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Abstract

We study disclosure by a disagreement-averse sender facing a receiver with dif-

ferent prior beliefs. With a binary state, full disclosure is feasible only if the receiver’s

prior is close enough to one minus the sender’s prior. If full disclosure is infeasible,

only information congruent with the prior bias of the most extreme player is fully

disclosed. The active avoidance of perceived disagreement can paradoxically lead to

larger (perceived or actual) disagreement in beliefs from an ex ante perspective. Dis-

agreement aversion arises endogenously within simple games of compromise deci-

sion making and delegation. Finally, moderate prior heterogeneity encourages public

information acquisition in committees featuring disagreement averse players.

Keywords: strategic disclosure, psychological games, disagreement aversion

JEL classification: D81, D83, D91

1 Introduction

Political behavior is heavily influenced by the information available to citizens, which is a

key reason why political forces (governments, lobbies, political parties) often devote sig-

nificant resources to influencing centralized information flows (propaganda, media cen-

sorship, campaigns, etc). But citizens also obtain information in a decentralized fashion
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from talking to each other. The latter channel has arguably gained in relative importance

in the digital era (internet, social media).

Information exchange within social networks however exhibits many forms of bias.

People do not talk equally easily about all topics, are not equally willing to disclose all

facts or opinions and not equally likely to talk to everyone. A typical instance of this is

the following recommendation from a 19th century gentleman’s manual:1 ”Do not discuss

politics or religion in general company. (...) To discuss those topics is to arouse feeling without

any good result.” The rule is still relevant today: A 2016 poll by the online employment

website CareerBuilder finds that 42 percent of respondents avoid talking politics at the of-

fice while 44 percent talk about it but interrupt the conversation if it becomes heated2.

Social-psychologists have developed a wide array of concepts to describe and theorize

informational biases in social networks: taboos, Overton windows, opinion corridors, politi-

cal correctness, conversational minefields, echo chambers, confirmation bias, collective ignorance,

information avoidance.

Two aspects appear to play an important role in generating these biases, namely peo-

ple’s tendency to avoid open conflict (of opinions) and the fact that people hold different

prior beliefs, which lead them to react differently to the same information. This paper pro-

poses to study the consequences of these two stylized facts for key instances of (bayesian)

learning among rational agents.

A large body of experimental and empirical evidence documents that in stating their

opinions, individuals tend to conform to what they believe others think. In the series of

experiments conducted by Asch and related in the seminal paper Opinions and social pres-

sure Asch (1955), subjects wrongly evaluated the length of a line after being exposed to

other participants’ (artificially induced) wrong assessment. Bursztyn et al. (2017a) found

that subjects were more likely to reveal immigration-critical views two weeks after Don-

ald Trump’s victory than two weeks before it. Prentice and Miller (1993) found that stu-

dents radically underestimated how many others were uncomfortable with campus al-

cohol practices because very few dared express dissent. Disagreement aversion has a

1"Hills Manual of Social and Business Forms", 1879.
2Political Talk Heats Up the Workplace, According to New CareerBuilder Survey, CareerBuilder.com, Press

Releases, July 2016.
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variety of potential causes. The aversion may be intrinsic (i.e. a cultural trait) or instru-

mental (i.e. driven by the anticipation of adverse consequences). One might dislike others

to think that one is wrong or fear being disliked by people who disagree with one’s views.

Disagreement might make others more less likely to cooperate in future tasks. Political

cultures in north-western Europe put a special emphasis on reaching consensus in nego-

tiations (e.g. the so-called Polder model of consensual politics in the Netherlands, labour

market negotiations in Scandinavian countries). We refer to Golman et al. (2016) for an

in-depth discussion of central causes and consequences of what the authors term a prefer-

ence for belief consonance, structured around a distinction between so-called group-identity

and protected beliefs approaches3.

A second stylized fact is that individuals have heterogeneous priors, i.e. have differ-

ent distributional beliefs about the environment (the state of the world) and as a conse-

quence do not interpret evidence in the exact same way. Examples include climate change

(whether it occurs and how to best address it), animal welfare, immigration, the economic

effects of trade, religion. A key underlying driver of the phenomenon is that people have

different personal histories (different experiences, socialization, frames).

We examine the implications of the two above stylized facts for key instances of bilat-

eral bayesian learning, namely strategic information disclosure and collective information

acquisition. A main source of tension is that while any informative experiment on aver-

age reduces disagreement, specific signal realizations can increase disagreement. Key

questions addressed are as follows. For which types of information is learning impeded

or slowed down by the disagreement aversion? What matches of individuals give rise to

the most productive learning? Can a policy of preempting disagreement be counterpro-

ductive from an ex ante perspective?

The main section of our paper examines a simple game of disclosure by a party (S)

who is averse to perceived disagreement on the part of the uninformed party (R). The

state is binary (0 or 1) and S and R have different publicly observed prior beliefs αS and

αR about the state being 0. A binary informative signal σ 2 f0, 1g of commonly known

3See also Golman et al. (2017) for a related discussion of motives for information avoidance.
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precision p is available to S with some commonly known probability ϕ. Our equilibrium

characterization exhibits the following key properties. First, except under knife-edge con-

ditions, there always exists a unique equilibrium. Second, full disclosure is not always an

equilibrium outcome. Third, increasing the difference in priors can imply better infor-

mation transmission: For a given signal precision p and a given receiver prior αR, there

is a most favorable sender prior α�S = 1� αR such that full disclosure is feasible only if

S’s prior is close enough to α�S. Fourth, better information quality is always helpful: The

higher the quality of information, the larger the set of values of αS for which full disclo-

sure is feasible. Fifth, if disclosure is partial, S only reveals information congruent with

the most extreme player’s prior bias, which constitutes a potential starting point for a the-

ory of echo-chambers. The second part of our main section takes an ex ante perspective

on equilibrium and disagreement. We show that the drive to avoid perceived disagree-

ment can backfire from an ex ante perspective, thereby revealing a hidden cost of political

correctness. In the eyes of S, (ex ante) expected perceived disagreement can be higher in

equilibrium than it would be under full disclosure, so that S would prefer to commit

to full disclosure. Second, in the eyes of a third party with a prior potentially different

from S’s and R’s, the (ex ante) expected actual disagreement can be higher in equilibrium

than it would be under full disclosure. The final part of our main section establishes that

uncertainty about priors can help disclosure.

The subsequent extensions section of the paper examines how our findings extend in

a variety of fundamental directions. The first subsection tests the technical robustness of

our results to a more general information structure. We show that the main qualitative

features of our characterization survive given continuous signals satisfying the MLRP

property. The second subsection examines potential micro-foundations of disagreement

aversion, by embedding the disclosure stage within two-stage games in which the sec-

ond stage involves either collective decision making or a delegation decision. The last

subsection considers a game of costly collective acquisition of public signals by parties

exhibiting disagreement aversion. The game represents conversations as a collective en-

deavor whose (informational) outcome is inherently unpredictable. Though the game is

strategically very different from our disclosure game, it addresses the same underlying

problem of learning in (prior beliefs-wise) heterogeneous groups. We find that moderate
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prior misalignment optimally induces information acquisition (i.e. stimulates conversa-

tion), in a way that echoes our main findings.

Literature review In its foundations, our paper relates to a literature studying how

public information relates to disagreement in beliefs. A much studied phenomenon is

polarization, which refers to situations where individuals update in opposite directions

on the basis of the same information. It may result from different prior beliefs (Dixit and

Weibull, 2007; Acemoglu et al., 2007; Sethi and Yildiz, 2012), different privately observed

prior signals (Andreoni and Mylovanov, 2012) as well as ambiguity Baliga et al. (2013).

Under certain conditions, disagreement in beliefs may persist in the long run, i.e. asymp-

totically.4. Zanardo (2017) characterizes the set of belief disagreement functions that sat-

isfy a set of desirable axioms. Kartik and Zanardo (2016) identify necessary and sufficient

conditions under which public information reduces disagreement. Kartik et al. (2015)

consider agents with different priors and show that two agents with different priors each

believe that a (Blackwell) more informative public experiment will, in expectation, bring

the other’s posterior closer to his own prior.

An extensive body of research dating back to (Crawford and Sobel, 1982; Milgrom,

1981) studies strategic information transmission between an informed sender (S) and a

receiver (R) (see Sobel, 2013, for a review). These models typically involve a difference

in preferences over R’s action conditional on the state. Newer papers study the case of

different prior beliefs, often featuring identical preferences given the state. Banerjee and

Somanathan (2001) and Kartik et al. (2015) study disclosure by multiple senders. In the

first, which features privately known priors, only experts with extreme priors disclose

and information has on average a moderating effect on R. In the second, the authors

identify cases where competition promotes revelation. Che and Kartik (2009) examines

the effect of prior misalignment on S’s incentives to acquire costly information. Prior

misalignment hurts disclosure but increases S’s effort, so that R may ultimately benefit

from more misalignment.

In the above papers, S simply wants R’s first order beliefs to be close to some state

4Several papers in network economics consider the effect on polarization of individual conformity to the

beliefs or opinions of others (Dandekar et al., 2013; Buechel et al., 2015; Golub and Jackson, 2012).
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dependent or independent bliss-point. In our paper, S also has preferences over second

order beliefs of R: She wants R to believe that her own first order beliefs are close to those

of S. As a consequence, S might for example conceal a signal that brings R’s first order

beliefs closer to hers, if this minimizes perceived disagreement .

A strand of the literature on strategic information transmission features an endoge-

nous preference for belief conformity arising from reputational concerns. In (Ottaviani

and Sørensen, 2006a,b; Gentzkow and Shapiro, 2006), S wishes to signal a high quality

of her information to R, who ultimately observes the actual state. This leads S to bias

her message towards R’s prior belief, which hampers informativeness. 5 Similarly, in our

setup if S’s prior is more extreme than R’s, S omits signals which contradict R’s prior.

The motivation is however very different: S wants to mitigate R’s perception of ex-post

disagreement (the quality of S’s information being known). This same objective will as

a matter of fact lead R to omit signals that confirm R’s prior if S’s prior is more extreme

than R’s.

Finally, our paper contributes to the growing body of literature on psychological game

theory, which posits preferences that directly incorporate beliefs (of arbitrary order) about

others’ strategies or beliefs (Geanakoplos et al., 1989; Battigalli and Dufwenberg, 2009).

Many applied models focus on preferences which depend on the interplay between be-

liefs and material payoffs, as in models of reciprocity (Rabin, 1993; Dufwenberg and

Kirchsteiger, 2004) or guilt aversion (Battigalli and Dufwenberg, 2007). A related model

of Ely et al. (2015) considers the behavior of a principal who wishes the beliefs of an agent

to follow a specific time-path exhibiting suspense or surprises.

We proceed as follows. Section 2 considers the baseline model, Section 3 provides

5Sobel (1985) and Morris (2001) study related sender-receiver games with an endogenous reputational

concern of the sender for being perceived as unbiased, which also leads to distorted informativeness of

communication. Prendergast (1993) in a principal-agent setting examines the agent’s incentive to match the

(noisy) information of the principal in his report. Bursztyn et al. (2017b) consider a setting where a sender

has to communicate his type to a receiver and has incentive to appear of the same type as the receiver. Bén-

abou (2012) shows that agents with anticipatory utility may converge to each other’s wrong beliefs due to

the dependence of one’s payoffs on the actions of the others. Kajackaite and Gneezy (2015); Khalmetski and

Sliwka (2017) consider cheap talk with a sender who is interested in minimizing the probability assigned

by R to her having lied. They find that this implies an incentive to conform to what R expects to hear.
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modeling extensions, and Section 4 concludes. All proofs, unless explicitly stated other-

wise, are relegated to Technical Appendixes I �VI.

2 Main analysis

2.1 The disclosure game

There are two agents S and R and a state ω 2 f0, 1g . Player i 2 S, R assigns prior prob-

ability αi to ω = 0. Priors are common knowledge. S holds with probability ϕ 2 (0, 1)

a privately observed signal σ 2 f0, 1g. The signal is identical to the state with probabil-

ity p, i.e. P(σ = ω) = p 8ω. Player S can disclose the signal to R or not. Denote S’s

disclosure by d, where d 2 f0, 1, ∅g. R simply observes S’s signal if disclosed and subse-

quently updates beliefs. S is averse to perceived disagreement on the part of R, i.e. wants

to minimize R’s ex post perception of disagreement. Let eαi denote i’s posterior given in-

formation. Denote by eαR(d) the posterior probability assigned by R to state 0 given that

S discloses d. Denote by ER[eαS jd ] the expected value of S’s posterior given d, in the eyes

of R. Clearly, both eαR(d) and ER[eαS jd ] are functions of R’s belief about S’s disclosure

strategy. S’s utility function is given as follows:

US(ER[eαS jd ],eαR(d)) = � jER[eαS jd ]� eαR(d)j . (1)

In other words, S’s utility is maximized if R thinks that S holds the same posterior

belief as she. Note that S’s actual posterior belief does not enter S’s utility function. R’s

preferences are left unspecified, this player being entirely passive. Note that we could

have assumed instead that S minimizes ER [ jeαS � eαRjj d] . The idea of our assumption is

that S only cares about not being perceived as clearly biased in one direction relative to

R.

Our equilibrium concept throughout is Perfect Bayesian equilibrium: Players’ strate-

gies are sequentially rational given their beliefs and others’ equilibrium strategies. Sec-

ond, beliefs are derived via Bayes’ rule whenever possible.

A disclosure strategy of S specifies a probability of disclosing at each information set of

S and a disclosure strategy is informative if S discloses with positive ex ante probability.
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Three informative pure disclosure strategies are respectively full disclosure (called FD),

disclosure of only 0-signals or only 1-signals (called D0 or D1). An equilibrium featuring

disclosure strategy X 2 fFD, D0, D1g is called an X-equilibrium. An equilibrium featur-

ing an informative disclosure strategy is called informative. If αi > (<)
1
2 , we say that i’s

prior is biased towards state 0(1). If αi >
1
2 , a 0-signal is congruent with i’s prior bias and a

1-signal contradicts it (vice versa if αi <
1
2 ). If αi is strictly closer to either 0 or 1 than αj,

then i is said to hold a stronger or more extreme prior than j.

2.2 Equilibrium characterization

Define the following functions:

α�S(αR, p) =
(1� αR)(1� p)

1� p+ αR(2p� 1)
,

α��S (αR, p) =
p(1� αR)

αR + p(1� 2αR)
.

The above functions have the following properties, which are formally established in

the proof of our next Proposition. First, given αR 2 (0, 1) and p 2
�

1
2 , 1
�

, it always

holds true that 0 < α�S(αR, p) < α��S (αR, p) < 1. Second, α�S and α��S are continuous in p.

Third, α�S is decreasing in p and α��S is increasing in p. Fourth, α�S(αR, 1
2) = α��S (αR, 1

2) =

1� αR. Finally, α�S(αR, 1) = 0 and α��S (αR, 1) = 1. The following Proposition provides a

characterization of the set of informative equilibria.

Proposition 1 1. If αS 2 fαR, 1� αRg or if αS /2 fαR, 1� αRg and αS =
�

α�S(αR, p), α��S (αR, p)
	

,

the FD equilibrium exists.

2. Given αS /2 fαR, 1� αRg :

a) If αS 2 (0, α�S(αR, p)) then the unique equilibrium is D1,

b) If αS 2
�
α�S(αR, p), α��S (αR, p)

�
then the unique equilibrium is FD,

c) If αS 2 (α��S (αR, p), 1) then the unique equilibrium is D0.

Figure 1 below provides an illustration of our characterization for αR = .3. The dashed

curves correspond to α�S(.3, p) and α��S (.3, p). Between the two thick curves, the FD equi-

librium equilibrium exists. Instead, above (below) of the upward (downward) sloping
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thick curve, only the D0 (D1) equilibrium exists. Finally, for αS = αR, an FD equilibrium

exists for any p � 1
2 . Note that ϕ does not affect the parameter values for which the

different types of equilibrium exist, and it is thus left unspecified for this figure.

Figure 1: Equilibrium characterization.

