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Abstract

Cybersecurity has become a significant concern in corporate and commer-

cial settings, and it has significant implications for firm value. Consequently,

the potential or realized threat of a cybersecurity breach can have material

effects on firm value. This paper interrogates whether advance knowledge of

a cybersecurity breach and/or vulnerability represent arbitrage opportunities

for informed traders from a theoretical and empirical perspective. We first

demonstrate the plausibility of such opportunities in in a theoretical securities

market setting. We than make use of a novel data set to study trading activity

preceeding the public announcement of a breach. Using a matched sample

control group, we find significant trading abnormalities in the put options mar-

ket for hacked firms, both in open interest and volume. Our results are robust

to a variety of matching techniques and to both cross-sectional and logitudinal

analysis. Our results are consistent with the proposition that arbitrageurs

have early notice of impending disclosures of breaches. Our results help frame

important policy questions about whether / how to regulate informed trading

about cybersecurity risks.
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1 Introduction

The ascendancy and impact of the information economy during the last two decades is

as stunning as it is unprecedented. In the mid-1990s, fully one fifth of the preeminent

Dow Jones Industrial index consisted of Eastman Kodak, Bethlehem Steel, F.W.

Woolworth, International Paper, Sears Roebuck and Union Carbide. Amazon and

Google were little-known startups. Apple was a fading icon of the 1980s. And

Facebook and Bitcoin were still a decade away from existence. How times have ever

changed. The digitization of the world’s economy has hastened profound changes

in commerce, record-keeping, law enforcement, personnel policy, banking, insurance,

securities markets, and virtually all aspects of services and manufacturing sectors.

At the same time, the key pillars of the digitization economy – scale economies,

standardization, and the ease of accessing/copying/distribution – frequently are also

its Achilles Heel, in the form of cybersecurity risk. The massive and cataclysmic data

breach of Equifax in September 2017, compromising highly confidential information

of tens of millions of clients (including Social Security numbers), is hardly the first of

its kind. For well over a decade, firms and organizations that store confidential data

digitally have been potential (and often actual) targets of similar types of attacks

often with analogously cataclysmic implications for victims.

Within securities-market settings, of course, one person’s catastrophe is an-

other’s arbitrage. In the late summer of 2016, a well known short hedge fund,

Muddy Waters Capital, opened a confidential line of communication with MedSec,

a start-up cybersecurity firm that claimed to have discovered a serious security flaw

in the pacemakers produced by St. Jude Medical, a then-public medical device com-

pany (in the process of being acquired by Abbot Laboratories). Only after taking

a substantial short position in St. Jude did Muddy Waters publicly disclose the

claimed vulnerability,1 causing an immediate fall in St. Jude’s stock price in excess

of eight percent. (Goldstein et al. 2016). Similar episodes of material changes in

value after disclosure of a cybersecurity event are now commonplace.2

1See http://d.muddywatersresearch.com/tou/?redirect=/content/uploads/2016/08/MW STJ 08252016 2.pdf
2To take a current example, Uber’s recent disclosure of a cybersecurity loss of client payment

records caused an outside investor (Softbank) to reduce its valuation assessment of Uber by nearly
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The anecdotal account of Muddy Waters’ securities-market play around St.

Jude is perhaps unsurprising—particularly when (a) cybersecurity breaches have

material price effects; and (b) the underlying breach involves potentially confidential

data. Trading in the securities of compromised issuers is far safer than trafficking

directly in the compromised information itself. Indeed, fencing such protected data

directly is almost always a criminal offence under state and federal law. In contrast,

buying low and selling high (or selling high and buying low) in securities markets is

a time-honored capitalist activity. At the same time, the St. Jude / Muddy Waters

saga raises intriguing questions about how widespread such cybersecurity-related

trading is, whether significant arbitrage rents are appreciable, and who tends to earn

them. And, to the extent that appreciable arbitrage rents exist, might they directly or

indirectly subsidize cyber-hacking—effectively catalyzing destructive activity solely

for the purpose of treading on the basis of the harms and risks it creates? Is it

possible to detect such activities by observing the footprint of trading patterns?

Should such coordinated behavior be more heavily regulated by authorities?

In this paper, we consider cybersecurity vulnerabilities and/or breaches more

generally, and how they interact with trading in sophisticated securities markets.

Specifically, we consider whether advanced knowledge of a cybersecurity vulnerabil-

ity or breach constitutes a material arbitrage opportunity for an informed trader.

Using a theoretical securities trading model, we demonstrate that such arbitrage

opportunities are eminently plausible equilibrium phenomena, and arbitrage oppor-

tunities exist whenever there is sufficient independent trading (e.g,. by liquidity or

noise traders) to provide cover for the informed arbitrageur. Our model predicts that

the informed trader will take short positions against the hacked firm that should be

reflected in both price and volume of the underlying securities. We then endeavor

to test these predictions empirically, making use of a novel data set corporate data

breaches involving publicly traded companies (from the Identity Theft Resource Cen-

ter). Using a variety of means to match these firms against comparator firms with

no announced vulnerabilities, we find significant trading abnormalities in the put-

option market for hacked firms, measured both through open interest and trading

a third. See Financial Times, ”SoftBank share purchase discounts Uber by 30%” (Nov. 27, 2017).
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volume. These results appear robust to a variety of matching techniques as well as to

cross-sectional and time-series analysis. We view these results as consistent with the

proposition that arbitrageurs tend to have early notice of impending cybersecurity

breach disclosures.

Although our focus here is predominantly positive in nature—presenting ev-

idence of informed cybersecurity trading—our results help frame and inform larger

normative / prescriptive debates about whether such trading practices warrant ad-

ditional legal proscription. Under current law, it is almost certainly illegal for third

parties to coordinate an outright cybersecurity attack on a firm; it would similarly

be unlawful for a party to spread false information about a cybersecurity risk in

order to manipulate stock prices. That said, if third parties were simply to use

publicly available investigatory tools to expose bona fide cybersecurity vulnerabili-

ties (as Muddy Waters and MedSec are said to have done), they would face few if

any legal impediments in arbitraging that information. They would not run afoul

of insider trading laws, which generally require the breach of a confidential relation-

ship.3 And they would not violate market manipulation proscriptions, which require

the injection of inaccurate information into the market.4

Whether such activities should elicit regulatory scrutiny is a sligthly different

(and more difficult) question. On the one hand, outside arbitrageurs are routinely

permitted (if not encouraged) to profit off of other forms of information they indepen-

dently uncover about undisclosed risks at the market, industry or firm level. Such

profit opportunities aid in price discovery and the rapid dissemination of relevant in-

formation to market participants. On the other hand, the availability of significant

arbitrage rents from advance knowledge of cybersecurity risks can distort investment

3United States v. O’Hagan, 521 U.S. 642 (1997). That said, some recent case law suggests that
hacking into a confidential serve and then trading on the information accessed might constitute a
”deceptive practice” under Rule 10b-5. See, e.g., S.E.C. v. Dorozhko, 574 F.3d 42, 51 (2nd Cir.
2009) (”misrepresenting one’s identity in order to gain access to information that is otherwise off
limits, and then stealing that information is plainly “deceptive” within the ordinary meaning of the
word. It is unclear, however, that exploiting a weakness in an electronic code to gain unauthorized
access is “deceptive,” rather than being mere theft. Accordingly, depending on how the hacker
gained access, it seems to us entirely possible that computer hacking could be, by definition, a
“deceptive device or contrivance” that is prohibited by Section 10(b) and Rule 10b–5.”)

4See, e.g., SEC v. Masri, 523 F. Supp. 2d 361, 373 (S.D.N.Y. 2007).
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decisions, both by cybersecurity firms attempting to find (and expose) weaknesses

that would not otherwise come to light, and by the issuers themselves attempting

to frustrate such zealous scrutiny. Such expenditures represent real economic costs,

which plausibly might justify regulatory oversight of informed cybersecurity trading.

Although we offer a few conjectures as to how our results might inform this policy

debate, we save the broader normative analysis for another day.

Our analysis contributes to a growing literature on cyber-security threats, as-

similating to a larger literature on informed trading in securities markets. Gordon &

Loeb (2002) develop a framework for analyzing self-protection decisions among firms

that are potential cybersecurity risks, arguing that firms may optimally concentrate

on information resources of “mid-range” value when high vulnerability resources

would be prohibitively expensive to protect. LeLarge (2012) extends this framework

to a network of interconnected agents, showing that self-protection levels are often

sub-optimal due to network effects and collective action problems. Kunruther &

Heal (2003) study a similar framework based on a terrorism scenario. Lakdawalla

& Talley (2006) analyze strategic target “hardening” by potential victims when the

attacker makes strategic choices about where to attack, arguing that it may make

sense to allow attacked parties to lodge a cause of action against non-attacked enti-

ties. Bohme & Moore (2016) study a similar model and relate it to whether targets

should invest pro-actively or reactively. They find that when reactive investment

is possible to mitigate an existing attack, it is optimal to under-invest in proactive

technology. Although we are unaware of any existing literature on cybersecurity

trading, the seminal framework of Kyle (1985) provides a baseline for our analy-

sis, which predicts equilibrium information trading (contra Milgrom & Stokey 1982)

in the presence of liquidity / noise traders who create volume that can mask the

informed trader’s activities. Empirically, Zhang et al (2014) lay out key network

misconfiguration flags that tend to predict hacker vulnerability. Liu (2015) uses ma-

chine learning approaches to forecast cybersecurity vulnerabilities, exposing periods

of latency of between one and twelve months before disclosure.

