the Senate during the early 1980’s, later

served as governor of Georgia, and was appointed to the Senate in 2000 by his successor. He is

perhaps best known for his role as a keynote speaker at the 2004 Republican National Conven-

tion. These examples are of the type that we should expect to deviate from predictions made

from contributions raised as non-incumbents.

The results demonstrate that fundraising prior to entering office provides a highly informa-

tive signal about future voting behavior. Impressively, it is nearly as predictive of future voting

as the votes cast during the first two-years in Congress.

7 Feature Analysis

The random forest model has a built-in algorithm that ranks variables with respect to their im-

portance to the model. The variable importance scores can help provide insight into which

types donors are most important in mapping candidates onto the target variable. Table 4 lists

the top 20 federal PACs ranked by their importance to the model.11 It also reports the number

11Note that several individual donors made it onto the list but were excluded from the table.

All Non-Incumbents Dem Non-Incumbents Rep Non-Incumbents
R RMSE R RMSE R RMSE

Random Forest 0.97 0.09 0.81 0.09 0.84 0.09
Support Vector Regression 0.97 0.10 0.77 0.10 0.81 0.10

Table 3: Forecasting DW-NOMINATE Scores: Cross validated fit statistics for held-out sample
of non-incumbent candidates.
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Variable N. Pct Avg. Std. Dev.
Importance Recips. to Reps DWNOM DWNOM

Council For Citizens Against Gov. Waste 82.4 113 0.01 -0.46 0.10
Consumer Federation of America 82.4 121 1.00 0.61 0.14
Blue Dog Democrats 68.0 119 0.01 -0.19 0.11
American Security Council 67.8 320 0.70 0.25 0.25
NRCC 65.4 751 1.00 0.36 0.15
VFW PAC 59.2 827 0.54 0.08 0.34
National Education Association 59.2 1008 0.06 -0.31 0.20
Democrats Win Seats 56.7 157 0.00 -0.22 0.11
AFL CIO 52.1 788 0.18 -0.28 0.25
Boll Weevil PAC 47.6 61 0.00 -0.12 0.11
National Rural Letter Carriers 47.5 1069 0.25 -0.16 0.32
National Alliance For Political Action 45.8 94 0.03 -0.45 0.20
Active And Retired Federal Employees 45.1 1091 0.19 -0.20 0.31
Intl Union of Bricklayers and Allied Craftsmen 43.1 214 0.02 -0.37 0.15
Victory Now PAC 43.0 153 0.00 -0.23 0.11
Harvest PAC 42.4 69 0.03 -0.15 0.10
United Brotherhood of Carpenters And Joiners 42.0 988 0.12 -0.26 0.25
Railway Clerks Political League 41.9 787 0.06 -0.31 0.20
DRIVE PAC (Teamsters) 41.9 976 0.06 -0.30 0.23
Hoyer For Congress 40.7 336 0.00 -0.27 0.14
Brady Campaign To Prevent Gun Violence 40.6 427 0.08 -0.32 0.22
Grassroots Organizing Acting & Leading 40.4 142 0.00 -0.24 0.11
Democrats For The ’80’s 38.9 338 0.00 -0.30 0.14
National Right To Life 38.1 730 0.97 0.38 0.21
Right To Work 38.0 676 0.02 -0.31 0.12
Conservative Victory Fund 37.7 236 0.99 0.47 0.14

Table 4: Random Forest Variable Importance

of distinct recipients supported by the PAC, the mean and standard deviation of the their recip-

ients’ DW-NOMINATE scores by amount, and the percentage of contribution dollars made to

major party candidates going to Republicans.

Most of the organizations on the list tend to donate primarily to candidates from one or

the other party. The top two features are organizations that locate to the extremes of the par-

ties, with the Council for Citizens against Government Waste on the right and the Consumer

Federation of America on the left. The mean score for each party during the period is -0.32

(sd = 0.15) for Democrats and 0.39 (sd = 0.18) for Republicans. Many of the highest ranked

features appear to discriminate within party. Tellingly, among the highest ranked features are

the PACs setup to support the Blue Dog Democrats—the most prominent organizations of mod-

erate Democrats—and the Boll Weevils, a direct predecessor to the Blue Dogs comprised of

conservative southern Democrats who earned their name by providing crucial support for sev-

eral of President Ronald Reagans major policy initiatives in the 1980s. Appearing further down

the list (ranking at 39th overall) is a PAC founded to support the Tuesday Group, a Republican

counterpart of the Blue Dogs caucus.
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8 Contributor Estimates

One might also be interested in estimating scores for individual donors. Neither of the su-

pervised models produce directly interpretable estimates of contributor ideal points. However

it is relatively straightforward to project contributors onto the same ideological dimension as

candidates. This can be done using an intuitive technique developed by McCarty, Poole, and

Rosenthal (2006) to recover ideal point estimates for contributors based on the dollar weighted-

average of the DW-NOMINATE scores of recipient legislators.