Our characterization exhibits five key properties. First, note that except under knife-

edge conditions, our statement guarantees a unique equilibrium. Uniqueness is attractive

for comparative statics purposes. The second key feature is that full disclosure is not al-

ways feasible. This is surprising at first, as information on average reduces disagreement

in beliefs by moving everyone’s beliefs towards the truth. The answer lies in the fact

that updating has two dimensions: The direction of updating of the prior and the size

of the implied shift in beliefs. In our setup, players both update in the same direction

after any given signal (no polarization), but they update with different intensities: An

extreme player heavily discounts a signal contradicting her prior bias (she considers it

wrong with high probability). The difference in updating-intensities can be large enough

to make posteriors more different than priors, for a given signal.

The third key feature is that more prior misalignment (if not too extreme) can generate

more disclosure, the (disclosure-) optimal sender prior being 1� αR. The optimal sender’s

prior can thus be very different from R’s prior but is always exactly as strong as R’s. R

and R’s optimal sparring partner are thus both different and similar, depending on the

dimension considered. Note that two aspects vary as a function of prior misalignment.

The first is the attractiveness of the status quo. The second is how differently players
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update on the basis of the same signal. As the difference in priors varies, the relative

strength of these two effects changes. Let p be intermediate, and consider the following

three cases, all featuring a putative FD equilibrium. Given small prior disagreement, the

status quo is very attractive and different priors imply slightly different updating. As a

consequence, one of the two signals increases disagreement. Given moderate prior dis-

agreement, the status quo is now quite unattractive but priors are still close enough that

updating is fairly similar. It follows that both signals decrease disagreement. Finally,

given large prior disagreement, the status quo is very unattractive but very different pri-

ors imply very different updating, so that one of the two signals increases disagreement.

To understand that the optimal sender prior is specifically 1� αR, consider the following

argument. For any αS, αR, p, at least one type of signal (either 0 or 1) leads to a decrease

in perceived (and actual) disagreement. This must be true, as we know from the work of

Kartik et al. that a hypothetical full disclosure equilibrium reduces perceived disagree-

ment in expectation. Next, note that if αS = 1� αR, the effect of a 1-signal disclosure on

disagreement is equivalent to the effect of a 0-disclosure. I.e.,

� jER[eαS j0 ]� eαR(0)j = � jER[eαS j1 ]� eαR(1)j

This is intuitive since priors are completely symmetric around 1
2 . This implies that if a

disclosure of one type of signal leads to a reduction of disagreement relative to the status

quo (which must be true by our first observation), then the disclosure of the other type

of signal should achieve this as well. Hence, full disclosure is achievable under any p for

αS = 1� αR.

The fourth key feature is that sufficiently conclusive information allows for full disclo-

sure. The intuition follows from considering the limit case of p = 1, in which any signal

trivially reduces disagreement. It follows that for p sufficiently high, this is also true.

Low signal quality thus triggers two types of costs for R; exogenous and endogenous (i.e.

strategic). The first is the lower informativeness of S’s signals and the second is the lower

informativeness of S’s disclosure policy.

The fifth key feature is that if equilibrium features partial disclosure, the signal that is

disclosed is the one that is congruent with the bias of the player whose prior is strongest.

The signal generating the largest disagreement is indeed the one that contradicts the prior
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bias of the most extreme player. For an intuition, consider the case where the two players

have opposite prior biases and let the most extreme player be very extreme and the other

player be very moderate (prior close to 1
2 ). The first player updates very little no matter

the signal, so that her posterior is virtually identical to her prior no matter the signal

observed. The moderate player instead updates significantly. Now, note that a signal

congruent with (in contradiction with) the extremist’s bias moves the moderate closer to

(away from) the extremist’s prior.

Within a simple random matching setup, the above fifth key feature naturally leads

to the implication that the more R’s prior is biased towards the wrong state, the less

likely she is to be exposed to the truth. Assume for example that R, whose prior αR

is publicly observed, faces a sender whose publicly observed prior is randomly drawn

from the uniform distribution on [0, 1]. In such a setup, R is less likely to be exposed

to a correct signal (i.e. one that is congruent with the true state), the more biased she is

towards the wrong state. Assume for example that ω = 1. Then by Proposition 1 the

ex-ante probability of R being exposed to a 1-signal (denoting by σ the signal obtained by

S) is

Pr[σ = 1]Pr[αS < α��S (p)] = pα��S (p) =
p2(1� αR)

αR + p(1� 2αR)
,

which is strictly decreasing in αR. So the more R is biased towards 0, the less likely she

is to observe a 1-signal.

Within a dynamic version of the above random matching scenario where R repeatedly

encounters senders over many periods, partial disclosure thus leads to very slow learning

(i.e. inertia in beliefs) if the state is not congruent with R’s extreme prior bias. Note that

R is however not naive. In a D0 or D1 equilibrium, no disclosure is interpreted as S

potentially holding information R’s bias and thus does give rise to a shift in beliefs. A

second observation is that the standard mechanism behind confirmation bias is arguably

reversed here. Confirmation bias is often assumed to be driven by selective information

search. Here, it is instead caused by the information suppliers.
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2.3 The hidden cost of political correctness

Can S’s attempt to minimize perceived disagreement be counter-productive from an ex

ante perspective, thereby inducing what could be termed a hidden cost of political cor-

rectness? In what follows, we address this question in two different ways, first from S’s

perspective in terms of perceived disagreement and then from a third party perspective in

terms of actual disagreement. Note that the ex ante evaluation of expected disagreement

in equilibrium requires specifying two aspects: The prior used to weight different possi-

ble signal realizations and the applied measure of ex post disagreement, either perceived

or actual.

First, from S’s perspective, can the (ex ante) expected perceived disagreement be higher

in (partial disclosure) equilibrium than it would be under full disclosure? In such a case,

S would prefer to commit to full disclosure. This question is answered in our next Propo-

sition.

Proposition 2 1. Let parameters be s.t. D0 is the unique equilibrium. Ex ante, S would strictly

prefer to commit to full disclosure if αS > αR. If αS < αR, she instead ex ante strictly prefers the

D0 equilibrium.

2. Let parameters be s.t. D1 is the unique equilibrium. Ex ante, S would strictly prefer to

commit to full disclosure if αS < αR. If αS > αR, she instead ex ante strictly prefers the D1

equilibrium.

S would thus ex ante prefer to commit to full disclosure if she is the most extreme

player. The intuition is as follows. In a partial disclosure equilibrium (e.g. D1), the omis-

sion of 0-signals has two countervailing effects. The upside is that S benefits from hiding

a 0-signal once she holds it. The downside is that when S holds no signal, R interprets si-

lence as a possible concealment of a 0-signal, which increases perceived disagreement rel-

ative to prior disagreement. The negative effect of equilibrium concealment overweighs

its positive effect if S is the most extreme. Recall that in the latter case, S omits signals

contradicting her bias in a partial disclosure equilibrium. The key idea is that R places

a higher weight on the state corresponding to the omitted signal than does S, leading

R to overweight (in S’s eyes) the probability that such a signal is held (and omitted) by
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S, thereby inflating perceived disagreement after a non-disclosure in a partial disclosure

equilibrium. Instead, on the equilibrium path of the full disclosure equilibrium, R’s prior

does not affect her ex post perception of S’s posterior.

A second key question is whether from the perspective of a third party endowed with

a prior ᾱ, the (ex ante) expected actual disagreement can be higher in equilibrium than it

would be under FD. I.e., would such a third party want to impose full disclosure if aiming

at minimizing expected actual disagreement? Note that actual disagreement is different

from perceived disagreement. The actual disagreement given that S holds signal σ and

discloses d is jeαS(σ)� eαR(d)j (where eαR(d) is a function of R’s belief about S’s disclosure

strategy). In what follows, if either αi = bα and αj 6= bα or instead αi < bα < αj, we say that

S and R’s priors are weakly on different sides of bα. Otherwise, they are said to be on the

same side of bα.

Proposition 3 Let parameters be s.t. there exists no FD equilibrium. In the eyes of a third party

with prior bα 6= αR, the expected actual disagreement:

1. Is strictly larger in equilibrium than under FD if one of the following conditions holds:

a) S and R’s priors are (weakly) on different sides of bα,

b) R’s prior is further away from bα than is S’s prior.

2. Is strictly smaller in equilibrium than under FD if the following two conditions hold true

simultaneously:

a) S and R’s priors are on the same side of bα,

b) S’s prior is further away from bα than R’s prior and it is sufficiently extreme.

Part 1 finds that equilibrium concealment can indeed be counterproductive while part

2 instead identifies conditions under which it is helpful. A general intuition behind our

results is that the third party (TP) expects new information to lead S and R’s beliefs to

converge to her prior. The disclosure strategy affects only the speed of convergence of R’s

beliefs, as S always observes the original signal whatever the disclosure strategy.

In Point 1.a), S and R’s priors are on different sides of bα. Here, given that S and R’s

beliefs move closer to bα, they must also be moving closer to each other. Hence TP would

prefer that they learn as fast as possible and would thus prefer FD over partial revelation.

The second case is that αS and αR on the same side of bα, but R is more extreme. An
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instance of this is the case of 1
2 � bα < αS < αR. Again TP expects S and R to converge to

her prior bα, i.e. that both decrease. R will move towards S (since R’s prior decreases) but S

will simultaneously move away from R (since S’s prior also decreases). In consequence,

TP would prefer to speed up R’s convergence by giving her full information. Point 2

describes the case where αS and αR on the same side of bα, but R is more extreme. An

instance of this is the case of 1
2 � bα < αR < αS. Here, both players’ belief decreases.

But decreasing R’s belief moves it away from S’s. So TP would prefer to slow down R’s

learning and thus prefers partial disclosure.

2.4 Strangers’ talk

Conversations often take place between parties who do not know each others’ priors. Is

such uncertainty beneficial for disclosure? The following Proposition provides an answer

to the question for two cases.

Proposition 4 a) If both priors are private knowledge and drawn from the same symmetric dis-

tribution on [0, 1], there exists a full disclosure equilibrium.

b) If S’s prior is commonly known and sufficiently close to 1
2 while that of R is drawn from a

symmetric distribution over [0, 1], there exists a full disclosure equilibrium.

Point a) shows that two-sided uncertainty about priors is beneficial to disclosure if the

prior distribution is symmetric. This provides an argument for not encouraging revela-

tion of information about respective biases. Point b) shows that two-sided uncertainty

is not strictly necessary to ensure full revelation. The latter is compatible with S’s prior

being known, if S is approximately unbiased and R’s prior is symmetrically distributed.

While uncertainty about prior bias is helpful, one might worry that it may be elimi-

nated by communication about biases prior to disclosure. Players might be stuck in an

equilibrium in which credible communication about priors gives rise to partial revelation

at the disclosure stage. We here study an extended version of our disclosure game fea-

turing communication about priors and explicit preferences of R. Assume that S’s prior

is known and equal to 1
2 while R’s prior is privately observed. Assume that S minimizes

perceived disagreement whereas R wants to learn the state, her utility function being
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given by �(a� ω)2, where a 2 [0, 1] is the action chosen by R after S’s disclosure. The

disclosure stage is preceded by a communication stage in which R sends a cheap talk

message taken from the set [0, 1], potentially providing information about her prior. Note

that given αS and p, there are three sets of values of αR giving rise to respectively the D0,

D1 and FD equilibrium. We call essentially truthful an equilibrium in which R truthfully

reveals to which of these three set αR belongs. Our next Proposition presents a negative

result concerning such equilibria.

Proposition 5 Consider the extended disclosure game. Suppose that the set of possible priors of

R contains two priors αR and α0R that imply different equilibria in the one-shot disclosure game.

There exists no equilibrium featuring essentially truthful communication by R.

Note first that if the distribution of R’s prior contains a value such that full disclo-

sure is incentive compatible for S, any R-type would trivially want to announce this prior

value in a putative equilibrium featuring essentially truthful communication. Consider

now the case where the set of possible priors only contains values that trigger respectively

D0 and D1. The key is that R’s preference over partially revealing experiments reverses

her prior bias as follows: Given αR <
1
2 , R strictly prefers D0-communication over D1-

communication (and vice versa given αR >
1
2 ). Note furthermore that given αS =

1
2 , R is

always more extreme than S so that partial disclosure after essentially truthful commu-

nication by R implies that S only discloses signals congruent with R’s prior bias. R thus

trivially has an incentive to lie about her bias.

3 Extensions

The first two subsections of this section examine the robustness and micro-foundability of

the setup examined in the main section. The third subsection considers a game of costly

collective acquisition of public signals by parties exhibiting disagreement aversion.
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3.1 Continuous signals

We now show that our characterization carries over qualitatively to the case of a sig-

nal structure with continuous signals satisfying the marginal likelihood ratio property

(MLRP). Assume that S’s signal is drawn from an interval [s, s]. Given state ω 2 f0, 1g,

the signal s received by S is distributed according to F(sjω) with continuous and differ-

entiable density f (sjω). Assume that d
ds

f (sj1)
f (sj0) > 0 (MLRP), meaning that a higher signal

implies a higher conditional probability of state 1. Assume furthermore that extreme sig-

nals s and s are perfectly revealing, i.e., f (sjh)
f (sjl) = 0 for s = s and = ∞ for s = s. Upon

learning s, the updated belief of i is

eαi(s) =
αi f (sjl)

αi f (sjl) + (1� αi) f (sjh) =
αi

αi + (1� αi)
f (sjh)
f (sjl)

,

which is decreasing in s. Note that there exists a threshold signal s̃ 2 (s, s) such that

whatever αi 2 (0, 1), it holds true that eαi(s) Q αi for s R s̃. Signal s̃ satisfies f (s̃jh) = f (s̃jl)
and we call it the uninformative signal. We say that signal s > (<)s̃ indicates state 1(0).

We say that signal s > (<)s̃ is congruent with j’s prior bias if αj < (>)1
2 . We call the

above setup the continuous signals environment. We call simple disclosure equilibrium (SDE)

an equilibrium featuring two thresholds s < s1 � s2 < s such that S discloses s if and

only if s � s1 or s � s2. We obtain the following equilibrium characterization.

Proposition 6 Assume the continuous signals environment:

1. There always exists an SDE and any equilibrium is an SDE.

2. If αS 2 fαR, 1� αRg there is a unique SDE featuring s1 = s2, i.e. full disclosure. If

αS /2 fαR, 1� αRg , then any SDE features s1 < s2. Furthermore, all signals congruent with the

bias of the player with the most extreme prior are disclosed.

3. If there exist multiple equilibria, then they are ordered in terms of Blackwell informativeness.

When ϕ increases, the most Blackwell informative equilibrium becomes strictly more Blackwell

informative.

The fundamental qualitative features of equilibrium echo those arising under binary

signals. Only signals that are congruent with the prior of the most extreme player are fully
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revealed. Furthermore, with αS = 1� αR, equilibrium features full disclosure, implying

that increasing prior misalignment can be helpful.

We now reexamine the issue of the hidden cost of political correctness already studied

for the case of binary signals. Our original results carry over essentially identically to the

continuous signals setup.

Proposition 7 Assume the continuous signals environment:

1. Let parameters be s.t. the equilibrium non-disclosure interval contains signals indicating

state 1. S would strictly prefer to commit to full disclosure ex ante if αS > αR. If αS < αR, she ex

ante strictly prefers any equilibrium over full disclosure.

2. Let parameters be s.t. the equilibrium non-disclosure interval contains signals indicating

state 0. S would strictly prefer to commit to full disclosure ex ante if αS < αR. If αS > αR, she ex

ante strictly prefers any equilibrium over full disclosure.

Proposition 8 Assume the continuous signals environment. All the statements in Proposition 3

apply.

3.2 Instrumental disagreement aversion

S’s aversion to perceived disagreement might stem from the fact that it adversely affects

subsequent interaction with R. We here consider two-stage games in which S may dis-

close her private information in stage 1 while in stage 2, R makes a decision which is

payoff-relevant to both S and R and which depends on R’s first- and second-order be-

liefs. We consider two setups matching this description in what follows. In both games

considered, stage 1 essentially coincides with the binary disclosure problem considered

in our main setup.

3.2.1 Delegated decision making

An uninformed principal (R) faces a potentially informed agent (S), both being risk neu-

tral. The principal faces a problem and there are two potential approaches for tackling it,
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named 0 and 1. One and only one of these actually can solve the problem, but it is a priori

unknown which it is. We call the good approach (0 or 1) the state. With probability ϕ, the

agent holds information concerning the state in the form of a binary signal of precision p.