Finally, a literature in computer science studies how stock prices react to

the disclosure of cybersecurity breaches. Spanos & Angelis (2016) present a meta-
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analyzis of 37 papers containing 45 empirical studies of the effect of information-

security breaches on public-company stock prices from 2003 to 2015. They find

that 75.6% of the studies measure statistically significant stock-price reactions to the

disclosure of cybersecurity breaches. 20 out of 25 studies find negative and significant

stock-price reactions for victim firms, and none of these find significant positive

reactions for victim firms. Three studies find positive and significant stock-price

reactions for information security firms, plausibly reflecting the additional demand

for their services in the wake of security breaches. Consistent with our findings,

several studies also find evidence of “leakage” of cybersecurity vulnerabilities prior

to the official announcement. Arcuri, Brogi & Gandolfi (2014) find that the mean

cumulative abnormal return to 128 cybersecurity disclosures is -.029 in the (-20,+20)

window, but shrinks to -0.003 in the (-1,1) window. That said, we are unaware of

any prior study measuring trading patterns in the months preceding the disclosure,

as we explore here.

Our analysis proceeds as follows. Section 2 develops a theoretical framework

under which a collection of firms face hacking threats, whose realization can affect

market pricing. We demonstrate that under fairly broad conditions, hacking threats

can persist in equilibrium even in the presence of available protective measures by

affected firms, and that an informed trader can make arbitrage profits in equilibrium

from advanced information about such breaches. Section 3 turns to our empirical

analysis,

2 A Model of Cyber-Hacking, Preventative Mea-

sures, and Trading

In this section we develop and analyzes a theoretical framework incorporating cy-

bersecurity threats, security decisions made by potential targets, and market traders

who may become informed of cyber-security breaches in advance of their disclosure.

We develop the model in advance of the empirical portion of the paper both to fix

our ideas concretely and to deliver predictions about equilibrium behavior that lends
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itself to informed empirical testing. Like many economic models, the equilibria may

turn on the informational environments of the players, and we thus take some care

to make sure that our predictions are robust across multiple such environments.

2.1 Basic Framework:

Consider an economic setting involving N identical firms (indexed by i ∈ {1, ..., N}),
each with widely-dispersed ownership of shares. Firms’ respective operations are

independent, in that they do not coordinate with one another on cyber-security de-

fenses.5 Each firm is entirely equity financed, with a diversified, risk-neutral share-

holder base. For current purposes, we assume away any manager-owner agency costs

(which are not central to our arguments); and thus we assume that firms are faith-

fully managed to maximize expected shareholder value. Each firm’s business plan

consists of a Bernoulli-like project, achieving either “success” or “failure” with re-

spective probabilities of q and (1− q), where q ∈ (0, 1) . Without loss of generality,

assume that “success” yields normalized payoff at 1, while “failure” yields a normal-

ized payoff of 0. Consequently, and in the absence of cybersecurity breaches and

preventative measures (both discussed below), the expected gross valuation of each

firm is equal to q.

A risk-neutral cybersecurity hacker (denoted as player H) receives a payoff

from successfully breaching a firm’s security protocols. When the hacker succeeds

in breaching a firm’s security protocols, he obtains hedonic benefit of B. (In the

baseline case, we assume that B is constant). The hacker is assumed to select his

target from among the N firms, with mixed strategies permitted. Consequently,

the hacker’s strategy profile consists of choosing an attack probability (or ‘hacking

intensity’) for each firm, denoted γ ≡ {γ1, γ2, ..., γN} , where γi ∈ [0, 1] and Σiγi = 1.

(Because of the adding up condition, −→γ is in actuality an N −1 dimensional vector.)

Each firm i is permitted to take preventative measures to bolster its cyber-

security protocols. Those measures are given by the vector C ≡ {c1, ..., cN} . Pre-

5The firms’ production plans may be interdependent, however, such as in the case of oligopolistic
competition.
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ventative measures are helpful to the firm, in that conditional on being hacked, the

firms protection level can defeat the hacker’s efforts with probability ci. Thus, given

a hacking intensity γi, firm i’s expected gross valuation is:

(1− γi) q + γi [(1− ci) · 0 + ci · q] = (1− γi) q + γiciq (1)

Intuitively, the expected marginal benefit of preventative measures is the salvaging

of qγi of firm value. Preventative measures are costly to install, however. We

assume that in order to install ci, firm i must incur costs of c2

2
. We will consider

two canonical information structures below: In the first, the components of C can be

observed by the hacker before selecting γ; in the second, the components of C are not

observable—a case that is isomorphic to when γ and C are chosen simultaneously.6

Finally, we assume that there exists an outside trader who may find out (with

probability π) which firm the hacker has targeted. The informed trader may then

trade in the attacked firm’s securities. (To simplify the analysis, we constrain the

informed trader to transact only in the affected firm, though the model is easily

generalized to allow trading in the entire portfolio of N issuers.)

We solve the game backwards, starting with the hacker’s choice, followed by

the firms’ protection choice, followed by the trading behavior of informed insiders.

2.2 Case a: Hacker Does Not Observe Firm Protections

The simplest case is when the hacker has no information about C, the vector of firm-

level protections. In this case, the hacker’s decision will turn critically on his equi-

librium conjectures about firms’ expected preventative measures—which we define

as Ĉ = {ĉ1,ĉ2,...ĉN}. Consider the set of firms we denote as k̂ ≡ {i ∈ N |ĉi = ĉmin},
where ĉmin ≡ min

{
Ĉ
}
. The set k̂ represents those firms whose expected prevention

measures under the hacker’s equilibrium conjectures are minimal—a group one might

use predatory jargon to describe as the “slowest animals in the pack.” Depending

6It is also possible in addition to study a hybrid case where the hacker observes preventative
measures with some probability ρ; a generalization that adds additional notational complexity, but
yields no significant beyond these two polar cases.
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on the hacker’s equilibrium conjectures, k̂ may have as few as 1 and as many as N

members. Regardless, each member of k̂ is equally vulnerable to hacking efforts, the

hacker expects an identical marginal benefit of (1− ĉmin) · B from targeting such

firms. Given the equality of marginal benefit across them, the hacker would be will-

ing to mix in any proportion among the members of k̂. In contrast, consider the

remaining
(
N − k̂

)
firms for whom ĉi > ĉmin under the conjectured equilibrium. For

these firms, the hacker’s marginal benefit is strictly lower than (1− ĉmin) ·B, and he

would not rationally target any of them with positive probability.

Now consider the firms’ incentives, and suppose that they conjecture the

hacker will select strategy γ̂ = {γ̂1, ..., γ̂N} . Each will choose a level of protection to

maximize his own expected net payoff, solving:

max
ci≥0

(1− γ̂i) q + γ̂iciq −
c2i
2
,

which yields an optimal protection level for each firm of

ci (γ̂i) = γ̂iq.

Note that the firm will never expend any resources on protection if it conjectures that

it is not being targeted (γ̂i = 0). Moreover, among those firms being targeted with

positive probability (γ̂i > 0), the level of their protection will be directly proportional

to their conjecture γ̂i. From this reasoning the following proposition immediately

follows (all proofs are in the appendix):

Proposition 1: When the hacker cannot observe firm protection levels, there is a

unique equilibrium of the hacking/protection game, in which the hacker targets

each firm with equal probability γa = 1
N

and each firm installs preventative

measures of ca = q
N
. Firms’ equilibrium payoffs (and market values) are given

by:

Va =
q
(
N2 −N + q

2

)
N2

Note that the firms’ payoff is increasing in their baseline success probability
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(q), but also increasing in the number of targets, reflecting that an increasing popula-

tion of targets requires the hacker to divide his attention across a larger population.

In the limit, in fact, V (γa, ca|q,N) approaches the baseline expected gross value of

the firm in the absence of hacking, or q.

Before moving onto the case where the hacker can observe protection levels, it

is worth taking note of what fair market value the firms would have if one knew the

realization of γa—that is, which firm had been actually selected under the hacker’s

mixed strategy for attack. In this case, the targeted firm (assuming it remained

unaware) would be playing equilibrium strategy ci = ca = q
N
, but would face attack

with (ex post) probability one, yielding an expected payoff of:

V (γa, ca|Breach, q,N) =
q2

N2

(
N − 1

2

)
And thus the difference between the ex ante and ex post value of the breached firm

is:

∆a ≡ V (γa, ca|q,N)− V (γa, ca|Breach, q,N) =
q (N − q) (N − 1)

N2
> 0

And thus, knowing that a firm had been selected to be hacked in this equilibrium

would give rise to mispricing of the firm, and that selling short an x−fraction shares

of the firm would yield profits of ∆a · x > 0. It is easily confirmed that ∆a is strictly

increasing in N, and thus the benefit of inside information increases as the market

increases in size.