The contributor scores presented here are based on a slightly modified version of this tech-

nique. Rather than calculate the weighted averages based on DW-NOMINATE, the cross-

validated estimates from the random forest model are instead used. Incorporating the predicted

scores for non-congressional actors from the supervised models greatly increases the number of

candidates that can be referenced in locating donors. This in turn greatly increases the number

of donors for which scores can be estimated. The score for donor i is calculated as,

✓i =

P
j �jwijP
j wij

. (6)

where � is a vector of recipient ideal point estimates and wi is a vector of contribution amounts.

Left unadjusted, the weighted means will have the effect of shrinking the contributor scores

towards the center of the space. I take advantage of a distinctive characteristic of contribution

data to adjust for shrinkage. A large percentage of candidates appear in the data both as indi-

vidual donors and as recipients and thus simultaneously enter in the data as row and column

observations. This makes it possible to identify contributor scores with respect to candidate

scores (Bonica, 2014).

Figure 5 plots the relationship between the projected donor scores from the supervised mod-

els and DW-NOMINATE scores for candidates. Only candidates that have personally donated

to five or more distinct candidates are included in the analysis. Both sets of estimates strongly

correlate with DW-NOMINATE at r = 0.95. The within-party correlations are above r = 0.50

for Democrats and above r = 0.60 for Republicans.

A candidate’s personal donations, fundraising, and voting behavior all provide consistent

signals about her ideological location. Estimates recovered from personal political donations

are only marginally less predictive of congressional voting behavior than scores derived from

candidate fundraising.
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Figure 5: Contributor estimates against DW-NOMINATE scores for members of Congress.

9 Benchmarking Unsupervised Ideal Point Measures

The results in the previous section speak to a recent debate about whether donor-based measures

accurately measure individual-level ideology (Barber, Canes-Wrone, and Thrower, 2015; Hill

and Huber, 2015). The results are consistent with Barber, Canes-Wrone, and Thrower (2015)

who find that donation behavior is ideologically conditioned even among co-partisans. At least

for the sample of candidates, there is strong evidence that individual donors can discriminate the

ideology of members of the same party. Whether this generalizes beyond political candidates to

the donor population at large remains to be seen, especially for one-off donors. However, there

is some evidence that political donors behave more like candidates and other political elites

than does the typical voter. For example, Barber and Pope (2016) find that a single dimension

explains a much higher proportion of variance in the preferences of CCES respondents who

self-reported as donors than for those who did not.

At the same time, the results here are inconsistent with the conclusion drawn by Hill and

Huber (2015) that political donations fail to discriminate between members of the same party.

They base their claim on a set of comparisons using the CFscores for survey respondents that

have been matched against the DIME data. The CFscores for respondents are compared with

a corresponding set of ideal point measures that were estimated by applying factor analysis to
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responses to nine policy items from the CCES.12 As discussed by the authors, there are several

factors specific to the analysis that likely contributed to the weaker within-party correlations.13

For many of the reasons discussed above, relying strictly on comparisons between unsu-

pervised models applied to data generated in different contexts can lead to flawed inferences

about measure validity. Drawing inferences about measure validity from comparisons between

unsupervised scaling models introduces a special set of challenges. The inability of one unsu-

pervised measure to predict another unsupervised measure can be informative, but such com-

parisons are limited in what they can tell us. Upon observing that two measures do not perfectly

align, how do we assess which is more valid?

As the importance of party has grown, any measure that successfully distinguishes the par-

ties will be strongly correlated with other measures of ideology. In response the literature has

shifted towards evaluating measures based on their ability to explain within-party variation,

usually in reference to DW-NOMINATE or some other benchmark measure chosen by the re-

searcher (e.g. Tausanovitch and Warshaw (2016)). Implicit in this approach is the assumption

that the chosen benchmark measure successfully captures within-party variation in policy pref-

erences. In doing so, it is often taken for granted that a benchmark measure improves fit over a

partisan model.

Establishing that a measure represents a meaningful improvement over party requires a way

to define and operationalize what it means to outperform party. I propose two complementary

strategies for doing so. The first is to compare the relative contributions of between group and

within-group variation with respect to party. The second is a bounding strategy. This involves

constructing lower and upper bounds for how well a single dimension predicts outcomes of

interest (i.e. roll call vote choices). A partisan model represents a natural choice for the lower

bound, which serves as a baseline. The upper bound can then be determined by fitting an

unsupervised IRT or factor analytic model on the target dataset. This will identify the latent di-

mension that best explains variation in the data. This provides an intuitive way to gauge model

12The reported within-party correlations are .10 for Democrats and .49 for Republicans. The overall correlation
is not reported.

13The contributor scores used in the paper are recalculated based only on donations made during the 2011-
2012 election cycle. The majority of estimates were based on a single donation, often to presidential candidates.
Partly as a result, the estimates for co-partisans exhibited less heterogeneity than is observed the raw DIME
scores for contributors. Because the DIME scores were recalculated based solely on donations made during a
single presidential election cycle, the matched sample clusters around the ideal points of their respective party’s
presidential nominee. This effect is especially severe for Democratic donors. Moreover, a small amount of
random noise was added to the DIME scores for matched donors to protect anonymity of respondents which
likely introduced additional attenuation bias.
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performance relative to a partisan baseline while taking into account that the total variation that

can be explained with a single dimension is limited.