If the problem is tackled, this yields a payoff of (1+ τ) to the principal, where τ 2 [0, 1].

If not, the principal’s payoff is 0. The commonly known prior probability attached by

i 2 S, R to state 1 is denoted βi.

The game has two stages. Stage 1 is the disclosure game studied in the main section.

In stage 2, after observing S’s disclosure, R decides whether or not to attempt to tackle

the problem by hiring S. If R is not hired, the problem remains untackled and R simply

obtains a payoff of 0. If S is hired, the contract proposed by S specifies a reward of 1 if

the agent tackles the problem successfully (this outcome being observable). By hiring S,

R incurs a privately observed and random (transaction) cost c, which is drawn from a

uniform distribution on [0, 1]. Let I(k) be an indicator function, where k = 1(0) indicates

success (failure), I(1) = 1 and I(0) = 0. Conditional on S being hired and outcome k,

the payoff of R is I(k)τ � c. The agent S has in total a unit of work time available and

decides freely how much time to dedicate to each approach if hired. She incurs a cost

�1
2 e2

r of working er units of time on project r 2 f1, 2g. The good approach is successful

with probability e if e units of time are dedicated to it. The bad approach leads to failure

for sure. Conditional on hiring, efforts e0 and e1 and outcome k, the payoff obtained by R

is I(k)� 1
2 e2

0 � 1
2 e2

1. If S is not hired, her payoff is 0.

An equilibrium featuring the disclosure strategy FD is called an FD-equilibrium. We

refer to the disclosure game studied in the main section of the paper as the simple disclo-

sure game. We obtain the following result.

Proposition 9 There exists an FD-equilibrium if and only if there exists an FD-equilibrium in

the simple disclosure game.

We prove the statement in what follows, proceeding by backwards induction. We first

consider the optimal action choice of the agent if hired. Let eβi(σ) denote the posterior

probability assigned by i to state 1 conditional on signal σ 2 f0, 1, ∅g, in a putative full

disclosure (FD) equilibrium, where ∅ stands for no signal. Given posterior belief eβS, the
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agent solves

max
e1,e2

�eβSe1 + (1� eβS)e2 �
1
2
(e1)

2 � 1
2
(e2)

2
�

s.t. e1 + e2 � 1.

It is straightforward that the agent’s optimal total effort will equal 1. Otherwise, in-

creasing one of the two effort levels while keeping the other constant yields an increase

in revenue. The maximization problem thus rewrites as:

max
x2[0,1]

�eβSx+ (1� eβS)(1� x)� 1
2
(1� x)2 � 1

2
x2
�

,

The first order condition reads 2eβS � 2x� = 0, yielding x� = eβS. The agent’s opti-

mal effort choice is thus to dedicate to each project a share of her total time equal to the

probability that she assigns to the project being good.

We now consider the principal’s hiring decision after observing the disclosure d 2
f0, 1, ∅g. If she decides to hire, the principal obtains an expected payoff of τΠ(eβS(d), eβR(d)),

where

Π(eβS(d), eβR(d)) = eβR(d)eβS(d) + (1� eβR(d))(1� eβS(d)).

She thus hires if and only if c is smaller than the above (i.e. iff hiring yields a net

benefit). We now examine the disclosure choice of the agent if she holds a signal σ 2
f0, 1g. Let:

∆σ(βS, βR) = Π(eβR(σ), eβS(σ))�Π(βR, βS), σ 2 f0, 1g.

Note that ∆σ(βS, βR)τ is thus the increase in R’s subjective expected payoff from hiring

occasioned by S disclosing σ in a putative FD equilibrium. Clearly, in a putative full

disclosure equilibrium, S has no strict incentive to deviate when holding a σ-signal if and

only if ∆σ(βS, βR) � 0. In words, S discloses her signal only if the disclosure increases

the probability that she is hired (and thereby obtains a positive utility). Now, it is easily

shown that ∆0(βS, βR) and ∆1(p, βS, βR) are both positive if and only if

p � max
� �βSβR

βS + βR � 2βSβR � 1
,

βS + βR � βSβR � 1
βS + βR � 2βSβR � 1

�
.

It can be verified that this condition is equivalent to the one appearing in Proposition

1.
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3.2.2 Collective decision-making by compromise

Consider the following simple game of decision making by compromise. In stage 2 (pol-

icy stage), each agent submits a proposal xi 2 R (e.g. a draft of a law). The final policy x

that is implemented is the compromise x = 1
2 (xS + xR). Let βi denote the probability that

i attaches to state 1 at the beginning of stage 2. Agent’s i policy-related utility given final

policy x and belief βi is given by � (βi � x)2 , so that i’s ideal policy equals βi. Given βi,

agent i has a cost of submitting an untruthful proposal xi 6= βi described by the lying cost

function c(βi, x) = 1
2 (βi � xi)

2. A moderate party is thus for example intrinsically reluc-

tant to submit an extreme proposal just to get its way in negotiations. We now show that

S’s payoff in equilibrium, at the beginning of the policy proposal stage, is decreasing in

R’s perception of disagreement in beliefs. The reason being that perceived disagreement

encourages R (and as a consequence also S) to strategically distort her proposal, thereby

wastefully inflating lying costs. S’s problem in stage 2 is:

min
xS

(�
βS �

xS + xR

2

�2

+
1
2
(βS � xS)

2

)
,

which implies xS =
4βS�xR

3 . Similarly, R solves

min
xR

(
ER

"�
βR �

xS + xR

2

�2
#
+

1
2
(βR � xR)

2

)
,

implying xR =
4βR�ER[xS]

3 . In equilibrium, we thus have

xS =
8βS � 3βR + ER [βS]

6
, xR =

3βR � ER [βS]

2
.

Plugging the above quantities into S’s payoff function, we may conclude that S obtains

the following expected payoff in stage 2, given the profile of beliefs fβS, βR, ER [βS]g:

� 3
72
(2(βS � βR) + (ER [βS]� βR))

2 .

S’s expected payoff at the beginning of stage 2 is thus negatively affected by R’s per-

ceived disagreement (ER [βS]� βR). Note that actual disagreement also enters the payoff

function, so that S now not only wants to reduce perceived ex-post disagreement but is
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also averse to misleading R. One can use backward induction to solve for S’s equilib-

rium disclosure choice in stage 1. In Figure 2 below, FD is feasible above the solid black

curve. Below (strictly), only either D0 or D1 is feasible. We assume αS = .55. It can be

shown formally that for any αR, p, the obtained characterization always exhibits the same

qualitative features as in the present example. Increasing prior misalignment can thus be

locally beneficial to disclosure, which echoes our main characterization.

Figure 2: Partial equilibrium characterization.

Our next Proposition provides a partial formal description of the qualitative features

of the above figure. In what follows, we call an equilibrium featuring the full disclosure

an FD-equilibrium. Define the following functions:

α1
R(αS) =

1
2
� 1

6

p
3
q
�4αS + 4(αS)2 + 3,

α2
R(αS) =

αS

3
,

α3
R(αS) =

αS

3
+

2
3

,

α4
R(αS) =

1
6

p
3
q
�4αS + 4(αS)2 + 3+

1
2

.

It can be shown that for any αS 2 (0, 1) ,

0 < α1
R(αS) < α2

R(αS) < αS < α3
R(αS) < α4

R(αS) < 1.

We may now state the following.

Proposition 10 Fix p 2 (1
2 , 1).

a) For αR sufficiently close to α1
R(αS) or αS or α4

R(αS), there exists an FD equilibrium.

b) For αR sufficiently close to α2
R(αS) or to α3

R(αS) , there exists no FD equilibrium.
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A proof of the statement is available upon request. The above Proposition establishes

a sense in which increasing the difference in priors can be (locally) beneficial, thereby

echoing our main characterization.

3.3 Joint observation of public signals

3.3.1 Basic setup and result

We here study the following simple game of voluntary and costly collective exposure to a

public signal. Both players’ utility function contains the loss from perceived disagreement

(as in (1)) minus an extra i.i.d. cost of participation drawn from the uniform distribution

on [0, 1]. In stage 1, each player decides whether or not to participate after observing

her cost ci of participating. If both decide to participate, they observe a randomly drawn

public binary signal which is correct with probability p. If at least one of the agents opts

against participating, the game ends: No signal is observed and players incur no cost. We

call agents x and y, where agent z 2 fx, yg assigns prior probability z to state 0 and x > y.

Note that the environment is essentially non-strategic: Each player faces a simple deci-

sion problem and prefers to participate if and only if the expected reduction in perceived

disagreement, conditional on joint observation of the signal, is larger than the private cost

ci of participating.

The following expression measures the ex post difference in beliefs conditional on

each possible public signal:

Di(x, y, p) = P(ω = 0 jσ = i, x )� P(ω = 0 jσ = i, y ), for i 2 f0, 1g .

From the perspective of agent z 2 fx, yg , the expected difference in beliefs conditional

on joint exposure to a signal of quality p is thus given by:

Λz(x, y, p) = P(σ = 0 jz )D0(x, y, p) + P(σ = 1 jz )D1(x, y, p).

Note that Λz(x, y, 1
2) is simply the prior disagreement. The value of a signal of quality

p to player z 2 fx, yg is thus:

Vz(x, y, p) = Λz(x, y, p)�Λz
�

x, y,
1
2

�
.
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Clearly, player z decides to participate if and only if cz � Vz(x, y, p). We obtain the

following characterization of the value of participating for each player.

Proposition 11 1. For given x, Vx(x, y) � 0 for any y, while Vx(x, y) = 0 if and only if

y 2 f0, x, 1g.

2. For given x, Vx(x, y) is single peaked in y on (0, x) and on (x, 1).

3. For given x, Vx(x, y) reaches its maximum for y = y� 2 (0, 1/2) if and only if x � 1/2.

Point 1 states that from the perspective of both players, an informative public signal

reduces perceived disagreement in expectation. Note that the marginal value of partici-

pating is trivially 0 if parties share the same prior, or if the prior of one party equals 0 or 1

(in which case the latter party does not update). Point 2 states that a player’s willingness

to participate is maximized when her opponent has a moderately different prior. Some

degree of heterogeneity thus stimulates signal acquisition. Point 3 states that a player’s

optimal conversation partner (in the sense of maximizing the participation incentive) is

always biased in the opposite direction.

Next, consider a social planner who designs a two-members committee with the ob-

jective of maximizing the probability that a signal is acquired by the committee. We can

show that this probability is maximized if the experts have symmetric (and non-radical)

priors.

Proposition 12 There is a unique pair fx�, y�g maximizing the probability of signal acquisition.

For this pair, it holds true that y� = 1� x� and x� /2 f0, 1/2, 1g.

3.3.2 A dynamic matching game

Building on our basic exposure game, we provide a numerical analysis of a multi-period

matching game. There are N agents, where N is very large. There are T periods, where T

is very large. At t = 0, each agent’s prior is randomly drawn from a uniform distribution

on [0, 1]. In each period, agents are randomly matched in pairs. Period-t priors in each

pair are observed. Agents have perfect recall of the history of signals that they have

observed but do not observe other peoples’ histories. Each participant decides whether

to talk at fixed cost c per player. #
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We make two simplifying assumptions that embody forms of myopia. First, a player

aims only at maximizing the perceived disagreement of the current (period-t) match-

ing partner. Second, an agent, when observing the prior of the agent with whom she

is matched at the beginning of period t, does not update her own prior on the basis of

this other agent’s prior. A fully rational player would instead do so: in a dynamic match-

ing framework where agents’ beliefs evolve over time as a function of the information to

which they are exposed, the belief (i.e. the prior) of an agent at the beginning of period

t contains information about the history of signals that this person has been exposed to

over time.

If (and only if) both members of a pair decide to talk, a signal of quality p is generated.

Does such a simple learning process converge, and if so, to what distribution of beliefs?

Figure 3, below, provides the results from a simulation of the game with the following

parameter values: N = 106 , T = 200, p = .7, c = 0.04. We set ω = 0. The process always

converges to the asymptotic distribution of posteriors appearing in the figure. The share

of pairs talking to each other converges to 0 and beyond some period, there is no further

change in the distribution of beliefs.

Figure 3: Asymptotic population distribution of beliefs.

In the asymptotic distribution, all agents are contained within three separate intervals

featuring beliefs respectively close to 0, close to 1
2 and close to 1. A first property is that

virtually no one converges to the true belief of 0. Second, a large share of people are stuck

with wrong beliefs. Finally, moderately biased types are to a large extent washed out .

Society is thus arguably more polarized than at t = 0. The intuition for the stability of the

asymptotic distribution is as follows. Nobody is willing to talk to extremists, who are too
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extreme to be convinced. And agnostic individuals do not want to talk to other agnostics.

As a result, any pair formed by picking subjects from the three non-empty categories of

agents is such that at least one agent is unwilling to talk. It follows that societal learning

stops.

4 Conclusion

This paper introduces a new type of belief-dependent preferences reflecting an aversion to

perceived disagreement. We identify three main implications of disagreement aversion.

First, the sender withholds information that contradicts the prior of the party with the

most extreme prior belief. Second, larger differences in priors can imply better incentives

for disclosure and joint information acquisition. Finally, avoiding perceived disagreement

can be counterproductive from ex ante point of view, thereby revealing a hidden cost of

"political correctness". Importantly, aversion to perceived disagreement endogenously

arises from strategic concerns in a variety of environments. Further work building on

the assumption of disagreement-aversion might provide more insight into the causes and

consequences of belief polarization in society.



26

References

Acemoglu, D., V. Chernozhukov, M. Yildiz, et al. (2007). Learning and disagreement in

an uncertain world. Technical report, Collegio Carlo Alberto.

Andreoni, J. and T. Mylovanov (2012). Diverging opinions. American Economic Journal:

Microeconomics 4(1), 209–232.

Asch, S. E. (1955). Opinions and social pressure. Readings about the social animal 193, 17–26.

Baliga, S., E. Hanany, and P. Klibanoff (2013). Polarization and ambiguity. The American

Economic Review 103(7), 3071–3083.

Banerjee, A. and R. Somanathan (2001). A simple model of voice. The Quarterly Journal of

Economics 116(1), 189–227.

Battigalli, P. and M. Dufwenberg (2007). Guilt in games. The American economic re-

view 97(2), 170–176.

Battigalli, P. and M. Dufwenberg (2009). Dynamic psychological games. Journal of Eco-

nomic Theory 144(1), 1–35.

Bénabou, R. (2012). Groupthink: Collective delusions in organizations and markets. The

Review of Economic Studies, rds030.

Buechel, B., T. Hellmann, and S. Klößner (2015). Opinion dynamics and wisdom under

conformity. Journal of Economic Dynamics and Control 52, 240–257.

Bursztyn, L., G. Egorov, and S. Fiorin (2017a). From extreme to mainstream: How social

norms unravel. Technical report, National Bureau of Economic Research.

Bursztyn, L., G. Egorov, and S. Fiorin (2017b). From extreme to mainstream: How social

norms unravel. Technical report.

Che, Y.-K. and N. Kartik (2009). Opinions as incentives. Journal of Political Economy 117(5),

815–860.



27

Crawford, V. P. and J. Sobel (1982). Strategic information transmission. Econometrica:

Journal of the Econometric Society, 1431–1451.

Dandekar, P., A. Goel, and D. T. Lee (2013). Biased assimilation, homophily, and the

dynamics of polarization. Proceedings of the National Academy of Sciences 110(15), 5791–

5796.

Dixit, A. K. and J. W. Weibull (2007). Political polarization. Proceedings of the National

Academy of Sciences 104(18), 7351–7356.

Dufwenberg, M. and G. Kirchsteiger (2004). A theory of sequential reciprocity. Games and

economic behavior 47(2), 268–298.

Ely, J., A. Frankel, and E. Kamenica (2015). Suspense and surprise. Journal of Political

Economy 123(1), 215–260.

Geanakoplos, J., D. Pearce, and E. Stacchetti (1989). Psychological games and sequential

rationality. Games and Economic Behavior 1, 60–79.

Gentzkow, M. and J. M. Shapiro (2006). Media bias and reputation. Journal of political

Economy 114(2), 280–316.