Finally, note that when N > 2, the value of the information is strictly larger

for the breached firm than for the non-breached firms, so that |∆a (Breach)| >
|∆a (NoBreach)|. In general, then, it is more profitable to trade on information

about cybersecurity breach victims than non-victims.

2.3 Case b: Hacker Does Observe Firm Protections

Now consider the alternative information structure where the hacker can observe C

before selecting his own strategy γ. Here the hacker’s ex ante conjectures about firm
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activity levels are no longer relevant, since he can observe their actual realization.

After observing C = {c1...cN}, the hacker will select the components of γ to solve:

max
γi∈[0,1]

{
B · q ·

N∑
i=1

γi (1− ci)
}

s.t. Σiγi = 1.

Here it is straightforward to show that the hacker will devote all his time to the

firm(s) with the lowest protection level(s) ci. Similar to above, denote cmin =

min {c1,c2,...cN} , and define K ≡ {i ∈ N |ci = cmin}. Similar to the analysis above,

K has cardinality k ∈ {1, ..., N}, and the hacker will spread his efforts among those

k firms comprising K, according no efforts to breach towards the remaining N − k
firms. Following the reasoning from Proposition 1a above, when k ≥ 2, the equilib-

rium strategy of the hacker entails setting:

γi =

{
1
k

if i ∈ K
0 else

Now consider the perspective of firm i, which conjectures that of the other

(N − 1) firms will pursue strategies Ĉ−i = {c1...cN\ci}. Denote c−imin = min
{
Ĉ−i

}
designating the lowest level of protection conjectured by firm i among the other firms.

Thus, firm i’s payoff function (incorporating the hacker’s equilibrium behavior, shown

above) is:

π (ci|c−i) =


q − c2i

2
if ci > c−imin

q
(
k−1
k

+ ci
k

)
− c2i

2
if ci = c−imin

q · ci − c2i
2

if ci < c−imin

Note that firm i’s payoff has several discontinuities, which in turn permit one to

narrow down the firm’s plausible equilibrium actions. First, the firm would never

want merely to match c−imin when c−imin < 1. Indeed, the firm could could always do

better setting ci = c−imin + ε for arbitrarily small ε, gaining q
(
1
2
− c−i

2

)
at marginal

cost ε. Thus, except in the extreme case where cimin = 1, it never pays for a firm to

pool with the least-well protected firms. In addition, note that if there were only one

firm in the industry (i.e., N = 1), it effectively is the case that cimin = ∞, so that
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the optimal solution to the protection problem is to set ci = q, generating payoff q2

2
.

Similarly, if the firm were attempting to optimize under the assumption that c−imin

were prohibitively large (so that firm i would have to be the “laggard” in preventative

measures), it would also choose to set the same interior solution of setting ci = q,

with payoff q2

2
.

When c−imin is not prohibitively large, in contrast, the firm has a choice between

(a) “just beating out” c−imin by setting ci = c−imin + ε, in which case it procures a payoff

of (approximately) q − (c−i
min)

2

2
, or (b) accepting its fate as a laggard in preventative

measures once again setting ci = q and earning payoff q2

2
. Comparing these payoffs,

it is easily confirmed that player i would only be content to remain a laggard if:

q2

2
≥ q − (cimin)

2

2

cimin > c∗ =
√
q (2− q) ∈ (q, 1)

The discontinuity in π (ci|c−i) as well as the fact that firms would never be willing to

pool in pure strategies suggests that the unique equilibrium in this case is a mixed

strategy equilibrium, in which each firm i selects its self-protection strategy from a

distribution F (c|N) . The implication of this logic is summarized in Proposition 2:

Proposition 2: When the hacker can observe firm protection levels, there is a unique

equilibrium of the hacking/protection game in which (a) the hacker targets

each firm with equal probability γb = 1
N
, and (b) each firm installs preven-

tative measures ci according to a mixed strategy cb, defined over the interval

cb ∈
[
q,
√
q (2− q)

]
with cumulative distribution function:

F (cb|q,N) = 1−

(
1− (c− q)2

2q (1− c)

) 1
N−1

Firms’ equilibrium payoffs (and market values) are given by:

Vb =
q2

2
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Note that the observability of the players’ protective measures induces a type

of “arms race” in this equilibrium, in which the realized value of cb exceeds (with

probability 1) the level of protection that a single firm would take (shown above to

be ci = q).

As in the previous case, consider the fair market value of the firm if one were

able to observe on a proprietary basis the hacker’s information and actions–which

in this case means observing both the realization of γb and the minimal value of

firm-level protections (cmin). By hypothesis, the breached firm’s realized level of

protection is cmin, and thus its expected payoff of conditional on being attacked is:

V (Breach|cmin, q, N) = cminq −
c2min

2

And thus the expected difference between the ex ante and ex post value of the

breached firm is:

∆b ≡ E (V (γe, ce|q,N)− V (γe, cmin|Breach, q,N))

=
1

2
E
{

(q − cmin)2
}

=

∫ √q(2−q)

q

1

2
(q − cmin)2 dFmin (cmin|N) > 0

where

Fmin (cmin|N) = 1− (1− F (cmin|N))N = 1−

(
1− (cmin − q)2

2q (1− cmin)

) N
N−1

It is easily confirmed that for all N ′ > N ≥ 2, Fmin (cmin|N) < Fmin (cmin|N ′), and

thus ∆b is both positive and strictly increasing in N and the expected gain one can

make from selling the hacked company’s stock at market rates and realizing intrinsic

value (i.e., potential arbitrage profits) is increasing in N.
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2.4 Trading Stage (Incomplete)

From the previous subsection, it is clear that (a) knowing which firm is subject to

hacking creates an appreciable gap between uninformed market price market value

informed by knowledge of the hack; and that (b) this wedge persists regardless of

whether the hacker is can observe firm-level protections (∆b) or cannot (∆a). We

now turn to the trading stage, of the model, in which an informed trader may gain

information about a cybersecurity attack at a firm, and then may trade on the basis

of that information and in advance of its public disclosure. Our aim is to develop

a general trading framework that is amenable to variations on differing information

structures of the hacking stage discussed above.

Thus, suppose that in the absence of specific information, the expected value

of firm i is given by V > 0, but if the firm is targeted by a cyber-hacker, its ex-

pected value is decreased to V − ∆, where ∆ ∈ (0, V ) . (The previous subsection

confirms that this assumption is satisfied in both informational permutations of the

model {(Va,∆a) ; (Vb,∆b)}). For each firm i, suppose there is a volume xi of sell

orders from liquidity traders distributed according to a cumulative distribution func-

tion G (xi) , distributed N (0, σ2) , and associated probability distribution function

G′ (xi) = g (xi) > 0 ∀ xi.7

Suppose there is a potentially informed trader who (with probability π) learns

which of the N firms has been targeted by the hacker. Other market participants,

however, remain uninformed (at least directly). We suppose that the informed trader

becomes can try to profit from the information by putting in a sell order on each

firm in the amount ψi. In such a situation, we refer to the informed trader as being

active. (For the moment, and without significant loss of generality, we confine the

informed trader to transacting only in the affected firm). Viewed ex ante, then, each

firm i anticipates that the informed trader will learn that firm i was targeted with

probability πi = π
N
.

In pricing the security, uninformed market participants observe aggregate

trading volume in the market, zi = (xi + ψi) , but they are unable to discern whether

7(In later drafts we will explore relaxing the normality assumption.)
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the volume is due to liquidity trading alone or insider orders as well. Armed with

this observation and the ex ante probability an informed insider is present (πi) , mar-

ket participants form a conjecture (denoted ψ̂i) about the informed trader’s selling

strategy if she is active. (This conjecture must be true in equilibrium, an issue we

turn to later.)

From these inputs, capital market investors form a posterior probability esti-

mate that an insider is active, denoted η
(
zi, ψ̂i

)
= Pr

{
Insider|zi, ψ̂i

}
. Using Bayes

rule, the market’s posterior assessment of an active insider are given by:

η
(
zi, ψ̂i

)
=

g
(
zj − ψ̂i

)
· πi

g
(
zj − ψ̂i

)
· πi + g (zj) · (1− πi)

=
1

1 + (1−πi)
πi
· g(zi)

g(zi−ψ̂i)

Note that since zi ≡ (xi + ψi) , the expression for η (.) can equivalently be re-written

as:

η
(
xi, ψi, ψ̂i

)
=

1

1 + (1−πi)
πi

g(xi+ψi)

g(xi+ψi−ψ̂i)

Given η (.) and ∆, the resulting market value for the firm is:

Pi = η
(
xi, ψi, ψ̂i

)
· (V −∆) +

(
1− η

(
xi, ψi, ψ̂i

))
· (V )

= V − η
(
xi, ψi, ψ̂i

)
·∆

This alternative expression is the most relevant for the informed trader, who strate-

gically selects ψi holding conjectures ψ̂i constant.