To illustrate, I downloaded the 2012 CCES data and replicated the factor model described in

Hill and Huber (2015).14 An initial examination suggests the measure does poorly in explaining

within-group variation among co-partisans. When the Hill and Huber factor analysis model is

run separately for respondents from each party, it explains a mere 4.5 and 6.6 percent of total

variation for Democrats and Republicans, respectively. The survey-based measures do not fare

much better when compared with self-reported ideology. For neither party does the factor

model explain more than 20 percent of the variance in self-reported ideology. When restricting

the sample to the middle 80 percent of respondents from each party (between the 10th to 90th

percentiles), the measure fails to explain more than 8 percent of the variance in self-reported

ideology within either party.

The bounding strategy for benchmarking unsupervised ideal point models outlined above

evaluates measures based on their predictive power relative to a baseline partisan model. When

possible, it is best to assess predictive accuracy with respect to outcomes that were generated

independently of the data used to construct the measures. One way the CCES factor model can

be compared against a partisan model is to assess its accuracy in predicting responses for other

policy-based survey items not included in the factor analysis. For this task, I make use of a

battery of 10 CCES items that correspond with roll call votes taken in Congress. The responses

to these questions are binary outcomes indicating support or opposition for a stated policy. The

first step is to estimate a roll call model using the items as a way to determine the upper bound

for predicting responses with a single dimension. As before, the partisan model represents the

lower bound.

Donors Full Sample
IRT Model 0.813 0.771

(0.478) (0.294)
Hill & Huber Factor Model 0.781 0.719

(0.387) (0.215)
Partisan Model 0.776 0.715

(0.378) (0.206)

Table 5: Predicting CCES Roll Call Items For Self-Reported Donors Using Party and Survey-
based Measures of Ideology (Percentage of Votes Correctly Classified).

Table 5 reports the correct classification and APRE statistics for the CCES roll call items

14I thank Seth Hill for providing the replication code.
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across four measures. For purposes of comparison, the first column reports results from a

restricted sample of CCES respondents limited to self-reported donors that self-identify with

either of the major parties. The second column reports results for the entire sample. For the

restricted sample, the IRT model increases correct classification over the partisan model by 3.8

percentage points, representing the distance between the lower and upper bounds. The factor

model improves correct classification over a partisan model by a modest 0.4 percentage points.

This tells us that the factor model accounts for about 12 percent of the difference between

lower and upper bounds. To compare, the results presented in Table 2 show that most measures

account for well over half of the increase in classification between the partisan model and

DW-NOMINATE. The numbers are no more reassuring when the full sample of respondents

is included. The IRT model improves classification over a partisan model by 5.6 percentage

points, widening the distance between the lower and upper bounds. However, the factor model

again improves classification by just 0.4 percentage points, accounting for only 7 percent of the

distance between bounds.

Table 5 calls into question the conclusions drawn by Huber and Hill regarding the reliabil-

ity of donor-based measures of ideology. Given that the Hill and Huber factor model explains

very little in the way of within-party variation in a related dataset of stated policy preferences,

it offers a poor benchmark for validation. This highlights the challenges inherent in drawing

inferences about measure validity from comparisons between unsupervised scaling models. At

the same time, it speaks to the need for a more grounded approach to comparing and bench-

marking ideal point measures along the lines of those proposed here.

10 Conclusion

Spurred by recent efforts to extend ideal point estimation beyond the confines of legislatures,

researchers have developed new and innovative ways to measure preferences from increasingly

diverse sources of data. Supervised learning methods stand out as a powerful tool for prediction

and measurement. The results presented here demonstrate supervised learning to be a highly

effective strategy for forecasting future voting behavior based on fundraising activity prior to

entering office.

One limitation of the supervised learning approach is that it reveals relatively little about the

details of the mapping process. The feature analysis performed in Section 7 provides some ini-

tial insight into the process. Future work may take advantage of supervised learning methods
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such as kernel regularized least squares (Hainmueller and Hazlett, 2014) that allow for im-

proved interpretability of the target function than the more standard machine learning methods

used here.

Ideology is a fluid construct, used to describe a seemingly self-organizing system of prefer-

ences that evolves over time and adapts to different institutions and political behaviors. In that

sense, ideal point estimates recovered from a specific institution of political behavior should be

understood as contextual. Researchers will have to decide whether to define ideology as being

linked to a specific institution or more broadly as the dimension that explains the entirety of

political preferences at the societal level. If ideology is defined more narrowly in the context

of a single institution, it suggests a supervised learning approach similar to the one used here is

most appropriate and that ideal point measures should be judged with respect to their success

in predicting outcomes in the specified institution. If ideology is instead defined more broadly,

ideal point measures should be viewed as complementary rather than as competing models and

suggests value in combining information across measures.
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