Golman, R., D. Hagmann, and G. Loewenstein (2017). Information avoidance. Journal of

Economic Literature 55(1), 96–135.

Golman, R., G. Loewenstein, K. O. Moene, and L. Zarri (2016). The preference for belief

consonance. The Journal of Economic Perspectives 30(3), 165–187.

Golub, B. and M. O. Jackson (2012). How homophily affects the speed of learning and

best-response dynamics. The Quarterly Journal of Economics 127(3), 1287–1338.

Kajackaite, A. and U. Gneezy (2015). Lying costs and incentives. Technical report, Mimeo.

Kartik, N., F. X. Lee, and W. Suen (2015). Does competition promote disclosure? Technical

report.

Kartik, N. and E. Zanardo (2016). When does information reduce disagreement?



28

Khalmetski, K. and D. Sliwka (2017). Disguising lies-image concerns and partial lying in

cheating games. Technical report.

Milgrom, P. R. (1981). Good news and bad news: Representation theorems and applica-

tions. The Bell Journal of Economics 12(2), 380–391.

Morris, S. (2001). Political correctness. Journal of political Economy 109(2), 231–265.

Ottaviani, M. and P. N. Sørensen (2006a). Reputational cheap talk. The Rand journal of

economics 37(1), 155–175.

Ottaviani, M. and P. N. Sørensen (2006b). The strategy of professional forecasting. Journal

of Financial Economics 81(2), 441–466.

Prendergast, C. (1993). A theory of "yes men". The American Economic Review, 757–770.

Prentice, D. A. and D. T. Miller (1993). Pluralistic ignorance and alcohol use on campus:

some consequences of misperceiving the social norm. Journal of personality and social

psychology 64(2), 243.

Rabin, M. (1993). Incorporating fairness into game theory and economics. American Eco-

nomic Review 83, 1281–1302.

Sethi, R. and M. Yildiz (2012). Public disagreement. American Economic Journal. Microeco-

nomics 4(3), 57.

Sobel, J. (1985). A theory of credibility. Review of Economic Studies 52, 557–573.

Sobel, J. (2013). Giving and receiving advice. In M. Acemoglu, D. Arellano and E. Dekel

(Eds.), Advances in Economics and Econometrics: Tenth World Congress, pp. 305–341. New

York: Cambridge University Press.

Zanardo, E. (2017). How to measure disagreement? Technical report, Mimeo., Columbia

University.



29

5 Technical Appendix

5.1 Appendix I: Disclosure with binary signals (Proof of Proposition 1)

Proposition 1 follows from a set of Lemmas, which are stated and proved in what follows.

For Lemmas I.B to I.E, we assume αR <
1
2 , which is wlog given the symmetric nature of

the model. For simplicity, we occasionally use the notation x = αS and y = αR.

Lemma I.A Let D(σ) = jeαS(σ)� eαR(σ)j , for σ 2 f0, 1, ∅g , where ∅ stands for "S holds

no-signal".

a) There exists no equilibrium in which S always omits to disclose with probability one.

b) If there exists no signal σ� 2 f0, 1g s.t. D(σ�) = D(∅), then there exists no equilibrium

in which S uses a mixed strategy.

Proof:

Step 1 This proves Point a). We here prove that there cannot be an equilibrium in

which S omits to disclose with positive probability after both signals. Assume that S

mixes between no disclosure and disclosure given both σ = 0 and σ = 1. Then, R’s

perceived disagreement after no disclosure (denoted D(nd)), satisfies

D(nd) = q1D(1) + q2D(0) + q3D(∅),

where q1, q2, q3 2 (0, 1) and q1 + q2 + q3 = 1. Note that such an equilibrium requires

D(nd) � D(0) and D(nd) � D(1). Note that either D(1) or D(0) is strictly smaller than

the two remaining elements in fD(0), D(1), D(∅)g . It follows that at least one element of

fD(0), D(1)g is strictly smaller than D(nd), implying a strict deviation incentive.

Step 2 From step 1, we know that mixing between disclosure and non-disclosure can-

not occur for both signals and can thus happen at most for one signal σ� 2 f0, 1g. Then,

D(nd) = qD(σ�) + (1� q)D(∅). Such an equilibrium requires the indifference condition

D(σ�) = D(nd). It follows that such an equilibrium cannot exist if there is no σ� 2 f0, 1g
s.t. D(σ�) = D(∅). Combining the results proved in steps 1 and 2, Point b) is hereby

proved. �

Lemma I.B Let y < 1
2 . Denote by ϑi(x, y, p) the difference between ex ante and ex post

perceived disagreement given disclosure of a signal σ, for σ 2 f0, 1g.
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a) If x � 1� y, then ϑ0(x, y, p) � (>)0 iff p � (>)P0(x, y), where P0(x, y) 2
h

1
2 , 1
i

. If

instead x > 1� y, then ϑ0(x, y, p) > 0 for any p � 1
2 .

b) If x < 1� y, then ϑ1(x, y, p) > 0 for any p � 1
2 . If instead x � 1� y, then ϑ1(x, y, p) �

(>)0 if and only if p � (>)P1(x, y), where P1(x, y) 2
h

1
2 , 1
i

.

c) P0(1 � y, y) = P1(1 � y, y) = 1
2 and P0(0, y) = P1(1, y) = 1. Also, ∂P0(x,y)

∂x < 0,
∂P0(x,y)

∂y < 0, ∂P1(x,y)
∂x > 0 and ∂P1(x,y)

∂y > 0.

Proof:

Step 0 Assume a putative full-disclosure equilibrium. We prove a sequence of sub-

statements which together yield the above Lemma.

Step 1 This proves a) and part of c). Note that

ϑ0(x, y, p) = (2p� 1)
(x� y) (p+ x+ y� px� py� xy+ 2pxy� 1)

(p+ x� 2px� 1) (p+ y� 2py� 1)
.

Solving

p+ x+ y� px� py� xy+ 2pxy� 1 = 0

yields the solution

p = P0(x, y) � x+ y� xy� 1
x+ y� 2xy� 1

.

Note that

∂P0(x, y)
∂x

= y
y� 1

(x+ y� 2xy� 1)2
< 0,

∂P0(x, y)
∂y

= x
x� 1

(x+ y� 2xy� 1)2
< 0.

P0(x, y) is thus a decreasing function of x. Solving P0(x, y) = 1
2 yields x = 1� y. In

other words, it holds true that P0(x, y) < 1
2 if y > 1� x and P0(x, y) � 1

2 if y � 1� x. Note

also that P0(0, y) = y�1
y�1 = 1.

Step 2 This proves b) and part of c). Note that

ϑ1(x, y, p) = � (2p� 1)
(x� y) (px� p+ py+ xy� 2pxy)
(p+ x� 2px) (p+ y� 2py)

.

Solving

px� p+ py+ xy� 2pxy = 0
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yields the solution:

p = P1(x, y) � �x
y

x+ y� 2xy� 1
.

Note that

∂P1(x, y)
∂x

= �y
y� 1

(x+ y� 2xy� 1)2
> 0,

∂P1(x, y)
∂y

= �x
x� 1

(x+ y� 2xy� 1)2
> 0.

P1(x, y) is thus an increasing function of x. Solving P1(x, y) = 1
2 yields x = 1� y. In

other words, it holds true that P1(x, y) � 1
2 if x � 1� y and P1(x, y) > 1

2 if x > 1� y. Note

also that P1(1, y) = � y
1+y�2y�1 = 1. �

Lemma I.C Let αR <
1
2 .

a) Given αS 2 fαR, 1� αRg, the FD equilibrium exists.

b) Let αS /2 fαR, 1� αRg. If αS 2
�

α�S(αR, p), α��S (αR, p)
	

, then the FD equilibrium exists.

c) Let αS /2 fαR, 1� αRg. The unique equilibrium is FD if αS 2
�
α�S(αR, p), α��S (αR, p)

�
.

Proof:

Step 0 For fixed αR, P0(αS, αR) and P1(αS, αR) are functions of one variable (αS) map-

ping into values of p 2 [0, 1] , and are both trivially invertible. For fixed αR, define

α�S(αR, p) as the inverse function of P0(αS, αR) and α��S (αR, p) as the inverse function of

P1(αS, αR). For fixed αR, these map from values of p into values of αS. We have:

α�S(αR, p) � P�1
0 (p, αR) =

(1� αR)(1� p)
1� p+ αR(2p� 1)

,

α��S (αR, p) � P�1
1 (p, αR) =

p(1� αR)

αR + p(1� 2αR)
.

Step 1 This proves Point a). If αS = αR, simply note that ex post perceived disagree-

ment always equals zero, just as the ex ante perceived disagreement. Consider now the

case of αS = 1� αR. Lemma I.B states that for any p � 1
2 , in a putative FD equilibrium, S

weakly prefers disclosing given any signal.

Step 2 This proves Point b). It follows from Lemma I.B that for any signal, S weakly

favours disclosing.
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Step 3 This proves Point c). It follows from Lemma I.B that in the putative FD equi-

librium, S strictly favors disclosing any signal. Formally, for every σ� 2 f0, 1g we have

D(σ�) < D(∅). The FD equilibrium thus exists as S has no deviation incentive. Further-

more, Lemma I.A implies that this is the only equilibrium. �

Lemma I.D Let y � 1
2 . There exists a D1-equilibrium if and only if x � 1� y and p �

P0(x, y).

Proof:

Step 0 Assume a putative D1-equilibrium. We prove a sequence of substatements

which together yield the above Lemma. Denote by fi(x, y, p, ϕ) the difference between ex

ante and ex post perceived disagreement given disclosure of an i-signal, for i 2 f0, 1g.

Step 1 When holding a 0-signal, S should prefer to omit disclosing. Note that:

f0(x, y, p, ϕ) �0@ �
ϕ(yp+(1�y)(1�p))

ϕ(yp+(1�y)(1�p))+(1�ϕ)

� �
xp

xp+(1�x)(1�p)

�
+
�

(1�ϕ)
yϕp+(1�y)ϕ(1�p)+(1�ϕ)

�
x

1A
�
�

y(ϕp+ 1� ϕ)

y(ϕp+ 1� ϕ) + (1� y)(ϕ(1� p) + 1� ϕ)

�
�
�

xp
xp+ (1� x)(1� p)

� yp
yp+ (1� y)(1� p)

�
,

which simplifies to

(ϕ� 1) (2p� 1)
(x� y) (p+ x+ y� px� py� xy+ 2pxy� 1)

(p+ x� 2px� 1) (p+ y� 2py� 1) (pϕ+ yϕ� 2pyϕ� 1)
.

Solving for f0(x, y, p, ϕ) = 0, the (unique) solution is given by p = P0(x, y). We may

state that f0(x, y, p, ϕ) � 0 if and only p � P0(x, y).
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Step 2 After a 1-signal, S should prefer to disclose. Note that:

f1(x, y, p, ϕ) �0@ �
ϕ(yp+(1�y)(1�p))

ϕ(yp+(1�y)(1�p))+(1�ϕ)

� �
xp

xp+(1�x)(1�p)

�
+
�

(1�ϕ)
yϕp+(1�y)ϕ(1�p)+(1�ϕ)

�
x

1A
�
�

y(ϕp+ 1� ϕ)

y(ϕp+ 1� ϕ) + (1� y)(ϕ(1� p) + 1� ϕ)

�
�
�

x(1� p)
x(1� p) + (1� x)p

� y(1� p)
y(1� p) + (1� y)p

�
.

The argument is in two steps. Define the following function:

ef1(x, y, p, ϕ)

�

0@ �
ϕ(yp+(1�y)(1�p))

ϕ(yp+(1�y)(1�p))+(1�ϕ)

� �
xp

xp+(1�x)(1�p)

�
+
�

(1�ϕ)
yϕp+(1�y)ϕ(1�p)+(1�ϕ)

�
x

1A
�
�

y(ϕp+1�ϕ)
y(ϕp+1�ϕ)+(1�y)(ϕ(1�p)+1�ϕ)

�
� (x� y) ,

which simplifies to

�ϕ (2p� 1)
(x� y) (p+ x+ y� px� py� xy+ 2pxy� 1)
(p+ x� 2px� 1) (pϕ+ yϕ� 2pyϕ� 1)

.

Note that this expression is positive for any p � P0(x, y) and recall that P0(x, y) > 1
2

iff x < 1� y. Note finally that given x < 1� y,

(x� y) >
x(1� p)

x(1� p) + (1� x)p
� y(1� p)

y(1� p) + (1� y)p
.

We may thus conclude that a fortiori, for any p � P0(x, y) it also holds true that

f1(x, y, p, ϕ) � 0, implying that after a 1-signal, S prefers to disclose.�

Lemma I.E Let y � 1
2 . There exists a D0-equilibrium if and only if x � 1� y and p �

P1(x, y). If these conditions hold with strict inequality, it is furthermore the only equilibrium.

Proof:
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Step 0 Assume a putative D0 equilibrium. We prove a sequence of substatements

which together yield the above Lemma. Denote by gi(x, y, p, ϕ) the difference between ex

ante and ex post perceived disagreement given disclosure of an i-signal, for i 2 f0, 1g.

Step 1 After a 0-signal, S should prefer to disclose. Note that:

g0(x, y, p, ϕ)

�

0@ �
ϕ(y(1�p)+(1�y)p)

ϕ(y(1�p)+(1�y)p)+(1�ϕ)

� �
x(1�p)

x(1�p)+(1�x)p

�
+
�

(1�ϕ)
ϕ(y(1�p)+(1�y)p)+(1�ϕ)

�
x

�
�

y(ϕ(1�p)+1�ϕ)
y(ϕ(1�p)+1�ϕ)+(1�y)(ϕp+1�ϕ)

� 1A
�
�

xp
xp+ (1� x)(1� p)

� yp
yp+ (1� y)(1� p)

�
.

Here, the argument is in two steps. Define the following function:

eg0(x, y, p, ϕ) �

0@ �
ϕ(y(1�p)+(1�y)p)

ϕ(y(1�p)+(1�y)p)+(1�ϕ)

� �
x(1�p)

x(1�p)+(1�x)p

�
+
�

(1�ϕ)
ϕ(y(1�p)+(1�y)p)+(1�ϕ)

�
x

�
�

y(ϕ(1�p)+1�ϕ)
y(ϕ(1�p)+1�ϕ)+(1�y)(ϕp+1�ϕ)

� 1A
� (x� y) ,

which simplifies to

ϕ (2p� 1)
x� y

p+ x� 2px
px� p+ py+ xy� 2pxy
pϕ� ϕ+ yϕ� 2pyϕ+ 1

Note that eg0(x, y, p, ϕ) � 0 for any p � P1(x, y). Recall furthermore that P1(x, y) > 1
2

iff x > 1� y. Now, simply note that given x > 1� y,

xp
xp+ (1� x)(1� p)

� yp
yp+ (1� y)(1� p)

< (x� y) .

We may conclude that a fortiori for any p � P1(x, y), it holds true that g0(x, y, p, ϕ) �
0, implying that after a 0-signal, S prefers to disclose.

Step 2 After a 1-signal, S should prefer to omit disclosing. Note that:

g1(x, y, p, ϕ)

�

0@ �
ϕ(y(1�p)+(1�y)p)

ϕ(y(1�p)+(1�y)p)+(1�ϕ)

� �
x(1�p)

x(1�p)+(1�x)p

�
+
�

(1�ϕ)
ϕ(y(1�p)+(1�y)p)+(1�ϕ)

�
x

�
�

y(ϕ(1�p)+1�ϕ)
y(ϕ(1�p)+1�ϕ)+(1�y)(ϕp+1�ϕ)

� 1A
�
�

x(1� p)
x(1� p) + (1� x)p

� y(1� p)
y(1� p) + (1� y)p

�
.
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Note that g1(x, y, p, ϕ) simplifies to

(ϕ� 1) (2p� 1)
x� y

(p+ x� 2px) (p+ y� 2py)
px� p+ py+ xy� 2pxy
pϕ� ϕ+ yϕ� 2pyϕ+ 1

.

Now, simply note that g1(x, y, p, ϕ) � 0 for any p � P1(x, y).�

Lemma I.F Let y � 1
2 .

a) If x < 1� y and p < P0(x, y), the D1 equilibrium is the only equilibrium.

b) If x > 1� y and p < P1(x, y), the D0 equilibrium is the only equilibrium.