The informed trader chooses her selling strategy ψi holding constant the mar-

ket’s conjectures ψ̂i as well as the pricing dynamics above. At the same time, the

informed trader cannot perfectly predict the total realized volume of liquidity trades

xi, and thus cannot predict the realized total volume zi of trades (beyond the trades

she is responsible for, captured by ψi). Accounting for these elements, the informed
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trader’s payoff as a function of ψi consists of the Expected price she gets for each sale,

Ex (V − η∆), less the true value of the sale V −∆, resulting in a payoff associated

with strategy ψi of:

Σ
(
ψi|ψ̂i

)
= ψi · Ex

{
V − η

(
xi, ψi, ψ̂i

)
·∆− (V −∆)

}
= ∆ · ψi · Ex

{
1− η

(
xi, ψi, ψ̂i

)}
The first order conditions associated with an optimal size of sell order (denoted ψ∗i )

are:

dΣ
(
ψi|ψ̂i

)
dψi

= 0 (OptimalOrder1)

⇔

∆ · Ex
{

1− η
(
xi, ψ

∗
i , ψ̂i

)}
= ∆ · ψ∗i · Ex

∂η
(
xi, ψi, ψ̂i

)
∂ψi


∣∣∣∣∣∣
ψi=ψ

∗
i

The interpretation of this condition is similar to a monopoly pricing problem: the

informed trader’s optimal sell order (ψ∗i ) is the one that balances the marginal

arbitrage-pricing benefit of a small increase in her sell order (i.e., ∆·Ex
{

1− η
(
xi, ψ

∗
i , ψ̂i

)}
)

against the marginal cost that her added activity has in cannibalizing the market

price of her infra-marginal trades (i.e., ∆ · ψi · Ex
{
∂η(xi,ψ∗

i ,ψ̂i)
∂ψi

}
).

Analysis of the trader’s optimization condition yields the following proposi-

tion:

Proposition 3: All Perfect Bayesian Equilibria of the trading game entail the in-

formed insider selecting ψ∗i > 0 for the attacked firm i.

The content of Proposition 1 is intuitive; it states that the informed share-

holder will always attempt to trade by placing a net sell order in the attacked firm.

Although the informed trader’s activity will drive down equilibrium price, she will

nonetheless choose to take a net short position up to the point where the gains from

an additional trade on the margin cannibalizes her payoff on infra-marginal trades.

16



Two additional corollaries follow directly from Proposition 1, which we take

up further in the next empirical section.

Corollary 1: The expected total volume of short positions / short sales increases

when there is an informed trader.

Corollary 2: The expected market price of a targeted firm declines relative to other

firms when there is an informed trader.

Although Proposition 3 is not directly testable without observations informed

traders and their transactons, Corollaries 1 and 2 are more directly testable with

market data. These predictions in hand, we turn in the next section to our empirical

tests.

3 Data

3.1 Corporate Data Breaches

We begin by collecting a list of corporate data breaches from the Identity Theft Re-

source Center (ITRC). Since 2005, the ITRC has collected and published an annual

list of data breaches “confirmed by various media sources and/or notification lists

from state governmental agencies.” The ITRC’s data breach report includes both

exposure of personally identifying information — i.e., any incident“in which an indi-

vidual name plus a Social Security number, driver’s license number, medical record

or financial record (credit/debit cards included) is potentially put at risk because of

exposure” — as well as exposure of username and passwords that are not necessarily

tied to an identifiable individual.

An example of an ITRC data breach report is given in Figure 1:

The categories of information included in the report are: (1) internal ITRC

identifier of the breach, (2) the company which was attacked, (3) the state in which

that company is located, (4) the date the breach was published, (5) the type of the

breach, (6) the category of the breach, (7) whether personal records were exposed,
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Figure 1: Example of ITRC Data Breach Report

(8) how many records were exposed, and (9) a textual description of the breach. In

addition, the ITRC provides details on the source of information about the breach,

e.g., a news media report or disclosure by a governmental agency.8

The ITRC identified 4,580 data breaches from 2010 to 2016. While the vast

majority of these involve private companies, nonprofits and governmental actors, out

of this group, we were able to match 145 breaches to publicly traded companies.9 To

give a sense for the nature of the information contained in the textual descriptions of

these 145 events, Figure 2 presents a “word cloud,” which draws the most frequent

words in these descriptions with a size proportional to the terms frequency — i.e.,

larger words appear more frequently in the textual descriptions. As Figure 2 shows,

the most popular terms in these descriptions reflect the sort of information that

would typically be the subject of a data breach, i.e., personal information, email

address, credit cards, addresses, social security numbers, etc.

In order to conclude that transactions involving these victims of data breaches

are not due to random chance alone, it is necessary to compare these data breaches

to some sort of baseline (i.e., a “control” group). Even if there is no trading on

corporate data breaches — i.e., even if we were to simply draw public companies and

8state privacy laws often require companies to notify individuals whose personal information
may have been compromised (see, e.g., N.H. Rev. Stat. 359-C:19). Moreover, specific federal laws
sometimes requires disclosure, e.g., when health concerns are implicated (HIPPA), or if the breach
is sufficiently material to require disclosure by a publicly traded company under the securities laws.
To be sure, there is no general duty to disclose material information under the securities laws,
but cybersecurity vulnerabilities may fall into one of the enumerated categories of material event
disclosure on Form 8-K.

9For reasons detailed below, we end up using a smaller sample to ensure adequate comparability
between firms and industries.
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Figure 2: Word Cloud of ITRC Data Breach Descriptions

This figure shows the relative frequency of two-word phrases that appear in the ITRC description
of the data breach: larger phrases are more frequent.

calendar dates out of a hat by random chance — some firms will experience more

or less trading activity for unrelated reasons. Thus, it is necessary to establish a

baseline group that can serve as a counterfactual, i.e., such that “but-for” the hacker

trading, our victim firms and the baseline group are similar in all other relevant ways,

at least on average. Only if but-for causation holds can we conclude that observed

differences may be attributable to hacker trading or tipping.
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3.2 Put Options

We examine two primary sources of data in order to measure possible hacker trading

and tipping. First, we look at relatively at-the-money (ATM) put options written

on the common stock of victim firms. A put option is a downside bet on a firms

stock: it gives its holder the right, but not the obligation, to sell the firm’s stock

at a particular price, known as the strike price until a specific date known as the

“maturity” date of the put option. Taking advantage of this right to sell the firm’s

stock at the strike price is known as “exercising” the put option.

If we denote the strike price of a put option as K, its maturity date as T,

and the firms stock price at date T as ST , the holder of a put option will receive the

greater of KST or zero. In other words, she receives the difference between the strike

price and the stock price at maturity if the former exceeds the latter. If the stock

price at maturity is higher than the strike price, she will rationally not exercise the

put option because that would cost her money; she is better off doing nothing.

To understand how put option payoffs work, consider a brief numerical ex-

ample. Suppose that the stock price at maturity is $5 and the strike price is $10.

Further suppose that the holder of the put option already owns the underlying stock,

which, again, is worth $5 at maturity. Then she can profit by exercising the put op-

tion, selling the stock at $10 instead of its current value of $5, and receive $10 (the

sale price) −$5 (the value of the stock sold) = $5. What if the holder of the put

option does not currently the underlying stock? She can simply buy the shares at

$5 and immediately sell them at $10. Thus, her profit from the option is $10 - $5 =

$5, regardless of whether she owns the underlying shares of stock or not.

Put options are a downside bet on the firm’s stock because the value of a put

option increases as the firm’s stock price at maturity decreases. Put simply, the lower

the stock price, the more the put option is worth: put options are thus directionally

negative bets on the value of the firm. Because the directional implications of a

data breach are unambiguously negative for a victim firm — that is, one would be

hard-pressed to find an example of a successful data breach that should lead to an

increase in the stock price of the victim firm — put options are likely to become
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more valuable upon revelation of a successful data breach. This implies that market

demand for put options may reflect at hackers or their “tippees” may seek to exploit

information, known only to them, about a successful data breach.

We restrict our analysis to put options that are close to “at the money” —

that is, they have a “delta” between 0.4 and 0.6.10 Put simply, that means that the

strike price is likely to be relatively close to the current price of the firm’s stock. We

do so because a put option that is “out of the money” is likely to be less responsive

to changes in the underlying price of the firm’s stock.

We measure market demand for put options in two ways. The first is open

interest, which refers simply to the number of outstanding put-option contracts on

the stock of a particular underlying firm. The second is volume, which refers to the

quantity of put-option contracts that change hands between buyers and sellers over a

particular window of time. Both measure the extent to which traders in the market

are seeking to place downside bets on the prospects of victim firms.

In order to facilitate meaningful comparisons that are straightforward to in-

terpret, we aggregate our dataset to the firm-event level. That is, the unit of analysis

in our study is an average measure of trading in a given firm’s put options over a time

window relative to a data breach event. For example, we refer below to average open

interest of put options for a particular firm over the two months prior to disclosure

of the data breach. If, hypothetically, there were two events and two firms for each

events, there would be four observations, each reflecting the average open interest

for each firm in the two months prior to each event. In the following Section 4, we

describe how we design our empirical study to maximize the reliability of inferences

as to the link between corporate data breaches and the demand for put options.

4 Empirical Design

Our goal is to evaluate empirically whether there is heightened trading in put options

prior to the announcement of corporate data breaches. To do so, we rely on the

10The “delta” of an option refers to its sensitivity to changes in the underlying stock price.

21



well-developed literature on causal inference in empirical economics. To be sure,

our hypothesis is inherently “descriptive” in nature—we do not suppose that data

breaches causally increase put option trading, but rather that individuals who are

aware of data breaches prior to the rest of the market may be directly trading or

tipping others as to the presence of these vulnerabilities prior to disclosure. Formally

speaking, this thesis requires only a correlation between the execution of corporate

data breaches and market demand for put options.

Nonetheless, we are aware that an analysis of this sort is vulnerable to spurious

correlations. The problem of forming a valid counterfactual — what level of put

option trading would have emerged even in the absence of a data breach — is a

vexing challenge that applies to our study just as much as with a classical causal

inference project. For this reason, we employ methods in the literature to estimate

the “average treatment effect” of data breaches, keeping in mind the importance of

forming a valid counterfactual to evaluate whether observed put option demand can

actually be attributed to data breaches.

We thus estimate two basic kinds of empirical designs, each of which relies

on a different dataset. The first is a cross-sectional estimation, which simply asks:

is there a heightened level of open interest and trading volume in the put options of

data breach targets, prior to revelation of the data breach by the victim firm? To

minimize the likelihood that this simple comparison between firms for each event is

contaminated by other events that may give rise to put option trading, this estimation

focuses on the two months immediately preceding announcement of the data breach.

In this specification, we ask whether the average level of open interest and trading

volume during this two-month is higher for firms who are the victims of data breaches.

As described below, we employ propensity-score matching (Abadie and Imbens, 2006)

to ensure that treatment and control firms are as similar as possible.

This cross-sectional specification, however, is vulnerable to the critique that

firms may differ for unobserved reasons that can lead to greater overall demand

for put options. To address this concern, we consider an alternative “difference-in-

differences” design which allows each firm-event in our dataset to have a baseline level

of open interest and trading volume of put options. In this difference-in-differences
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specification, we compare the change in open interest and volume of put options

from a baseline period — eight to sixteen months prior to announcement of the data

breach — to the period of interest — eight months prior to the day of announcement.

In our difference-in-differences design, we use this eight-month cutoff for two

reasons. First, this corresponds roughly to the average period of time during which

a hacker is aware of a successful data breach.11 Moreover, a visual inspection of

the data shows that this is also approximately the time when time trends begin to

diverge between treatment and control firms—prior to this point, they are roughly

parallel, as we show below.

We aggregate pre-post differences to the firm-event level and compare these

differences between treatment and control firms. As with the cross-sectional design,

we employ propensity score matching on observable covariates to ensure that similar

firms are compared to each other. This heightens the plausibility of the counter-

factual inference that treatment and control firms would have similar counterfactual

outcomes. Along with showing that the parallel trends assumption is satisfied, this

evidence suggests that observed differences in put option trading are likely to be

linked to corporate data breaches and not spuriously arising as a result of other

differences between firms.

As noted previously, both of our specifications employ propensity-score match-

ing (Abadie and Imbens, 2006), which matches each treatment observation to one or

more control observations which are similar along several covariates. We generate a

propensity score and thus matching observations by estimating a logistic regression

on the following covariates: (1) 4-digit SIC industry code (i.e., an indicator for each),

(2) log of market capitalization, (3) log of total assets, (4) log of net income, and (5)

log of total liabilities. In our view, it is essential to compare within industry because

firms in different industries are very different from each other.

For these reasons, we are forced to drop those firms in industries which are too

small to allow for obtaining a meaningful matched control group. Indeed, while many

of these smaller industries contain several firms, many small-cap firms are too illiquid

11Research by Symantec has shown that hackers tend to exploit security vulnerabilities for an
average of ten months prior to discovery by the affected firm (Bilge and Dumitras, 2012).
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to have frequent options trading. Limiting the sample to those firms for which we

have sufficient information over the relevant time periods yields 46 treatment firm-

event pairs and 3,319 control firm-event pairs in the difference-in-differences dataset

and 51 treatment firm-event pairs and 3,425 control firm-event pairs in the difference-

in-differences dataset.12 The following Tables 1 and 2 present summary statistics on

these datasets.

[Table 1]

[Table 2]

4.1 Balance Tests

The validity of our propensity-score matching method to estimate causal effects turns

on the extent to which the treatment and control groups are “balanced,” that is, likely

to exhibit the same counterfactual outcomes even in the absence of treatment. Of

course, there are a relatively small number of public companies with liquid options in

each 4-digit SIC code industry, so any matching procedure will fall short of achieving

perfect balance. Nonetheless, we perform a series of tests to verify balance in the

distribution of treatment and control firms.

We begin by visually comparing the distribution of the propensity score for

both the cross-sectional and difference-in-difference datasets when estimated using

the full set of covariates. Figures 3 and 4 show this distribution before and after

matching for the cross-sectional and difference-in-difference datasets, respectively.13

The similarity in the density of the two propensity scores suggests that the two

groups are balanced on the propensity score.

12The latter contains more firms than than the former because it covers a longer time period.
13In these figures, the propensity score is estimated on the subsample which contains nonzero

open interest, but the results are virtually identical when estimating on the subsample that contains
nonzero trading volume.
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Figure 3: Propensity Score Balance Test: Cross-Sectional Dataset

This figure plots the distribution of the propensity score in the cross-sectional dataset. The figure
on the left shows the distribution in the original sample, while the figure on the right shows the
distribution in the matched sample. As the figure shows, the matching produces a sample that is
virtually identical with respect to the observed propensity score.
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Figure 4: Propensity Score Balance Test: Difference-in-Differences Dataset

This figure plots the distribution of the propensity score in the difference-in-differences dataset.
The figure on the left shows the distribution in the original sample, while the figure on the right
shows the distribution in the matched sample. As the figure shows, the matching produces a sample
that is virtually identical with respect to the observed propensity score.

What about individual covariates? Due to the relatively small number of

public firms with liquid equity options in each SIC code, achieving greater balance

on one covariate inevitably involves a loss of balance on another (to some extent).

For this reason, in Section 5, we present results using propensity-score matching on

individual covariates, as well as all of the covariates together, to illustrate that the

results do not depend on which covariates are included.

Tables 3 and 4 compare covariate means in the cross-sectional and difference-

in-differences dataset between the raw and matched samples. While the matching is
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unable to achieve perfect balance across all of the covariates simultaneously, this table

shows that each specification leads to near-perfect balance on a different covariate.

As shown in Section 5 below, The consistency of the coefficient estimates across

these different specifications in significance and magnitude strongly suggests that

the results are not driven by spurious variation in covariate balance.

5 Primary Results

5.1 Cross-Sectional Estimation

We begin by estimating the average treatment effect (ATE) for the treatment group

by propensity score matching (Abadie and Imbens, 2006) over the interval [−60, 0],

i.e., two months prior to disclosure of the data breach.14 Here, identification of the

treatment effect is based on the assumption that this interval is likely to be unknown

to anyone other than the hacker and corporate officers aware of the data breach.

First, we estimate the difference in log open interest on outstanding put options

between treatment and control firms. The results are shown in Table 5.

[Table 5]

As Table 5 shows, there is an average increase of between .55 and .70 log points in the

open interest of the put options written on target firms, and the result is consistent

and statistically significant across specifications.

Next, we estimate differences in log trading volume of outstanding put options

between treatment and control firms. The results are shown in Table 6.

[Table 6]

As Table 6 shows, there is an average increase of between .50 and 1.27 log points

in trading volume of put options written on target firms. The result is significant

and increases in magnitude as additional covariates are included in the propensity

score matching, indicating that initial statistical insignificance may simply reflect

14We show below that the results are not driven by the choice of this interval.

27



estimation noise driven by over-weighting of firms that are more different from each

other.

To evaluate how sensitive these results are to the propensity score method

(Abadie and Imbens, 2006), we re-estimate the ATE with all covariates across three

other matching schemes for identifying treatment effects: inverse-probability weight-

ing (Imbens, 2000), inverse-probability weighting with regression adjustment (Wooldridge,

2007), and regression adjustment (Lane and Nelder, 1982). The results are shown in

Table 7 and Table 8.

[Table 7]

[Table 8]

Table 7 and Table 8 show that the effect is consistently positive and significant

regardless of the matching method used.

To get a sense for the magnitude of the effect, recall that the unconditional

log average open interest is approximately 4.60. Thus, the point estimate of 0.70

in the full model corresponds to roughly 0.70/4.60 ≈ 15% additional open interest.

Similarly, the unconditional log average volume is approximately 1.62. The point

estimate of 1.28 in the full model corresponds to roughly 1.28/1.62 ≈ 79% additional

trading volume of put options in the targets of corporate data breaches.