Proof:

Step 1 This proves Point a). Given the stated conditions, there exists no FD equilib-

rium and no D0 equilibrium. Invoking Lemma I.A, we may furthermore conclude that

there exists no equilibrium featuring a mixed disclosure strategy.

Step 2 This proves Point b). Given the stated conditions, there exists no FD equilib-

rium and no D1 equilibrium. Invoking Lemma I.A, we may furthermore conclude that

there exists no equilibrium featuring a mixed disclosure strategy. �

5.2 Appendix II: Hidden cost of PC with binary signals

5.2.1 Preliminaries

In what follows, we use the following posterior beliefs, obtained by applying Bayes’ rule.

In an FD equilibrium:

eαi(0) =
Pr[σ = 0jω = 0]αi

Pr[σ = 0jω = 0]αi + Pr[σ = 0jω = 1](1� αi)
=

pαi

pαi + (1� p)(1� αi)
,

eαi(1) =
Pr[σ = 1jω = 0]αi

Pr[σ = 1jω = 0]αi + Pr[σ = 1jω = 1](1� αi)
=

(1� p)αi

(1� p)αi + p(1� αi)
,
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In a D0 equilibrium:

eαD0
R (nd) =

Pr[ndjω = 0, D0]αR

Pr[ndjω = 0, D0]αR + Pr[ndjω = 1, D0](1� αR)

=
(ϕ(1� p) + (1� ϕ))αR

(ϕ(1� p) + (1� ϕ))αR + (ϕp+ (1� ϕ))(1� αR)
,

ED0
R [eαSjnd] = Pr[σ = 1jnd, D0]eαS(1) + Pr[?jnd, D0]αS

=
Pr[σ = 1]

Pr[σ = 1] + Pr[?]
eαS(1) +

Pr[?]
Pr[σ = 1] + Pr[?]αS

=
ϕ((1� p)αR + p(1� αR))

ϕ((1� p)αR + p(1� αR)) + (1� ϕ)
eαS(1)

+
1� ϕ

ϕ((1� p)αR + p(1� αR)) + (1� ϕ)
αS.

In a D1 equilibrium:

eαD1
R (nd) =

Pr[ndjω = 0, D1]αR

Pr[ndjω = 0, D1]αR + Pr[ndjω = 1, D1](1� αR)

=
(ϕp+ (1� ϕ))αR

(ϕp+ (1� ϕ))αR + (ϕ(1� p) + (1� ϕ))(1� αR)
,

ED1
R [eαSjnd] = Pr[σ = 0jnd, D1]eαS(0) + Pr[?jnd, D1]αS

=
Pr[σ = 0]

Pr[σ = 0] + Pr[?]
eαS(0) +

Pr[?]
Pr[σ = 0] + Pr[?]αS

=
ϕ(pαR + (1� p)(1� αR))

ϕ(pαR + (1� p)(1� αR)) + (1� ϕ)
eαS(0)

+
1� ϕ

ϕ(pαR + (1� p)(1� αR)) + (1� ϕ)
αS.
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5.2.2 Proof of Proposition 2

Step 1 Consider the case αS > αR in D1 equilibrium. Using the expressions from section

5.2.1, the expected perceived disagreement for the sender can be derived as follows:

ES[∆D1] = Pr[σ = 0](ED1
R [eαSjnd]� eαD1

R (nd)) + Pr[σ = 1](eαS(1)� eαR(1))

+Pr[σ = ?](ED1
R [eαSjnd]� eαD1

R (nd))

= (ϕ(αS p+ (1� αS)(1� p)) + 1� ϕ)

�

0@ �
ϕ(αR p+(1�αR)(1�p))

ϕ(αR p+(1�αR)(1�p))+(1�ϕ)

� �
αS p

αS p+(1�αS)(1�p)

�
+
�

(1�ϕ)
αR ϕp+(1�αR)ϕ(1�p)+(1�ϕ)

�
αS �

�
αR(ϕp+1�ϕ)

αR(ϕp+1�ϕ)+(1�αR)(ϕ(1�p)+1�ϕ)

� 1A
+ϕ(αS(1� p) + (1� αS)p)

�
αS(1� p)

αS(1� p) + (1� αS)p
� αR(1� p)

αR(1� p) + (1� αR)p

�
.

At the same time, under full disclosure

ES[∆FD] = Pr[σ = 0](eαS(0)� eαR(0)) + Pr[σ = 1](eαS(1)� eαR(1))

+Pr[σ = ?](αS � αR)

= ϕ(αS p+ (1� αS)(1� p))
�

αS p
αS p+ (1� αS)(1� p)

� αR p
αR p+ (1� αR)(1� p)

�
+ϕ(αS(1� p) + (1� αS)p)

�
αS(1� p)

αS(1� p) + (1� αS)p
� αR(1� p)

αR(1� p) + (1� αR)p

�
+(1� ϕ)(αS � αR).

Then,

ES[∆D1]� ES[∆FD]

= (ϕ(αS p+ (1� αS)(1� p)) + 1� ϕ)

�

0@ �
ϕ(αR p+(1�αR)(1�p))

ϕ(αR p+(1�αR)(1�p))+(1�ϕ)

� �
αS p

αS p+(1�αS)(1�p)

�
+
�

(1�ϕ)
αR ϕp+(1�αR)ϕ(1�p)+(1�ϕ)

�
αS �

�
αR(ϕp+1�ϕ)

αR(ϕp+1�ϕ)+(1�αR)(ϕ(1�p)+1�ϕ)

� 1A
�ϕ(αS p+ (1� αS)(1� p))

�
αS p

αS p+ (1� αS)(1� p)
� αR p

αR p+ (1� αR)(1� p)

�
�(1� ϕ)(αS � αR)

= Φ1Φ2
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where

Φ1 =
(αS � αR)

2(1� 2p)2(1� ϕ)ϕ

(αR p+ (1� αR)(1� p))(αS p+ (1� αS)(1� p))(1� pϕ+ αR ϕ(2p� 1))
> 0,

Φ2 = (αR + αS � 1)(1� p) + αRαS(2p� 1).

Note that Φ2 is an increasing function of αS. At the same time, by Proposition 1,

αS < α�S in D1 equilibrium. Consequently,

Φ2(αS) < Φ2(α
�
S) =

�
αR +

(1� αR)(1� p)
1� p+ αR(2p� 1)

� 1
�
(1� p)

+αR
(1� αR)(1� p)

1� p+ αR(2p� 1)
(2p� 1) = 0.

Hence, Φ1Φ2 < 0 so that

ES[∆D1]� ES[∆FD] < 0,

i.e., the sender would ex-ante prefer D1 over FD.

Step 2 Consider the case αS > αR in D0 equilibrium. The expected perceived disagree-

ment in equilibrium for the sender is:

ES[∆D0] = Pr[σ = 1](ED0
R [eαSjnd]� eαD0

R (nd)) + Pr[σ = 0](eαS(0)� eαR(0))

+Pr[σ = ?](ED0
R [eαSjnd]� eαD0

R (nd))

= (ϕ(αS(1� p) + (1� αS)p) + 1� ϕ)

�

0BBB@
�

ϕ(αR(1�p)+(1�αR)p)
ϕ(αR(1�p)+(1�αR)p)+(1�ϕ)

� �
αS(1�p)

αS(1�p)+(1�αS)p

�
+
�

(1�ϕ)
ϕ(αR(1�p)+(1�αR)p)+(1�ϕ)

�
αS

�
�

αR(ϕ(1�p)+1�ϕ)
αR(ϕ(1�p)+1�ϕ)+(1�αR)(ϕp+1�ϕ)

�
1CCCA

+ϕ(αS p+ (1� αS)(1� p))
�

αS p
αS p+ (1� αS)(1� p)

� αR p
αR p+ (1� αR)(1� p)

�
.
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Then,

ES[∆D0]� ES[∆FD]

= (ϕ(αS(1� p) + (1� αS)p) + 1� ϕ)

�

0@ �
ϕ(αR(1�p)+(1�αR)p)

ϕ(αR(1�p)+(1�αR)p)+(1�ϕ)

� �
αS(1�p)

αS(1�p)+(1�αS)p

�
+
�

(1�ϕ)
ϕ(αR(1�p)+(1�αR)p)+(1�ϕ)

�
αS

�
�

αR(ϕ(1�p)+1�ϕ)
αR(ϕ(1�p)+1�ϕ)+(1�αR)(ϕp+1�ϕ)

� 1A
�ϕ(αS(1� p) + (1� αS)p)

�
αS(1� p)

αS(1� p) + (1� αS)p
� αR(1� p)

αR(1� p) + (1� αR)p

�
�(1� ϕ)(αS � αR)

= Φ3Φ4,

where

Φ3 = � (αS � αR)
2(1� 2p)2(1� ϕ)ϕ

(αR(1� p) + (1� αR)p)(αS(1� p) + (1� αS)p)
1

1� ϕ((1� αR)(1� p) + αR p)
< 0,

Φ4 = p(1� αR)� αS(p(1� αR) + αR(1� p)).

Function Φ4 is decreasing in αS. At the same time, by Proposition 1 in D0-equilibrium we

have αS > α��S . Consequently,

Φ4(αS) < Φ4(α
��
S ) = p(1� αR)�

p(1� αR)

αR + p(1� 2αR)
(p(1� αR) + αR(1� p)) = 0.

Hence, Φ3Φ4 > 0, i.e.

ES[∆D0]� ES[∆FD] > 0,

i.e., the sender would ex-ante prefer FD over D0.

Step 3 Consider the case αS < αR. Then, the expressions for disagreement from Steps

1 and 2 just switch signs so that

ES[∆D1]� ES[∆FD] = �Φ1Φ2 > 0,

ES[∆D0]� ES[∆FD] = �Φ3Φ4 < 0.

Thus, the sender would ex-ante prefer FD over D1 and D0 over FD whenever D1 and D0

are the unique equilibria, respectively.
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5.2.3 Proof of Proposition 3

Step 1 In Steps 1-4 below, we consider the case that αS > αR. Define as eΘ(Partial,bα)
and eΘ(Full,bα) the expected actual disagreement under partial and full disclosure respec-

tively, from the perspective of a third party endowed with prior bα. Denote further byeαi(σ,Partial) and eαi(σ,Full) the posterior of player i conditional on signal σ under partial

and full disclosure respectively. We have:

eΘ(Partial,bα) = Ebα [jeαS(σ, Partial)� eαR(σ, Partial)j]
� Ebα [eαS(σ, Partial)� eαR(σ, Partial)]

= Ebα[eαS(σ, Partial)]� Ebα[eαR(σ, Partial)]

= Ebα [eαS(σ, Full)]� Ebα [eαR(σ, Partial)] . (2)

In the above, the equality Ebα[eαS(σ,Partial)] = Ebα [eαS(σ, Full)] follows from the fact

that S’s expected posterior is the same under both full and partial disclosure. Note on the

other hand that

eΘ(Full,bα) = Ebα [jeαS(σ, Full)� eαR(σ, Full)j]
= Ebα [eαS(σ, Full)]� Ebα [eαR(σ, Full)] . (3)

It follows from the above that

eΘ(Partial,bα)� eΘ(Full,bα) � Ebα [eαR(σ, Full)]� Ebα [eαR(σ, Partial)] . (4)

Step 2 We now show that Ebα [eαR(σ, Full)]� Ebα [eαR(σ, Partial)] > 0 if and only if bα >
αR. Here we simply follow the analysis presented in Kartik et al. (2015) (the result is

directly implied by their Theorem 1). One can verify that

eαR(σ) =
bα(σ) αRbαbα(σ) αRbα + (1� bα(σ))1�αR

1�bα ,

where bα(σ) is the posterior belief of the receiver had she had a prior αR = bα. One can

verify that the above function is concave in bα(σ) if bα < αR and convex if the opposite

inequality holds. Blackwell (1953) has shown that a garbling increases (resp. reduces) an
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individual’s expectation of any concave (resp. convex) function of his posterior. Then,

since partial disclosure is a garbling of full disclosure,6 we obtain that

Ebα [eαR(σ, Partial)] < (>)Ebα [eαR(σ, Full)] if bα > (<)αR (5)

given that R’s posterior is a convex (concave) function of bα(σ) if bα > (<)αR.

Step 3 (4) and (5) together imply

eΘ(Partial,bα)� eΘ(Full,bα) > 0 if bα > αR.

Thus, the third party would prefer full disclosure over partial disclosure wheneverbα > αR, i.e., whenever bα is either inbetween αR and αS or bα > αS > αR.

Step 4 Consider bα < αR < αS with αS being sufficiently close to 1. We have

eΘ(Partial,bα) = Ebα [jeαS(σ, Partial)� eαR(σ, Partial)j]
= Ebα [eαS(σ, Partial)� eαR(σ, Partial)]

= Ebα[eαS(σ, Partial)]� Ebα[eαR(σ, Partial)]

= Ebα [eαS(σ, Full)]� Ebα [eαR(σ, Partial)]

(i.e., we have equalities at all stages in contrast to (2)). This together with (3) and (5)

implies

eΘ(Partial,bα)� eΘ(Full,bα) = Ebα [eαR(σ, Full)]� Ebα [eαR(σ, Partial)] < 0.

Hence, in this case the third party would prefer partial disclosure over full disclosure in

terms of minimizing expected actual disagreement.

Step 5 The proof for the remaining case of αS < αR is conceptually identical, and is

hence omitted. In particular, we obtain that

eΘ(Partial,bα)� eΘ(Full,bα) > 0 if bα < αR,eΘ(Partial,bα)� eΘ(Full,bα) < 0 if αS < aR < bα and aS is close to 0.

�
6See Kartik et al. (2015) for a formal definition of garbling.
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5.3 Appendix III: Disclosure with binary signals and prior uncertainty

5.3.1 Proof of Proposition 4.a)

Step 1 Consider a putative FD equilibrium. Let G denote the (symmetric) cumulative

distribution function of players’ prior beliefs. Then, if the sender discloses 1-signal, the

expected perceived disagreement is

∆(1) =
Z 1

αR=0

Z 1

αS=0
jeαS(1, αS)� eαR(1, αR)j dG(αS)dG(αR),

where eαi(1, αi) denotes the posterior belief of player i conditional on 1-signal and

prior belief αi. If the sender does not disclose, the expected perceived disagreement is

∆(nd) =
Z 1

αR=0

Z 1

αS=0
jαS � αRjdG(αS)dG(αR).

In FD equilibrium we must have ∆(1)� ∆(nd) < 0. We have

∆(1)� ∆(nd)

=
Z 1

αR=0

Z 1

αS=0
(jeαS(1, αS)� eαR(1, αR)j � jαS � αRj) dG(αS)dG(αR).

Denote κ(αS, αR) = jeαS(1, αS)� eαR(1, αR)j � jαS � αRj. Then,Z 1

αR=0

Z 1

αS=0
(jeαS(1, αS)� eαR(1, αR)j � jαS � αRj) dG(αS)dG(αR)

=
Z 1

αR=0

Z 1

αS=0
κ(αS, αR)dG(αS)dG(αR)

=
Z 0.5

αR=0

Z 1

αS=0
(κ(αS, αR) + κ(αS, 1� αR)) dG(αS)dG(αR),

where the last equality follows due to symmetry of G. Next, denote λ(αS, αR) = κ(αS, αR)+

κ(αS, 1� αR). Then, Z 0.5

αR=0

Z 1

αS=0
(κ(αS, αR) + κ(αS, 1� αR)) dG(αS)dG(αR) (6)

=
Z 0.5

αR=0

Z 1

αS=0
λ(αS, αR)dG(αS)dG(αR)

=
Z 0.5

αR=0

Z 0.5

αS=0
(λ(αS, αR) + λ(1� αS, αR))dG(αS)dG(αR). (7)
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Let us now show that λ(αS, αR) + λ(1� αS, αR) < 0 for any αS < 0.5 and αR < 0.5 in

which case the whole integral on the right-hand side is negative. Denote x = maxfαS, αRg
and y = minfαS, αRg. Then, (noting that 1� y > 1� x > x > y due to both x < 0.5 and

y < 0.5)

λ(αS, αR) + λ(1� αS, αR)

= κ(αS, αR) + κ(αS, 1� αR) + κ(1� αS, αR) + κ(1� αS, 1� αR)

= (eα(1, x)� eα(1, y))� (x� y)

+ (eα(1, 1� x)� eα(1, y))� (1� x� y)

+ (eα(1, 1� y)� eα(1, x))� (1� y� x)

+ (eα(1, 1� y)� eα(1, 1� x))� (1� y� (1� x))

= 2(eα(1, 1� y)� eα(1, y) + 2y� 1)

= 2
�

(1� y)(1� p)
(1� y)(1� p) + yp

� y(1� p)
y(1� p) + (1� y)p

+ 2y� 1
�

= � 2(1� 2p)2(1� y)(1� 2y)y
(1� p+ y(2p� 1))(y+ p(1� 2y))

< 0,

where the inequality follows due to y < 0.5.