To verify that the results are not driven by the choice of a two-month interval,

we re-estimate the models matching on the full set of covariates using different time

windows. The results for open interest and volume are shown in Tables 9 and 10.

While some subsamples yield higher t-statistics than others, the point estimates are

consistent in sign and magnitude regardless of the time window.

[Table 9]

[Table 10]
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5.2 Difference-in-Difference Estimation

One concern with the results in the prior Section is that they may be driven by

baseline differences between our treatment and control firms. To address this concern,

we estimate a difference-in-differences specification which estimates a baseline level of

open interest and volume on outstanding put options of target firms over the interval

[t− 480, t− 240), i.e., sixteen months to eight months prior to disclosure of the data

breach.15 The difference-in-difference design compares the difference between this

baseline period and the interval [t − 240, t], i.e., eight months prior to disclosure of

the data breach, between treatment and control firms.

As explained previously, we aggregate the change in the log average open

interest and log volume of put options between the two periods by firm-event, so

there is one observation per firm-event. We then employ propensity score matching

with robust standard errors (Abadie and Imbens, 2006) to ensure that treatment

and control firms are as balanced as possible on observable covariates and proceed

to estimate the ATE on this outcome (i.e., the difference in log open interest and log

volume).

The key identifying assumption of a difference-in-differences analysis is that

treatment and control firms follow parallel trends in the matched sample. We plot

these parallel trends on log open interest in Figure 5 and Figure 6:

These parallel trends figures suggest that, indeed, the two groups are following

parallel trends prior to divergence during this eight-month period preceding disclo-

sure of the data breach. This strengthens the causal interpretation of differences

during this eight-month period. The parallel trend graph for open interest clearly

shows the increase in the number of outstanding put options in the treatment group.

Differences in volume, on the other hand, seem to be driven by a decrease in the

control group. Both are valid estimations of the treatment effect in a difference-in-

differences design.

Proceeding to the statistical analysis, as before we first estimate the difference

in pre-post differences of log open interest between treatment and control firms. The

15We show below that the results are not driven by the choice of this specific interval.

29



Figure 5: Parallel Trends on Log Open Interest

This figure plots time trends for log average open interest on put options between treatment and
control firms in the matched sample. The pre-treatment period is the interval [t − 480, t − 240),
i.e., sixteen to eight months prior to disclosure of the data breach, and the post-treatment period
is the interval [−240, t), i.e., the eight months prior to disclosure of the data breach.

results are shown in Table 11.

[Table 11]

Table 11 shows an average increase of between .26 and .32 log points in the pre-post

difference in open interest of put options written on target firms, and the result is

consistent and statistically significant across nearly every specification. The only

insignificant specification has the fewest covariates included, but the point estimate

is similar and thus the insignificance is likely to be driven by noise in the data.

Next, we estimate the difference in pre-post differences in log trading volume
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Figure 6: Parallel Trends on Log Volume

This figure plots time trends for log average trading volume on put options between treatment and
control firms in the matched sample. The pre-treatment period is the interval [t − 480, t − 240),
i.e., sixteen to eight months prior to disclosure of the data breach, and the post-treatment period
is the interval [t− 240, t], i.e., the eight months prior to disclosure of the data breach.

of outstanding put options between treatment and control firms. The results are

shown in Table 12.

[Table 12]

As Table 12 shows, there is an average increase of between .23 and .36 log points in

the pre-post difference in average trading volume of put options written on target

firms. As with the cross-sectional estimation, the result is significant and increases

in magnitude as additional covariates are included in the propensity score matching,

indicating that initial statistical insignificance may simply reflect estimation noise
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driven by over-weighting of firms that are more different from each other.

To evaluate how sensitive these results are to the propensity score method,

we re-estimate the ATE with all covariates across three other methods of identifying

treatment effects: inverse-probability weighting (Imbens, 2000), inverse-probability

weighting with regression adjustment (Wooldridge, 2007), and regression adjustment

(Lane and Nelder, 1982). The results are shown in Table 13 and Table 14.

[Table 13]

[Table 14]

Table 13 and Table 14 show that the effect is consistently positive and significant for

virtually every matching method, and similar in magnitude to the propensity-score

estimation.

To verify that the results are not driven by the choice of the interval [t−480, t−
240), we re-estimate the models matching on industry, market value and total assets

covariates using different intervals.16 The results for open interest and volume are

shown in Tables 15 and 16. While some subsamples yield higher t-statistics than

others, the point estimates are consistent in sign and magnitude regardless of the

time window.

[Table 15]

[Table 16]

5.3 Textual Analysis: Which Events Drive the Results?

To get a better sense for the kinds of events that are driving the results, we perform

a textual regression of log open interest for put options on firms in the Treatment

× Post group on the words and bigrams in the ITRC event descriptions. Of course,

there are far more words and bigrams than events. We thus employ lasso regular-

ization in a logistic regression using the coordinate descent method pioneered by

16We omit the log net income and log total liabilities covariates in the matching due to the loss
of observations arising from negative values, which leads to collinearity at certain windows.
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Friedman et al. (2010). We report the top words and bigrams with non-zero coef-

ficients that predict log open interest for put options on firms in the Treatment ×
Post group. The results are given in Table 17 and 18.

[Table 17]

[Table 18]
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6 Conclusion

TBD

7 Appendix (Proofs)

TBD

8 References

1. Arcuri, Maria Cristina, Marina Brogi, and Gino Gandolfi. ”The effect of in-

formation security breaches on stock returns: Is the cyber crime a threat to

firms?.” European Financial Management Meeting, Rome. 2014.
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Tables

Table 1: Summary Statistics: Cross-Sectional Dataset

This table reports summary statistics for the continuous variables in the cross-sectional dataset
used in the paper.

N Mean Std. Dev. Min. 25% Median 75% Max.

Treatment (0/1) 3,365 0.01 0.12 0 0 0 0 1

Avg. Open Interest 3,365 496.08 2678.74 1 33.09 98.99 278.27 64,708

Log Avg. Open Interest 3,365 4.60 1.64 0 3.50 4.60 5.63 11.08

Avg. Volume 3,365 25.59 122.36 0 0.46 3.54 14.44 4212.92

Log Avg. Volume 2,853 1.62 1.94 -4.47 0.34 1.71 2.95 8.35

Market Value 3,363 10,913 37,421 3.51 445.09 1364.47 4,138 540,659

Log Market Value 3,363 7.33 1.87 1.26 6.10 7.22 8.33 13.20

Total Assets 3,365 42077 225,130 0.08 252.44 1,081 7,046 2,807,491

Log Total Assets 3,365 7.28 2.41 -2.55 5.53 6.99 8.86 14.85

Net Income 3,224 542.04 22,343 -3,347 -24.32 21.88 143.04 23,057

Log Net Income 2,021 4.70 2.02 -3.41 3.44 4.58 5.74 10.05

Total Liabilities 3,362 37,055 207,757 0.42 77.92 478.94 5,167 2,736,580

Log Total Liabilities 3,362 6.51 2.80 -0.87 4.36 6.17 8.55 14.82
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Table 2: Summary Statistics: Difference-in-Differences Dataset

This table reports summary statistics for the continuous variables in the difference-in-differences
dataset used in the paper.

N Mean Std. Dev. Min. 25% Median 75% Max.

Treatment (0/1) 3,476 0.01 0.12 0.00 0.00 0.00 0.00 1.00

Pre-Open Interest 3,476 490.75 2,130 1.00 41.89 113.96 327.79 56,933

Log Pre-Open Interest 3,476 4.79 1.54 0.00 3.74 4.74 5.79 10.95

Post-Open Interest 3,476 501.77 2,522 1.00 44.89 123.13 318.62 78,531

Log Post-Open Interest 3,476 4.82 1.50 0.00 3.80 4.81 5.76 11.27

Log O.I. (Post-Pre) 3,476 0.03 0.98 -5.87 -0.50 0.01 0.57 5.77

Pre-Volume 3,476 28.94 124.06 0.00 1.21 5.52 18.66 3,310

Log Pre-Volume 3,302 1.71 1.90 -5.83 0.47 1.83 3.00 8.10

Post-Volume 3,476 26.78 122.93 0.00 1.16 5.20 16.64 3,977

Log Post-Volume 3,268 1.67 1.86 -4.84 0.54 1.81 2.88 8.29

Log Volume (Post-Pre) 3,160 -0.07 1.22 -5.80 -0.65 -0.10 0.51 6.30

Market Value 3,474 11,260 39,095 2.59 442.99 1,390 4,195 540,659

Log Market Value 3,474 7.33 1.91 0.95 6.09 7.24 8.34 13.20

Total Assets 3,476 41,137 221,642 0.09 253.09 1,096.66 7,197 2,807,490

Log Total Assets 3,476 7.29 2.39 -2.47 5.53 7.00 8.88 14.85

Net Income 3,333 554.63 2,265 -3,347 -23.55 22.94 144.85 23,057

Log Net Income 2,078 4.75 2.00 -3.41 3.48 4.61 5.77 10.05

Total Liabilities 3,472 36,099 204,531 0.07 83.29 496.45 5,282 2,736,580

Log Total Liabilities 3,472 6.53 2.77 -2.60 4.42 6.21 8.57 14.82
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Table 3: Balance Test on Individual Covariates: Cross-Sectional Dataset

This table reports the difference in covariate means in the matched sample for the cross-sectional
dataset with the specifications given in Tables 5 and 6. The raw mean in the largest possible
subsample for each covariate is given in the first column. While the matching is unable to achieve
perfect balance across all of the covariates simultaneously, this table shows that each specification
leads to near-perfect balance on a different covariate. The consistency of the coefficient estimates in
Tables 5 and 6 across these different specifications in significance and magnitude strongly suggests
that the results are not driven by spurious variation in covariate balance.

Raw Mean (1) (2) (3) (4)

Market Value 0.7782 -0.1331 -0.0094 0.2582 0.1825

Total Assets 0.5584 -0.2617 -0.1218 -0.1458

Net Income 0.6117 0.0774 0.0202

Total Liabilities 0.2611 -0.1457

Table 4: Balance Test on Individual Covariates: Difference-in-Differences Dataset

This table reports the difference in covariate means in the matched sample for the difference-in-
differences dataset with the specifications given in Tables 11 and 12. The raw mean in the largest
possible subsample for each covariate is given in the first column. While the matching is unable
to achieve perfect balance across all of the covariates simultaneously, this table shows that each
specification leads to near-perfect balance on a different covariate. The consistency of the coefficient
estimates in Tables 11 and 12 across these different specifications in significance and magnitude
strongly suggests that the results are not driven by spurious variation in covariate balance.

Raw Mean (1) (2) (3) (4)

Market Value 0.8335 -0.0870 0.0126 0.1881 0.0426

Total Assets 0.6226 -0.2797 -0.1762 -0.2880

Net Income 0.6117 0.0613 -0.0440

Total Liabilities 0.2611 -0.2990
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Table 5: Cross-Sectional Estimation: Log Open Interest

This table reports the average treatment effect of corporate data breaches on the log of the average
open interest of outstanding put options for target firms over the two months preceding the data
breach, with propensity score matching over the following covariates: (1) an indicator for the 4-digit
SIC industry code for the firm, (2) log market value as of year-end, (3) log total assets, (4) log net
income, and (5) log total liabilities. In this table, the dependent variable is identical across all
models, but each column reports the ATE with additional covariates included in the propensity
score matching. t-statistics are reported based on robust standard errors.

(1) (2) (3) (4)

ATE 0.5528** 0.3677** 0.7539*** 0.7006***

(2.14) (2.18) (4.02) (4.23)

SIC Industry Y Y Y Y

Mkt. Val. Y Y Y Y

Total Assets Y Y Y

Net Income Y Y

Total Liabilities Y

Observations 3,363 3,363 2,019 2,016

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 6: Cross-Sectional Estimation: Log Volume

This table reports the average treatment effect of corporate data breaches on the log trading volume
in put options for target firms over the two months preceding the data breach, with propensity score
matching over the following covariates: (1) an indicator for the 4-digit SIC industry code for the
firm, (2) log market value as of year-end, (3) log total assets, (4) log net income, and (5) log total
liabilities. In this table, the dependent variable is identical across all models, but each column
reports the ATE with additional covariates included in the propensity score matching. t-statistics
are reported based on robust standard errors.

(1) (2) (3) (4)

ATE 0.7980 0.5331 1.0103*** 1.2798***

(1.05) (0.93) (3.60) (2.83)

SIC Industry Y Y Y Y

Mkt. Val. Y Y Y Y

Total Assets Y Y Y

Net Income Y Y

Total Liabilities Y

Observations 2,851 2,851 1,727 1,724

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 7: Cross-Sectional Estimation: Log Open Interest (Alternative Models)

This table reports the average treatment effect of corporate data breaches on the log of the average
open interest of outstanding put options for target firms over the two months preceding the data
breach, matching on an indicator for the 4-digit SIC industry code for the firm, log market value as
of year-end, log total assets, log net income, and log total liabilities. In this table, the dependent
variable is identical across all models, but each column reports a different weighting scheme: (1)
propensity score matching, (2) inverse probability weighting, (3) inverse probability weighting with
regression adjustment, and (4) regression adjustment. t-statistics are reported based on robust
standard errors.

(1) (2) (3) (4)

ATE 0.7006*** 0.6347*** 0.6347*** 0.8998***

(4.23) (2.94) (2.94) (3.69)

Control Mean 4.5933*** 4.5933*** 4.5946***

(121.56) (121.56) (121.70)

SIC Industry Y Y Y Y

Mkt. Val. Y Y Y Y

Total Assets Y Y Y Y

Net Income Y Y Y Y

Total Liabilities Y Y Y Y

Observations 2,016 2,016 2,016 2,019

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 8: Cross-Sectional Estimation: Log Volume (Alternative Models)

This table reports the average treatment effect of corporate data breaches on the log trading volume
in put options for target firms over the two months preceding the data breach, matching on an indi-
cator for the 4-digit SIC industry code for the firm, log market value as of year-end, log total assets,
log net income, and log total liabilities. In this table, the dependent variable is identical across all
models, but each column reports a different matching scheme: (1) propensity score matching, (2)
inverse probability weighting, (3) inverse probability weighting with regression adjustment, and (4)
regression adjustment. t-statistics are reported based on robust standard errors.

(1) (2) (3) (4)

ATE 1.2798*** 0.9711*** 0.9711*** 0.7731**

(2.83) (4.08) (4.08) (2.52)

Control Mean 1.8110*** 1.8110*** 1.8132***

(38.03) (38.03) (38.10)

SIC Industry Y Y Y Y

Mkt. Val. Y Y Y Y

Total Assets Y Y Y Y

Net Income Y Y Y Y

Total Liabilities Y Y Y Y

Observations 1,724 1,724 1,724 1,727

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 9: Cross-Sectional Estimation: Log Open Interest (Alternative Windows)

This table reports the average treatment effect of corporate data breaches on the log of the average
open interest of outstanding put options for target firms, matching on an indicator for the 4-digit
SIC industry code for the firm, log market value as of year-end, log total assets, log net income,
and log total liabilities. In this table, the dependent variable is identical across all models, but each
column reports a different period of sample inclusion, from one to six months prior to disclosure of
the data breach. t-statistics are reported based on robust standard errors.

1 mo. 2 mo. 3 mo. 4 mo. 5 mo. 6 mo.

ATE 0.5842 0.7006*** 0.6176*** 0.2816 0.0838 0.1719

(1.50) (4.23) (3.62) (1.24) (0.35) (0.83)

SIC Industry Y Y Y Y Y Y

Mkt. Val. Y Y Y Y Y Y

Total Assets Y Y Y Y Y Y

Net Income Y Y Y Y Y Y

Total Liabilities Y Y Y Y Y Y

Observations 1,884 2,016 2,052 2,083 2,146 2,156

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 10: Cross-Sectional Estimation: Log Volume (Alternative Windows)

This table reports the average treatment effect of corporate data breaches on the log trading volume
in put options for target firms, matching on an indicator for the 4-digit SIC industry code for the
firm, log market value as of year-end, log total assets, log net income, and log total liabilities. In
this table, the dependent variable is identical across all models, but each column reports a different
period of sample inclusion, from one to six months prior to disclosure of the data breach. t-statistics
are reported based on robust standard errors.

1 mo. 2 mo. 3 mo. 4 mo. 5 mo. 6 mo.

ATE 1.1293*** 1.2798*** 0.7210* 0.0466 0.4916 0.5141*

(5.79) (2.83) (1.82) (0.10) (1.22) (1.78)

SIC Industry Y Y Y Y Y Y

Mkt. Val. Y Y Y Y Y Y

Total Assets Y Y Y Y Y Y

Net Income Y Y Y Y Y Y

Total Liabilities Y Y Y Y Y Y

Observations 1,519 1,724 1,812 1,868 1,943 1,975

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 11: Difference-in-Differences: Log Open Interest

This table reports the difference-in-differences average treatment effect of corporate data breaches
on the log of the average open interest of outstanding put options for target firms, with propensity
score matching over the following covariates: (1) an indicator for the 4-digit SIC industry code for
the firm, (2) log market value as of year-end, (3) log total assets, (4) log net income, and (5) log total
liabilities. The outcome is the difference in log open interest between the periods [t− 480, t− 240]
and (t − 240, t) where t is the date of disclosure of the data breach. In this table, the dependent
variable is identical across all models, but each column reports the ATE with additional covariates
included in the propensity score matching. t-statistics are reported based on robust standard errors.