Step 2 By symmetry considerations, the same property holds for 0-signals, i.e. ∆(0)�
∆(nd) < 0. Formally, the proof proceeds analogously redefining κ = jeαS(0, αS)�eαR(0, αR)j�
jαS � αRj. �

5.3.2 Proof of Proposition 4.b)

Suppose that S’s prior αS is commonly known. That of R is drawn from a symmetric

distribution G over [0, 1]. Then, by the same steps as in the proof of Proposition 4.a we

obtain

∆(1)� ∆(nd) =
Z 1

αR=0
(jeαS(1, αS)� eαR(1, αR)j � jαS � αRj) dG(αR)

=
Z 0.5

αR=0
(κ(αS, αR) + κ(αS, 1� αR)) dG(αR). (8)
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Consider αR <
1
2 such that 1� αR > αS > αR. For such αR it holds

κ(αS, αR) + κ(αS, 1� αR) = (eαS(1, αS)� eαR(1, αR))� (αS � αR)

+ (eαR(1, 1� αR)� eαS(1, αS))� (1� αR � αS)

= eαR(1, 1� αR)� eαR(1, αR) + 2αR � 1

=
(1� αR)(1� p)

(1� αR)(1� p) + αR p
� αR(1� p)

αR(1� p) + (1� αR)p
+ 2αR � 1

= � (1� 2p)2(1� αR)(1� 2αR)αR

(1� p+ αR(2p� 1))(αR + p(1� 2αR))
< 0.

Since the probability mass of αR < 0.5 such that the condition 1� αR > αS > αR is

satisfied is sufficiently large for αS sufficiently close to 0.5, the right-hand side of (8) is

negative as well. Hence, the sender would prefer to disclose 1-signal over no disclosure.

The same claim for 0-signals follows by symmetry considerations. Consequently, the FD

equilibrium exists. �

5.3.3 Proof of Proposition 5

Step 1 Note first that the expected payoff of R, given beliefs defined by the distribution

fα, 1� αg over f0, 1g, is given by minus the variance of ω, which equals α(1� α).

Step 2 We first consider the experiment, corresponding to a D1 equilibrium, in which

only 1-signals are disclosed (denoted E1). We denote by d = ∅ the event in which no

signal is disclosed by S. Denote by ΠR(1, E1) (ΠR(∅, E1)) the expected payoff of R given

disclosure of a 1-signal (no signal). The expected utility of R conditional on facing the E1

experiment is given by:

P(d = 1)ΠR(1, E1) + P(d = ∅)ΠR(∅, E1).

Note first that if R’s prior is α, then

P(d = 1) = ϕ (α(1� p) + (1� α)p)

and

P(d = ∅) = ϕ (αp+ (1� α)(1� p)) + (1� ϕ).
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R’s posterior distribution after a 1-signal is given by:

α(1� p)
α(1� p) + (1� α)p

, 1� α(1� p)
α(1� p) + (1� α)p

.

It follows that

ΠR(1, E1) = �
�

α(1� p)
α(1� p) + (1� α)p

��
1� α(1� p)

α(1� p) + (1� α)p

�
.

R’s posterior distribution after no disclosure is given by:

P(ω = 0 j∅, E1 ) �
�

α (ϕp+ (1� ϕ))

α (ϕp+ (1� ϕ)) + (1� α) (ϕ(1� p) + (1� ϕ))

�
, 1�P(ω = 0 j∅, E1 ).

It follows that

ΠR(∅, E1)

= �P(ω = 0 j∅, E1 ) (1� P(ω = 0 j∅, E1 )) .

The value of the experiment E1 for R if the latter has prior α is thus:

ΠR
E1
(α, ϕ, p)

= �ϕ (α(1� p) + (1� α)p)
�

α(1� p)
α(1� p) + (1� α)p

��
1� α(1� p)

α(1� p) + (1� α)p

�
�(1� ϕ (α(1� p) + (1� α)p))

�

0@ �
α(ϕp+(1�ϕ))

α(ϕp+(1�ϕ))+(1�α)(ϕ(1�p)+(1�ϕ))

��
1�

�
α(ϕp+(1�ϕ))

α(ϕp+(1�ϕ))+(1�α)(ϕ(1�p)+(1�ϕ))

�� 1A .

This simplifies significantly to:

ΠR
E1
(α, ϕ, p) = �α

(α� 1)
�

p+ α� 2pα� αϕ� p2ϕ+ 2pαϕ
�

(p+ α� 2pα) (pϕ+ αϕ� 2pαϕ� 1)
.

Step 3 We now consider the experiment, corresponding to a D0 equilibrium, in which

only 0-signals are disclosed (denoted E0). Denote by ΠR(0, E0) (ΠR(∅, E0)) the expected

payoff of R given disclosure of a 0-signal (no signal). The expected utility of R conditional

on facing the E0 experiment is given by:

P(d = 0)ΠR(0, E0) + P(d = ∅)ΠR(∅, E0).
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Note first that if R’s prior is α, then

P(d = 0) = ϕ (αp+ (1� α)(1� p))

and

P(d = ∅) = ϕ+ (1� ϕ)α(1� p) + (1� α)p.

R’s posterior distribution after a 0-signal is given by:

αp
αp+ (1� α)(1� p)

, 1� αp
αp+ (1� α)(1� p)

.

It follows that:

ΠR(0, E0) = �
�

αp
αp+ (1� α)(1� p)

��
1� αp

αp+ (1� α)(1� p)

�
.

R’s posterior distribution after no disclosure is given by:

P(ω = 0 j∅, E0 ) �
�

α (ϕ(1� p) + (1� ϕ))

α (ϕ(1� p) + (1� ϕ)) + (1� α)(ϕp+ (1� ϕ))

�
, 1�P(ω = 0 j∅, E0 ).

It follows that:

ΠR(∅, E0)

= �
�

α (ϕ(1� p) + (1� ϕ))

α (ϕ(1� p) + (1� ϕ)) + (1� α)(ϕp+ (1� ϕ))

�
�

1�
�

α (ϕ(1� p) + (1� ϕ))

α (ϕ(1� p) + (1� ϕ)) + (1� α)(ϕp+ (1� ϕ))

��
.

The value of the experiment E0 to R if her prior is α is thus:

ΠR
E0
(α, ϕ, p)

= �ϕ (αp+ (1� α)(1� p))
�

αp
αp+ (1� α)(1� p)

��
1� αp

αp+ (1� α)(1� p)

�
�(1� ϕ (αp+ (1� α)(1� p)))

�

0@ �
α(ϕ(1�p)+(1�ϕ))

α(ϕ(1�p)+(1�ϕ))+(1�α)(ϕp+(1�ϕ))

��
1�

�
α(ϕ(1�p)+(1�ϕ))

α(ϕ(1�p)+(1�ϕ))+(1�α)(ϕp+(1�ϕ))

�� 1A .
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This simplifies significantly to:

ΠR
0 (α, ϕ, p) = α

(α� 1)
�

p+ α+ ϕ� 2pα� 2pϕ� αϕ+ p2ϕ+ 2pαϕ� 1
�

(p+ α� 2pα� 1) (pϕ� ϕ+ αϕ� 2pαϕ+ 1)
.

Step 4 Using the obtained formulas, we have:

ΠR
E0
(α, ϕ, p)�ΠR

E1
(α, ϕ, p)

= �α2ϕ (α� 1)2 (ϕ� 1) (2p� 1)3

2α� 1�
�4p2α2 + 4p2α� p2 + 4pα2 � 4pα+ p� α2 + α

��
4p2α2ϕ2 � 4p2αϕ2 + p2ϕ2 � 4pα2ϕ2 + 4pαϕ2 � pϕ2 + α2ϕ2 � αϕ2 + ϕ� 1

� .

We now show that the above expression is positive if 2α� 1 < 0 and negative if the

reverse inequality holds. Note that for any admissible p, ϕ, α,�
�4p2α2 + 4p2α� p2 + 4pα2 � 4pα+ p� α2 + α

�
has the same sign. Similarly, for any admissible p, ϕ, α,�

4p2α2ϕ2 � 4p2αϕ2 + p2ϕ2 � 4pα2ϕ2 + 4pαϕ2 � pϕ2 + α2ϕ2 � αϕ2 + ϕ� 1
�

has the same sign. The argument is as follows. Solving

�4p2α2 + 4p2α� p2 + 4pα2 � 4pα+ p� α2 + α = 0

for α yields the solutions p
2p�1 and 1

2p�1 (p� 1) , the first of which is< 0 for any p and the

second of which is > 1 for any p. Similarly, solving

4p2α2ϕ2 � 4p2αϕ2 + p2ϕ2 � 4pα2ϕ2 + 4pαϕ2 � pϕ2 + α2ϕ2 � αϕ2 + ϕ� 1 = 0

for α yields the solutions � 1
ϕ�2pϕ (�ϕ+ pϕ+ 1) and � pϕ�1

ϕ�2pϕ . Define the functions:

t1(p, ϕ) = � 1
ϕ� 2pϕ

(�ϕ+ pϕ+ 1) ,

t2(p, ϕ) = � pϕ� 1
ϕ� 2pϕ

.
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Note that t1(p, ϕ) > 1 for any p, ϕ. To see this, note that ∂t1(p,ϕ)
∂ϕ = � 1

ϕ2(2p�1) and that

t1(p, 1) = p
2p�1 > 1. Note on the other hand that t2(p, ϕ) < 0 for any p, ϕ. To see this, note

that ∂t2(p,ϕ)
∂ϕ = 1

ϕ2(2p�1) and that t2(p, 1) = 1
2p�1 (p� 1) < 0. We may conclude that the

sign of ΠR
0 (α, ϕ, p)�ΠR

1 (α, ϕ, p) is determined by the sign of 2α� 1. Specifically, it holds

true that ΠR
E0
(α, ϕ, p)�ΠR

E1
(α, ϕ, p) > (<)0 if α < (>)1

2 . In words, if R’s prior is biased

towards state 0, she prefers to face D1 communication at the disclosure stage (and vice

versa).

Step 5 Assume that the set of possible values of αR (denoted Σ) is such that any pos-

sible value yields either the D0 or the D1 as the only incentive compatible strategy in the

disclosure subgame. The set of priors Σ thus divides into two distinct sets of priors, Σ�

and Σ+ satisfying the following. The subset Σ� contains the values s.t. αR < 1� αS and

Σ+ contains the values s.t. αR > 1� αS. Furthermore, all priors in Σ� yield equilibrium

D1 in the disclosure subgame while all priors in Σ+ yield equilibrium D0 in the disclosure

subgame. Assume a putative equilibrium featuring essentially truthful communication.

So all members of Σ� have an incentive to truthfully reveal that they belong to Σ�. If

this is the case, given the findings of previous steps, it must be that all elements of Σ� are

larger than 1
2 since all types in Σ� must prefer D1 over D0. This in turn implies that it

must be true that 1� αS >
1
2 . This then implies that all priors in Σ+ are strictly larger than

1
2 , implying that prior types belonging to Σ+ strictly prefer D1 over D0. But this means

that these will want to deviate to announcing that they belong to Σ�, thereby ensuring

that they face D1 at the disclosure stage. This yields a contradiction and thus proves that

there cannot be an equilibrium in which R (essentially) truthfully reveals her prior. �

5.4 Appendix IV: Disclosure with continuous signals (Proof of Propo-

sition 6)

Proposition 6 follows from a set of Lemmas, which are stated and proved in what follows.

Lemma II.A If αS 6= αR, then ∆(s) := jeαS(s)� eαR(s)j satisfies the following. i) ∆(s) =

∆(s) = 0. ii) There exists bs such that ∆(s) is increasing in s for all s < bs and decreasing in s for

all s > bs. iii) es < (>)bs if the player with the lower prior is less (more) extreme. Instead, es = bs if
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αS = 1� αR, i.e. if players are equally extreme.

Proof:

Step 1 i) is immediate. To show ii) we show that there is a unique s such that d
ds (eαS(s)� eαR(s)) =

0 (this assumes strict MLRP). Note that

d
ds
(eαS(s)� eαR(s)) =

d
ds

0@ αS

αS + (1� αS)
f (sjh)
f (sjl)

� αR

αR + (1� αR)
f (sjh)
f (sjl)

1A
=

0B@ αR (1� αR)�
αR + (1� αR)

f (sjh)
f (sjl)

�2 �
αS (1� αS)�

αS + (1� αS)
f (sjh)
f (sjl)

�2

1CA d
ds

f (sjh)
f (sjl) .

Consider the solution to

αR (1� αR)

�
αS + (1� αS)

f (sjh)
f (sjl)

�2

= αS (1� αS)

�
αR + (1� αR)

f (sjh)
f (sjl)

�2

.

Both sides are increasing in s, but we claim that they increase at different rates. To see

this, note that

d
ds

αR (1� αR)

�
αS + (1� αS)

f (sjh)
f (sjl)

�2

= 2αR (1� αR) (1� αS)

�
αS + (1� αS)

f (sjh)
f (sjl)

�
d
ds

f (sjh)
f (sjl) ,

d
ds

αS (1� αS)

�
αR + (1� αR)

f (sjh)
f (sjl)

�2

= 2αS (1� αR) (1� αS)

�
αR + (1� αR)

f (sjh)
f (sjl)

�
d
ds

f (sjh)
f (sjl) .

The result follows by assumption as

2αR (1� αR) (1� αS)

�
αS + (1� αS)

f (sjh)
f (sjl)

�
d
ds

f (sjh)
f (sjl)

R 2αS (1� αR) (1� αS)

�
αR + (1� αR)

f (sjh)
f (sjl)

�
d
ds

f (sjh)
f (sjl) ,

which is equivalent to

αRαS + αR (1� αS)
f (sjh)
f (sjl) R αRαS + αS (1� αR)

f (sjh)
f (sjl)
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which is equivalent to αR R αS. Hence, bs must be unique. Existence follows from

continuity and (i) together with ∆(es) = jαS � αRj > 0.

Step 2 To show (iii), define αmax = maxfαS, αRg and αmin = minfαS, αRg such that

∆(s) = eαmax(s)� eαmin(s). We then have:

d
ds

∆(es) =

 
αmin (1� αmin)

(αmin + (1� αmin))
2 �

αmax (1� αmax)

(αmax + (1� αmax))
2

!
d
ds

f (esjh)
f (esjl) R 0

() αmin (1� αmin) R αmax (1� αmax) ,

and es < (>)bs if αmin is less extreme than αmax.�

Lemma II.B There exists a simple disclosure equilibrium and any equilibrium is a simple

disclosure equilibrium.

Proof:

Step 0 Steps 1-2 introduce key equilibrium conditions. In steps 3-4, we show that there

exists at least one SDE. Step 5 proves that any equilibrium is an SDE. In what follows, we

assume αS > αR. The proof for the reverse case follows the same steps and omitted.

Step 1 Consider a putative simple disclosure equilibrium. Denote the set of signals

by Ψ. Denote the (sub)set of the set of signals Ψ that is being disclosed by Ψd and the

complement by Ψnd. From R’s point of view, S does not disclose an observed signal with

probability

PrR(s 2 Ψnd) = αR

Z
Ψnd

f (sjl)ds+ (1� αR)
Z

Ψnd
f (sjh)ds.

Hence, when S does not disclose, R’s posterior is

eαR(nd) =
ϕ

(1� ϕ) + ϕ PrR(s 2 Ψnd)

Z
Ψnd
(αR f (sjl) + (1� αR) f (sjh)) eαR(s)ds

+
(1� ϕ)

(1� ϕ) + ϕ PrR(s 2 Ψnd)
αR

=
ϕ
R

Ψnd f (sjl)ds+ (1� ϕ)

(1� ϕ) + ϕ PrR(s 2 Ψnd)
αR.

Similarly, R’s belief about S’s posterior in this case is

eαRS(nd) =
ϕ

(1� ϕ) + ϕ PrR(s 2 Ψnd)

Z
Ψnd
(αR f (sjl) + (1� αR) f (sjh)) eαS(s)ds

+
(1� ϕ)

(1� ϕ) + ϕ PrR(s 2 Ψnd)
αS.
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Step 2 The discrepancy in beliefs upon disclosure is given by jeαS(s)� eαR(s)j and at s1

and s2, S must be indifferent between disclosure and non-disclosure. Hence, we require

jeαS(s)� eαR(s)j = jeαRS(nd)� eαR(nd)j for s = s1, s2. (9)

Step 3 Recall that jeαS(s)� eαR(s)j is concave and single peaked in s over [s, s] and that bs
is the signal that maximizes jeαS(s)� eαR(s)j. For each ε 2 [αS� αR, εmax = jeαS(bs)� eαR(bs)j],
let s(ε) = fs1(ε), s2(ε)g denote the unique pair of thresholds such that jeαS(si(ε))� eαR(si(ε))j =
ε, for i = 1, 2. Note that by definition, lim

ε!εmax
s1(ε) = lim

ε!εmax
s2(ε) = bs. Denote by

jEReαS(nd, s1, s2)� eαR(nd, s1, s2)j

the perceived difference in posteriors given no disclosure, given a simple disclosure rule

specified by the no-disclosure interval [s1, s2] . Recall finally that a simple disclosure rule

(s1, s2) constitutes an equilibrium disclosure rule iff:

jeαS(si)� eαR(si)j = jEReαS(nd, s1, s2)� eαR(nd, s1, s2)j , for i = 1, 2.

Step 4 Note first that

jeαS(s1(ε))� eαR(s1(ε))j

and

jEReαS(nd, s1(ε), s2(ε))� eαR(nd, s1(ε), s2(ε))j

are both continuous in ε for ε 2 [αS � αR, εmax = eαS(bs) � eαR(bs)]. Second, note that it is

trivially true that:

jEReαS(nd, s1(εmax), s2(εmax))� eαR(nd, s1(εmax), s2(εmax))j
< jeαS(s1(εmax))� eαR(s1(εmax))j .

Third, note that.

jEReαS(nd, s1(αS � αR), s2(αS � αR))� eαR(nd, s1(αS � αR), s2(αS � αR))j
> jeαS(s1(αS � αR))� eαR(s1(αS � αR))j = αS � αR.
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It follows that there must exist some ε 2 [αS � αR, εmax = jeαS(bs)� eαR(bs)j such that

jeαS(s1(ε))� eαR(s1(ε))j
= jEReαS(nd, s1(ε), s2(ε))� eαR(nd, s1(ε), s2(ε))j .

Step 5 We prove by contradiction that any equilibrium is a simple disclosure equi-

librium. Assume thus an equilibrium which is not an SDE. Upon non-disclosure, let the

perceived difference in beliefs be denoted by C and this is by definition� 0. Suppose first

that C > 0. Clearly, conditional on obtaining a signal, S wants to disclose if the resulting

discrepancy ∆(s) is smaller than C. Recall now that ∆(s) is single peaked and concave. It

follows that for any C > 0, there are s1, s2 satisfying s < s1 < s2 < s such that the actual

disagreement in beliefs is strictly higher than C for σ 2 (s1, s2) and strictly lower than C

if σ < s1 and σ > s2. In other words, this implies that for any putative equilibrium, there

are s1, s2 satisfying s < s1 < s2 < s such that S would strictly prefer not to disclose for

σ 2 (s1, s2) and strictly prefer to disclose if σ < s1 and σ > s2. A putative equilibrium

which is not an SDE thus gives rise to strict deviation incentives for S. Suppose now that

C = 0. In such a case, S would strictly prefer not to disclose any signal s 2 (s, s). So the

equilibrium should feature no disclosure of any s 2 (s, s). But then, it must be the case

that C > 0, a contradiction. �

Lemma II.C a) If αR = 1� αS then s1 = s2, i.e. there is full disclosure.

b) If αR 6= 1� αS then s1 < s2, i.e. a non-empty set of signals s 2 (s1, s2) is not disclosed.

c) Assume that αS > αR. If αR < 1� αS, i.e. R is more extreme than S, then any equilibrium

features s1 < s2 < es, i.e. all signals congruent with R0s prior bias are disclosed. If αR > 1� αS,

i.e. R is less extreme than S, then any equilibrium features es < s1 < s2, i.e. all signals congruent

with S0s prior bias are disclosed.

d) Assume that αS < αR. If αR > 1� αS, i.e. R is more extreme than S, then any equilibrium

features es < s1 < s2, i.e. all signals congruent with R0s prior bias are disclosed. If αR < 1� αS,

i.e. R is less extreme than S, then any equilibrium features s1 < s2 < es, i.e. all signals congruent

with S0s prior bias are disclosed.

Proof:
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Step 0 We focus throughout on the case of αS > αR. The proof for the reverse case

follows the same steps and omitted.

Step 1 The discrepancy in beliefs upon disclosure is given by jeαS(s)� eαR(s)j and at s1

and s2, S must be indifferent between disclosure and non-disclosure. Hence, we require

jeαS(s)� eαR(s)j = jeαRS(nd)� eαR(nd)j for s = s1, s2, (10)

which directly implies from the preceding Lemma that s1 � bs � s2, strictly if s1 < s2.

Further, it then follows directly from

eαRS(nd)� eαR(nd)

=
ϕ

(1� ϕ) + ϕ PrR(s 2 Ψnd)

Z s2

s1

(αR f (sjl) + (1� αR) f (sjh)) (eαS(s)� eαR(s)) ds

+
(1� ϕ)

(1� ϕ) + ϕ PrR(s 2 Ψnd)
(αS � αR)

together with (10) that under the optimal disclosure rule we must have

eαS(s1)� eαR(s1) = eαS(s2)� eαR(s2) = eαS(nd)� eαR(nd)

> αS � αR,

implying that the uninformative signal es is always disclosed. Thus, if es = bs, then there is

full disclosure conditional on an available signal.

Step 2 It remains to be shown that for es 6= bs, we have s1 < bs < s2. We will ar-

gue by contradiction. Suppose that es 6= bs and that there is an equilibrium with full

disclosure conditional on an available signal. In such an equilibrium, disclosing s = bs
leads to the a perceived disagreement of eαS(bs) � eαR(bs) which, from es 6= bs, is strictly

greater than the perceived disagreement without disclosure, the latter being given by

jeαRS(nd)� eαR(nd)j = αS� αR. Hence, disclosure of s = bs cannot be optimal. The remain-

ing results then follow from Lemma II.A. �

Lemma II.D a) If there exist multiple equilibria, then the equilibria are ordered in terms of

Blackwell informativeness. b) If ϕ increases, the most Blackwell informative equilibrium becomes

more informative.
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Proof:

Step 0 We focus on the case of αS > αR. The proof of the reverse case is identical.

Step 1 Note that if s(ε) and s(ε0) are two equilibrium disclosure rules and ε0 > ε, then

s1(ε
0) > s1(ε) and s2(ε

0) < s2(ε) so that (s1(ε
0), s2(ε

0)) � (s1(ε), s2(ε)) . This is true because

jeαS(s)� eαR(s)j is concave and single peaked in s over [s, s]. This furthermore implies that

s(ε0) is more Blackwell informative than s(ε).

Step 2 Note that

eαRS(nd, s1(ε), s2(ε))� eαR(nd, s1(ε), s2(ε))

=
ϕ
R s2(ε)

s1(ε)
(αR f (sjl) + (1� αR) f (sjh)) (eαS(s)� eαR(s)) ds+ (1� ϕ) (αS � αR)

(1� ϕ) + ϕ PrR(s 2 Ψnd)
,

and note that the latter expression is trivially always positive given the assumption

that αS > αR. Letting

A =
Z s2(ε)

s1(ε)
(αR f (sjl) + (1� αR) f (sjh)) (eαS(s)� eαR(s)) ds

and δ = (αS � αR) , it follows that :

∂eαRS(nd, s1(ε), s2(ε))� eαR(nd, s1(ε), s2(ε))

∂ϕ
=

(A� δ)
�
(1� ϕ) + ϕ PrR(s 2 Ψnd)

�
� [ϕA+ (1� ϕ) δ]

�
�1+ PrR(s 2 Ψnd)

��
(1� ϕ) + ϕ PrR(s 2 Ψnd)

�2 .

The above expression rewrites and simplifies as follows:

(A� (αS � αR))
�
(1� ϕ) + ϕ PrR(s 2 Ψnd)

�
� [ϕA+ (1� ϕ) δ]

�
�1+ PrR(s 2 Ψnd)

��
(1� ϕ) + ϕ PrR(s 2 Ψnd)

�2

=

A (1� ϕ) + Aϕ PrR(s 2 Ψnd)� δ (1� ϕ)� δϕ PrR(s 2 Ψnd)

+ϕA� ϕA PrR(s 2 Ψnd) + (1� ϕ) δ� (1� ϕ) δ PrR(s 2 Ψnd)�
(1� ϕ) + ϕ PrR(s 2 Ψnd)

�2
=

A� PrR(s 2 Ψnd)δ�
(1� ϕ) + ϕ PrR(s 2 Ψnd)

�2
=

R s2(ε)
s1(ε)

(αR f (sjl) + (1� αR) f (sjh)) (eαS(s)� eαR(s)) ds� PrR(s 2 Ψnd) (αS � αR)�
(1� ϕ) + ϕ PrR(s 2 Ψnd)

�2 > 0
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To see that the last inequality holds, remember that we are only looking at the set of εs

satisfying ε > αS � αR, which implies thatZ s2(ε)

s1(ε)
(αR f (sjl) + (1� αR) f (sjh)) (eαS(s)� eαR(s)) ds

> αS � αR.

Step 3 Let us slightly abuse notation and write

eαRS(nd, s1(ε), s2(ε), ϕ)� eαR(nd, s1(ε), s2(ε), ϕ)

for the perceived difference in beliefs given no-disclosure, assuming disclosure rule fs1(ε), s2(ε)g
and parameter ϕ. Let sϕ(ε) =

�
sϕ

1 (ε), sϕ
2 (ε)

	
be the most informative disclosure rule under

ϕ. Note that given our previous step, assuming ϕ0 > ϕ it holds true that

eαRS(nd, sϕ
1 (ε), sϕ

2 (ε), ϕ0)� eαR(nd, sϕ
1 (ε), sϕ

2 (ε), ϕ0)

> eαRS(nd, sϕ
1 (ε), sϕ

2 (ε), ϕ)� eαR(nd, sϕ
1 (ε), sϕ

2 (ε), ϕ).

It follows that there exists some ε0 > ε such that given ϕ0, the disclosure rule fs1(ε
0), s2(ε

0)g
constitutes an equilibrium disclosure rule. Given that jeαS(s)� eαR(s)j is concave and

single peaked in s over [s, s], it follows that s1(ε
0) > s1(ε) and s2(ε

0) < s2(ε) so that

(s1(ε
0), s2(ε

0)) � (s1(ε), s2(ε)) . This implies that fs1(ε
0), s2(ε

0)g is more Blackwell infor-

mative than fs1(ε), s2(ε)g . �

5.5 Appendix V: Hidden cost of PC with continuous signals

5.5.1 Proof of Proposition 7

Step 0 We prove 1. in what follows. By assumption, it holds true that es < s1 < s2. It

follows that the most extreme player is biased towards state 0, omitted signals indicate

state 1 and αS 6= 1� αR. We focus on proving that S would strictly prefer to commit to

full disclosure if αS > αR. Note that combining the assumptions αS > αR and es < s1 < s2

implies that αR 2 (1 � αS, αS). The proof that S instead prefers equilibrium disclosure
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given αS < αR and es < s1 < s2 is briefly outlined in our final step. The proof of Point 2 is

conceptually identical to that of Point 1 and thus entirely omitted.

Step 1 From S’s perspective, the ex ante perceived disagreement in a simple disclosure

equilibrium (SDE) featuring thresholds fs1, s2g is given by:

(1� ϕ) [eαRS(nd)� eαR(nd)]

+ϕ
Z s2

s1

(αS f (sjl) + (1� αS) f (sjh)) [eαRS(nd)� eαR(nd)] ds

+ϕ
Z

s/2Ψnd
(αS f (sjl) + (1� αS) f (sjh)) [eαRS(s)� eαR(s)] ds.

Recall also that we know from previous derivations that

eαRS(nd)� eαR(nd)

=
ϕ

(1� ϕ) + ϕ PrR(s 2 Ψnd)

Z s2

s1

(αR f (sjl) + (1� αR) f (sjh)) (eαS(s)� eαR(s)) ds

+
(1� ϕ)

(1� ϕ) + ϕ PrR(s 2 Ψnd)
(αS � αR) .

Step 2 We here consider a putative full disclosure equilibrium. Given disclosure s,eαRS(s) = eαS(s). From S’s perspective, the ex ante perceived disagreement in an equilib-

rium with full disclosure is thus:

ϕ
Z s2

s1

(αS f (sjl) + (1� αS) f (sjh)) [eαS(s)� eαR(s)] ds

+ϕ
Z

s/2Ψnd
(αS f (sjl) + (1� αS) f (sjh)) [eαS(s)� eαR(s)] ds

+ (1� ϕ) [αS � αR] .

Step 3 We introduce two expressions which we shall call Θ(Partial) and Θ(Full).

These describe the expected perceived disagreement in S’s eyes under each of the two

disclosure rules, when restricting ourselves to those events where either s 2 [s1, s2] or S

holds no signal. We have:

Θ(Partial) =
h

ϕ PrS(s 2 Ψnd) + (1� ϕ)
i
[eαRS(nd)� eαR(nd)]

=
h
(1� ϕ) + ϕ PrR(s 2 Ψnd)

i
�

24 ϕ

(1�ϕ)+ϕ PrR (s2Ψnd)

R s2
s1
(αR f (sjl) + (1� αR) f (sjh)) (eαS(s)� eαR(s)) ds

+ (1�ϕ)
(1�ϕ)+ϕ PrR (s2Ψnd)

(αS � αR)

35



57

and

Θ(Full) = ϕ
Z s2

s1

[αS f (sjl) + (1� αS) f (sjh)] [eαS(s)� eαR(s)] ds+ (1� ϕ) (αS � αR) .

Our objective is to identify conditions under which Θ(Partial) > Θ(Full), i.e.h
ϕ PrS(s 2 Ψnd) + (1� ϕ)

i
[eαRS(nd)� eαR(nd)] (11)

> ϕ
Z s2

s1

[αS f (sjl) + (1� αS) f (sjh)] [eαS(s)� eαR(s)] ds+ (1� ϕ) (αS � αR) . (12)

Step 4 Define PrbαR(s 2 Ψnd) as the ex ante probability that s 2 [s1, s2], given the priorbαR. I.e. define:

PrbαR(s 2 Ψnd) =
Z s2

s1

(bαR f (sjl) + (1� bαR) f (sjh))ds.

We define ∆ (αS, αR,bαR) as a slightly modified version of eαRS(nd)� eαR(nd). We let

∆ (αS, αR,bαR)

=
ϕ

(1� ϕ) + ϕ PrbαR(s 2 Ψnd)

Z s2

s1

(bαR f (sjl) + (1� bαR) f (sjh)) (eαS(s)� eαR(s)) ds

+
(1� ϕ)

(1� ϕ) + ϕ PrbαR(s 2 Ψnd)
(αS � αR) .

Let us finally define

eΘ(Partial,bαR) =
h

ϕ PrS(s 2 Ψnd) + (1� ϕ)
i
[∆ (αS, αR,bαR)]

and note that eΘ(Partial,αR) = Θ(Partial).