(1) (2) (3) (4)

ATE 0.3234 0.2679*** 0.2793*** 0.3146**

(1.45) (3.29) (3.94) (2.33)

SIC Industry Y Y Y Y

Mkt. Val. Y Y Y Y

Total Assets Y Y Y

Net Income Y Y

Total Liabilities Y

Observations 3,479 3,479 2,069 2,066

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 12: Difference-in-Differences: Log Volume

This table reports the difference-in-differences average treatment effect of corporate data breaches
on the log of the average trading volume of outstanding put options for target firms, with propensity
score matching over the following covariates: (1) an indicator for the 4-digit SIC industry code for
the firm, (2) log market value as of year-end, (3) log total assets, (4) log net income, and (5) log total
liabilities. The outcome is the difference in log trading volume between the periods [t−480, t−240]
and (t − 240, t), where t is the date of disclosure of the data breach. In this table, the dependent
variable is identical across all models, but each column reports the ATE with additional covariates
included in the propensity score matching. t-statistics are reported based on robust standard errors.

(1) (2) (3) (4)

ATE 0.3626* 0.3044*** 0.2300*** 0.3425***

(1.72) (2.78) (3.30) (3.58)

SIC Industry Y Y Y Y

Mkt. Val. Y Y Y Y

Total Assets Y Y Y

Net Income Y Y

Total Liabilities Y

Observations 3,150 3,150 1,907 1,904

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 13: Difference-in-Differences: Log Open Interest (Alternative Models)

This table reports the difference-in-differences average treatment effect of corporate data breaches
on the log of the average open interest of outstanding put options for target firms, with propensity
score matching over the following covariates: (1) an indicator for the 4-digit SIC industry code for
the firm, (2) log market value as of year-end, (3) log total assets, (4) log net income, and (5) log total
liabilities. The outcome is the difference in log open interest between the periods [t− 480, t− 240]
and (t − 240, t), where t is the date of disclosure of the data breach. In this table, the dependent
variable is identical across all models, but each column reports a different weighting scheme: (1)
propensity score matching, (2) inverse probability weighting, (3) inverse probability weighting with
regression adjustment, and (4) regression adjustment. t-statistics are reported based on robust
standard errors.

(1) (2) (3) (4)

ATE 0.3146** 0.2971*** 0.2971*** 0.2614**

(2.33) (2.75) (2.75) (2.18)

Control Mean -0.0028 -0.0028 -0.0040

(-0.13) (-0.13) (-0.19)

SIC Industry Y Y Y Y

Mkt. Val. Y Y Y Y

Total Assets Y Y Y Y

Net Income Y Y Y Y

Total Liabilities Y Y Y Y

Observations 2,066 2,066 2,066 2,069

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 14: Difference-in-Differences: Log Volume (Alternative Models)

This table reports the difference-in-differences average treatment effect of corporate data breaches
on the log of the average trading volume of outstanding put options for target firms, with propensity
score matching over the following covariates: (1) an indicator for the 4-digit SIC industry code for
the firm, (2) log market value as of year-end, (3) log total assets, (4) log net income, and (5) log total
liabilities. The outcome is the difference in log trading volume between the periods [t−480, t−240]
and (t − 240, t), where t is the date of disclosure of the data breach. In this table, the dependent
variable is identical across all models, but each column reports a different matching scheme: (1)
propensity score matching, (2) inverse probability weighting, (3) inverse probability weighting with
regression adjustment, and (4) regression adjustment. t-statistics are reported based on robust
standard errors.

(1) (2) (3) (4)

ATE 0.3425*** 0.4060*** 0.4060*** 0.1551

(3.58) (3.21) (3.21) (1.57)

Control Mean -0.0212 -0.0212 -0.0221

(-0.80) (-0.80) (-0.83)

SIC Industry Y Y Y Y

Mkt. Val. Y Y Y Y

Total Assets Y Y Y Y

Net Income Y Y Y Y

Total Liabilities Y Y Y Y

Observations 1,909 1,909 1,909 1,912

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 15: Difference-in-Differences: Log Open Interest (Alternative Windows)

This table reports the difference-in-differences average treatment effect of corporate data breaches
on the log of the average open interest of outstanding put options for target firms, with propensity
score matching over the following covariates: (1) an indicator for the 4-digit SIC industry code
for the firm, (2) log market value as of year-end, (3) log total assets, (4) log net income, and (5)
log total liabilities. In this table, the dependent variable is identical across all models, but each
column reports a comparison between a different period of sample inclusion: (1) [t − 360, t − 180]
vs. (t − 180, t), (2) [t − 420, t − 210] vs. (t − 210, t), (3) [t − 480, t − 240] vs. (t − 240, t), (4)
[t − 540, t − 270] vs. (t − 270, t), (5) [t − 600, t − 300] vs. (t − 300, t) and (6) [t − 660, t − 330] vs.
(t− 330, t) . t-statistics are reported based on robust standard errors.

(1) (2) (3) (4) (5) (6)

ATE 0.3165*** 0.2783*** 0.2679*** 0.2756*** 0.2361*** 0.1422*

(3.32) (3.14) (3.29) (3.72) (2.74) (1.72)

SIC Industry Y Y Y Y Y Y

Mkt. Val. Y Y Y Y Y Y

Total Assets Y Y Y Y Y Y

Net Income Y Y Y Y Y Y

Total Liabilities Y Y Y Y Y Y

Observations 3,443 3,429 3,474 3,467 3,444 3,418

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 16: Difference-in-Differences: Log Volume (Alternative Windows)

This table reports the difference-in-differences average treatment effect of corporate data breaches
on the log of the average trading volume of outstanding put options for target firms, with propensity
score matching over the following covariates: (1) an indicator for the 4-digit SIC industry code for
the firm, (2) log market value as of year-end, (3) log total assets, (4) log net income, and (5)
log total liabilities. In this table, the dependent variable is identical across all models, but each
column reports a comparison between a different period of sample inclusion: (1) [t − 360, t − 180]
vs. (t − 180, t), (2) [t − 420, t − 210] vs. (t − 210, t), (3) [t − 480, t − 240] vs. (t − 240, t), (4)
[t − 540, t − 270] vs. (t − 270, t), (5) [t − 600, t − 300] vs. (t − 300, t) and (6) [t − 660, t − 330] vs.
(t− 330, t) . t-statistics are reported based on robust standard errors.

(1) (2) (3) (4) (5) (6)

ATE 0.1092 0.3010* 0.3044*** 0.4489*** 0.4618*** 0.3563***

(0.58) (1.88) (2.78) (3.83) (3.74) (2.67)

SIC Industry Y Y Y Y Y Y

Mkt. Val. Y Y Y Y Y Y

Total Assets Y Y Y Y Y Y

Net Income Y Y Y Y Y Y

Total Liabilities Y Y Y Y Y Y

Observations 3,049 3,071 3,158 3,174 3,188 3,172

t statistics in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01
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Table 17: Top Word Predictors of Open Interest for Treatment × Post

This table reports the top words in the ITRC event description that predict a high level of log open
interest in put options of target firms after they have been successfully attacked.

1 parties 341.78 17 november 19.82 33 early 0.59

2 fargo 246.41 18 today 16.19 34 healthcare 0.57

3 usernames 208.68 19 franchisees 12.61 35 local 0.48

4 continuing 182.89 20 copart 10.80 36 acquisitions 0.48

5 allegations 93.21 21 steps 6.16 37 associated 0.40

6 involved 81.28 22 database 5.25 38 find 0.17

7 mortgage 76.73 23 informed 5.11 39 thats 0.16

8 protect 64.21 24 administration 2.80 40 contractor 0.12

9 least 42.70 25 fraud 2.54 41 claims 0.08

10 provider 37.67 26 conclusions 1.95 42 complex 0.08

11 customers 37.65 27 called 1.56 43 ssns 0.04

12 indicates 35.27 28 fact 1.31 44 targeted 0.02

13 wells 25.02 29 experts 1.21 45 desktop 0.02

14 provided 22.98 30 evidence 0.76 46 appeared 0.02

15 date 22.00 31 ernst 0.60 47 paid 0.01

16 precaution 20.24 32 dark 0.60 48 intrusions 0.01
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Table 18: Top Bigram Predictors of Open Interest for Treatment × Post

This table reports the top bigrams in the ITRC event description that predict a high level of log
open interest in put options of target firms after they have been successfully attacked.

1 including names 351.67 21 access computer 15.79

2 wells fargo 298.79 22 accessed unauthorized 5.82

3 address itrc 282.80 23 cisco systems 2.67

4 usernames passwords 253.18 24 details turn 2.59

5 allegations data 129.29 25 complex attacks 2.56

6 attacks network 88.80 26 exposed usernames 2.23

7 information security 81.54 27 administration information 2.00

8 recently learned 56.54 28 december unauthorized 1.96

9 basic precautions 47.21 29 security experts 1.72

10 postal addresses 46.05 30 comcast denied 1.57

11 according statement 43.37 31 including sent 1.27

12 outside company 40.85 32 business relationship 1.08

13 desktop computer 37.15 33 cards south 0.99

14 date birth 34.88 34 provider theft 0.87

15 including credit 29.61 35 compromised according 0.70

16 accused stealing 28.68 36 behind series 0.68

17 account details 25.06 37 customers went 0.62

18 email address 21.53 38 area moved 0.60

19 accidentally emailed 20.12 39 forum today 0.56

20 claims million 16.38 40 appeared come 0.53
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