In what follows, we shall consider the value of the above function for bαR = αS and

for bαR 2 (1� αS, αS) . We show in step 5 that eΘ(Partial,αS) = Θ(Full). We show in

step 6 that for any bαR 2 (1� αS, αS) eΘ(Partial,αR) > Θ(Full). Given that by assumption

αR 2 (1� αS, αS) , this implies that in particular Θ(Partial) > Θ(Full).
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Step 5 Note that when setting bαR = αS, we have:

eΘ(Partial,bαR) (13)

=
h

ϕ PrS(s 2 Ψnd) + (1� ϕ)
i
[∆ (αS, αR, αS)] (14)

=

"
ϕ PrS(s 2 Ψnd)

+ (1� ϕ)

#
(15)

�

24 ϕ

(1�ϕ)+ϕ PrαS (s2Ψnd)

R s2
s1
(αS f (sjl) + (1� αS) f (sjh)) (eαS(s)� eαR(s)) ds

+ (1�ϕ)
(1�ϕ)+ϕ PrαS (s2Ψnd)

(αS � αR)

35 (16)

= ϕ
Z s2

s1

[αS f (sjl) + (1� αS) f (sjh)] [eαS(s)� eαR(s)] ds+ (1� ϕ) (αS � αR) (17)

= Θ(Full). (18)

Step 6 Here, we show that ∆ (αS, αR,bαR) increases (resp. decreases) as bαR decreases

(resp. increases), for bαR � αS. Note that we can rewrite ∆ (αS, αR,bαR) as follows:

∆ (αS, αR,bαR)

=

264 ϕ PrbαR
(s2Ψnd)

(1�ϕ)+ϕ PrbαR
(s2Ψnd)

R s2
s1

(bαR f (sjl)+(1�bαR) f (sjh))
PrbαR

(s2Ψnd)
(eαS(s)� eαR(s)) ds

+ (1�ϕ)
(1�ϕ)+ϕ PrbαR

(s2Ψnd)
(αS � αR)

375 .

From the above expression, note that ∆ (αS, αR,bαR) is thus a weighted average of the

expressions

EbαR [eαS(s)� eαR(s) js 2 [s1, s2] ]

=
Z s2

s1

(bαR f (sjl) + (1� bαR) f (sjh))
PrbαR(s 2 Ψnd)

(eαS(s)� eαR(s)) ds

and (αS � αR). The first expression is weighted by
ϕ PrbαR

(s2Ψnd)

(1�ϕ)+ϕ PrbαR
(s2Ψnd)

and the second is

weighted by (1�ϕ)
(1�ϕ)+ϕ PrbαR

(s2Ψnd)
. In other words, ∆ (αS, αR,bαR) can be written as:

∆ (αS, αR,bαR) = p(bαR)A(bαR) + (1� p(bαR))(αS � αR),

where we let

p(bαR) =
ϕ PrbαR(s 2 Ψnd)

(1� ϕ) + ϕ PrbαR(s 2 Ψnd)
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and we let

A(bαR) = EbαR [eαS(s)� eαR(s) js 2 [s1, s2] ] .

The derivative of ∆ (αS, αR,bαR) w.r.t. bαR is thus given by

∂∆ (αS, αR,bαR)

∂bαR
=

∂p(bαR)

∂bαR
A(bαR) + p(bαR)

∂A(bαR)

∂bαR
� ∂p(bαR)

∂bαR
(αS � αR)

= p(bαR)
∂A(bαR)

∂bαR
+

∂p(bαR)

∂bαR
[A(bαR)� (αS � αR)] .

In order to prove that ∂∆(αS,αR,bαR)
∂bαR

< 0, it thus suffices to show that ∂A(bαR)
∂bαR

< 0,

[A(bαR)� (αS � αR)] > 0

and ∂p(bαR)
∂bαR

< 0. We show in what follows that these properties are indeed satisfied forbαR 2 (1� αS, αS].

Note first that
∂ PrbαR

(s2Ψnd)

∂bαR
=
R s2

s1
( f (sjl) � f (sjh))ds, which is strictly negative given

that we know that f (sjh) > f (sjl) for any s 2 [s1, s2] , recalling that es < s1 < s2. It follows

immediately that (1�ϕ)
(1�ϕ)+ϕ PrbαR

(s2Ψnd)
= 1� p(bαR) increases in bαR and that

ϕ PrbαR
(s2Ψnd)

(1�ϕ)+ϕ PrbαR
(s2Ψnd)

=

p(bαR) decreases in bαR. Second, note that A(bαR)� (αS � αR) > 0 is a property of equilib-

rium that we have already established (see proof of Lemma II.C). Third, we now show
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that A(bαR) = EbαR [(eαS(s)� eαR(s)) js 2 [s1, s2] ] decreases as bαR increases. Note that:

∂

�R s2
s1

(bαR f (sjl)+(1�bαR) f (sjh))
PrbαR

(s2Ψnd)
(eαS(s)� eαR(s)) ds

�
∂bαR

=
Z s2

s1

0@ ( f (sjl)� f (sjh))
hR s2

s1
bαR f (sjl) + (1� bαR) f (sjh)ds

i
� [bαR f (sjl) + (1� bαR) f (sjh)]

hR s2
s1
( f (sjl)� f (sjh))ds

i 1A
�
PrbαR(s 2 Ψnd)

�2 (eαS(s)� eαR(s)) ds

=

0@ hR s2
s1
bαR f (sjl) + (1� bαR) f (sjh)ds

i hR s2
s1
( f (sjl)� f (sjh)) (eαS(s)� eαR(s)) ds

i
�
hR s2

s1
( f (sjl)� f (sjh))ds

i hR s2
s1
(bαR f (sjl) + (1� bαR) f (sjh)) (eαS(s)� eαR(s)) ds

i 1A
�
PrbαR(s 2 Ψnd)

�2

=

0@ �
hR s2

s1
( f (sjl)� f (sjh))ds

i hR s2
s1
(bαR f (sjl) + (1� bαR) f (sjh)) (eαS(s)� eαR(s)) ds

i
+
hR s2

s1
bαR f (sjl) + (1� bαR) f (sjh)ds

i hR s2
s1
( f (sjl)� f (sjh)) (eαS(s)� eαR(s)) ds

i 1A
�
PrbαR(s 2 Ψnd)

�2

<

0@ �
hR s2

s1
( f (sjl)� f (sjh))ds

i hR s2
s1
(bαR f (sjl) + (1� bαR) f (sjh)) (eαS(s)� eαR(s)) ds

i
+
hR s2

s1
bαR f (sjl) + (1� bαR) f (sjh)ds

i hR s2
s1
( f (sjl)� f (sjh))

i hR s2
s1
(eαS(s)� eαR(s)) ds

i 1A
�
PrbαR(s 2 Ψnd)

�2

=

�
hR s2

s1
( f (sjl)� f (sjh))ds

i0@ hR s2
s1
(bαR f (sjl) + (1� bαR) f (sjh)) (eαS(s)� eαR(s)) ds

i
�
hR s2

s1
bαR f (sjl) + (1� bαR) f (sjh)ds

i hR s2
s1
(eαS(s)� eαR(s)) ds

i 1A
�
PrbαR(s 2 Ψnd)

�2
< 0.

Above, the first equality follows from the application of Leibniz’ rule. The first and the

second inequality follow from applying Hölder’s inequality.

Step 7 Suppose now instead that αS < αR and es < s1 < s2. Note that combining

the assumptions αS < αR and es < s1 < s2 implies that αR 2 (αS, 1). The argument

follows the same logic as above. It still holds true eΘ(Partial,αS) = Θ(Full) and thateΘ(Partial,αR) = Θ(Partial). It also still holds true that Θ(Partial,bαR) is decreasing in bαR.

It follows that eΘ(Partial,αR) = Θ(Partial) < Θ(Full).
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5.5.2 Proof of Proposition 8

The argument here is exactly identical to the proof of the counterpart of this result for the

case of binary signals (Proposition 3).

5.6 Appendix VI: Joint observation of public signals

5.6.1 Proof of Proposition 11

Step 1 This proves Point 1 of the proposition. Assume without loss of generality that

x � y. Given a 0-signal, the change in disagreement is

ω0(x, y, p) = (x� y)�
�

xp
xp+ (1� x)(1� p)

� yp
yp+ (1� y)(1� p)

�
.

Given a 1-signal, we instead have:

ω1(x, y, p) = (x� y)�
�

x(1� p)
x(1� p) + (1� x)p

� y(1� p)
y(1� p) + (1� y)p

�
.

The expected changes in disagreement from the perspective of agents with priors x

and y are given by, respectively:

Vx(x, y, p) = (xp+ (1� x)(1� p))ω0(x, y, p)

+ (1� (xp+ (1� x)(1� p)))ω1(x, y, p), (19)

Vy(x, y, p) = (yp+ (1� y)(1� p))ω0(x, y, p)

+ (1� (yp+ (1� y)(1� p)))ω1(x, y, p). (20)

These expressions further simplify to

Vx(x, y, p) =
(1� 2p)2(x� y)(1� y)y

(y+ p� 2py)(2py+ 1� (p+ y))

and

Vy(x, y, p) =
(1� 2p)2(x� y)(1� x)x

(x+ p� 2px)(2px+ 1� (p+ x))
.
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It can be trivially shown that these expressions are always positive no matter the val-

ues of x, y and p, where Vx(Vy) equals to 0 if and only if x(y) 2 f0, 1, y(x)g.

Step 2 Let us show that the derivative of Vx(x, y, p) with respect to y is convex in y if

x > y and concave in y if y > x. Consider x > y. Taking the third derivative of Vx(x, y, p)

and simplifying we obtain

∂3Vx(x, y, p)
∂y3 =

6(1� 2p)2(1� p)p
(1� y� p(1� 2y))4(y+ p(1� 2y))4

M, (21)

where

M = y4(1� 2p)4 � 4y3x(1� 2p)4 + p� 4p2 + 6p3 � 3p4 + 6y2(x(1� 2p)4

+(1� 2p)2(1� p)p) + x(1� 2p)2(1� 2p+ 2p2)

�4y(1� 2p)2(x+ p� 3xp� p2 + 3xp2).

Let us show that M > 0. Note that M is linear in x. Hence, to prove that M as a

function of x is positive on (y, 1) it is sufficient to show that it is positive at the boundaries

of this interval. We have that at x = y

Mjx=y = 6y3(1� 2p)4 � 3y4(1� 2p)4 + p� 4p2 + 6p3 � 3p4

+y(1� 2p)2(1� 6p+ 6p2)� 2y2(1� 2p)2(2� 9p+ 9p2).

One can verify that this function of y has no roots on [0,1]. Besides at y = 0 this expression

turns to p(1� 4p) + 6p3(1� 0.5p) > 0. Hence,

Mjx=y > 0. (22)

Next,

Mjx=1 = 1� 4y3(1� 2p)4 + y4(1� 2p)4 � 5p+ 10p2 � 10p3 + 5p4

�4y(1� 2p)2(1� 2p+ 2p2) + 6y2(1� 2p)2(1� 3p+ 3p2).

One can verify that this function of y has no roots on [0,1]. Besides at y = 0 this expression

turns to 1� 5p(1� 2p)� 10p3(1� 0.5p) > 0. Hence,

Mjx=1 > 0.



63

This together with (22) and the fact that M is linear in x implies that M > 0. Consequently,

by (21)

∂3Vx(x, y, p)
∂y3 > 0,

i.e., the derivative of Vx with respect to y is convex in y if x > y.

The claim that the derivative of Vx with respect to y is concave in y if y > x follows

analogously.

Step 3 Now we can prove Point 2 of the proposition. From Step 1 and the continuity

of Vx(x, y, p) in y it follows that

∂Vx(x, y, p)
∂y jy=0

> 0,

∂Vx(x, y, p)
∂y jy!x�

< 0,

Since further ∂Vx(x,y,p)
∂y is convex in y by Step 2, it follows that it has a unique root on

(0, x). This implies that Vx(x, y, p) is single-peaked in y for y 2 [0, x]. The claim for x < y

follows analogously given that

∂Vx(x, y, p)
∂y jy=x+

> 0,

∂Vx(x, y, p)
∂y jy=1�

< 0

by Step 1, and ∂Vx(x,y,p)
∂y is concave in y for x < y by Step 2.

Step 4 Now we can prove Point 3 of the proposition. Let us show that for x < 1/2 the

maximum of Vx(x, y, p) is reached for y > 1/2 (the reverse argument then immediately

follows by symmetry considerations). First, note that for x = 1/2 we should have that

the left and the right peaks (see Step 3) yield the same value of Vx(x, y, p) by symmetry

considerations. Next, we have that

y > x :
∂Vx(x, y, p)

∂x
=

(1� y)y(1� 2p)2

(y� 1+ p� 2yp)(y+ p� 2yp)
< 0, (23)

y < x :
∂Vx(x, y, p)

∂x
= � (1� y)y(1� 2p)2

(y� 1+ p� 2yp)(y+ p� 2yp)
> 0, (24)
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This implies that as x decreases, maxy Vx(x, y, pjy > x) is increasing and maxy Vx(x, y, pjy <
x) is decreasing. Hence, overall maxy Vx(x, y, p) is reached at by > x. To show that by > 1/2

we use the fact that

∂Vx(x, y, p)
∂y jy=1/2

=
4(1� 2p)2(� 3

16(1� 2p)2 � x(1� p)p+ (1+ x)(1� p)p+ 1
4(1� 7(1� p)p))

(1� p+ 1
2(2p� 1))2

> 0.

Hence, the right peak (maximizing Vx(x, y, p)) is reached to the right of y = 1/2. �

5.6.2 Proof of Proposition 12

We further denote

µ(x, y) = minfVx(x, y), Vy(x, y)g.

Given that both players should agree to participate, the probability of signal acquisi-

tion is maximized if and only if µ(x, y) is maximized.

Step 1 Note that µ(x, y) should reach its maximum at some values fx�, y�g where

x�, y� 6= f0, 1g since minfVx(x, y), Vy(x, y)g = 0 if either x or y are at the boundaries

while there exists some fx, yg where µ(x, y) > 0 (by Proposition 11.1).

Step 2 By (23) and (24) we have that Vx(x, y) is linearly increasing (decreasing) in x

for x > y (x < y). Analogously, Vy(x, y) is linearly increasing (decreasing) in y for y > x

(y < x).

Step 3 Let us show that µ(x, y) must reach its maximum at some fx�, y�g where

Vx(x�, y�) = Vy(x�, y�). Assume by contradiction that this is not the case so that for

instance, Vx(x�, y�) < Vy(x�, y�). Then, by Steps 1 and 2 one can slightly change x to

raise the value of Vx(x, y) so that µ(x, y) = Vx(x, y) < Vy(x, y) continues to hold. In

other words, one can raise µ(x, y) at least by a slight perturbation of x which proves that

fx�, y�g is not the optimum. The symmetric argument excludes Vx(x�, y�) > Vy(x�, y�).

Step 4 We have shown that Vx(x�, y�) = Vy(x�, y�). Given expressions in (19) and

(20), this condition holds if and only if either x� = y� or ω0(x�, y�) = ω1(x�, y�) (in which
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case a difference in the probability weights on ω0(x�, y�) and ω1(x�, y�) does not matter).

One can in turn verify that the latter condition is true if and only if either x� = y� or

x� = 1� y�. In the first case, we have µ(x, x) = 0 by Proposition 11.1 so it cannot be

optimal. Hence, at the optimum it must hold x� = 1� y�.

Step 5 Let us finally show that there is unique x� 2 (0, 1/2)where µ(x�, 1� x�) is max-

imized (in which case µ(x, y) is also maximized by Step 4). Let us show that µ(x, 1� x) is

concave. Note that by symmetry considerations Vx(x, 1� x) = V1�x(x, 1� x). Hence,

∂2µ(x, 1� x)
∂x2

=
∂2Vx(x, 1� x)

∂x2

= 2(1� p)p(2p� 1)
�

1
(p(1� 2x) + x� 1)3

+
1

(p(1� 2x) + x)3

�
< 0.

Given that µ(x, 1� x) is concave in x and is equal to 0 at x = 0 and x = 1/2 by Proposition

11.1, we obtain that there is unique x� 2 (0, 1/2) maximizing µ(x, 1� x).


